
Modular Programming

Ramses van Zon

PHY1610 Winter 2024

Ramses van Zon Modular Programming PHY1610 Winter 2024 1 / 33

Modularity

Ramses van Zon Modular Programming PHY1610 Winter 2024 2 / 33

Why does modularity matter?

Scientific software can be large, complex and subtle.

E.g., sections for simulation parameters, system creation, initial conditions, output, time stepping, . . .

If each section uses the internal details of other sections, you must understand the entire code at
once to understand what the code in a particular section is doing.

(This is why global variables are bad bad bad!)

Interactions grow as (number of lines of code)2.

Ramses van Zon Modular Programming PHY1610 Winter 2024 3 / 33

Example: Monolythic code for hydrogen’s ground state
// hydrogen.cpp
#include <iostream>
#include <fstream>
const int n = 4913;
double m[n][n], a[n], b = 0.0;
void pw() {

double q[n] = {0};
for (int i = 0; i < n; i++)

for (int j = 0; j < n; j++)
q[i] += m[i][j]*a[j];

for (int i = 0; i < n; i++)
a[i] = q[i];

}
double en() {

double e = 0.0, z = 0.0;
for (int i = 0; i < n; i++) {

z += a[i]*a[i];
for (int j = 0; j < n; j++)

e += a[i]*m[i][j]*a[j];
}
return b + e/z;

}

int main() {
for (int i = 0; i < n; i++) {

a[i] = 1.0;
for (int j = 0; j < n; j++) {

m[i][j] = H(i,j,n);
}

}
for (int i = 0; i < n; i++)

if (m[i][i] > b)
b = m[i][i];

for (int i = 0; i < n; i++)
m[i][i] -= b;

for (int p = 0; p < 20; p++)
pw();

std::cout<<"Ground state energy="<<en()<<"\n";
std::ofstream f("data.txt");
for (int i = 0; i < n; i++)

f << a[i] << std::endl;
std::ofstream g("data.bin", std::ios::binary);
g.write((char*)(a), sizeof(a));
return 0;

}

Ramses van Zon Modular Programming PHY1610 Winter 2024 4 / 33

What is wrong with this code?
// hydrogen.cpp
#include <iostream>
#include <fstream>
const int n = 4913;
double m[n][n], a[n], b = 0.0;
void pw() {

double q[n] = {0};
for (int i = 0; i < n; i++)

for (int j = 0; j < n; j++)
q[i] += m[i][j]*a[j];

for (int i = 0; i < n; i++)
a[i] = q[i];

}
double en() {

double e = 0.0, z = 0.0;
for (int i = 0; i < n; i++) {

z += a[i]*a[i];
for (int j = 0; j < n; j++)

e += a[i]*m[i][j]*a[j];
}
return b + e/z;

}

The hydrogen.cpp code uses functions.
Is that not modular?

No, not by itself. A few bad things:

Global variables n,m,a,b that all of the code
can modify.

All code in one single file.

No comments.

Not clear what part does what, or what part
needs which variables.

Cryptic variable and function names.

Automatic arrays.

Hard-coded filenames and parameters.

Ramses van Zon Modular Programming PHY1610 Winter 2024 5 / 33

Modularity

Who cares, you might say, as long as it runs? But:

Code is not written for a computer but for humans.

Code almost never a one-off.

That’s why you must enforce boundaries between sections of code so that you have self-contained
modules of functionality.

This is not just for your own sanity. There are added benefits:

Each section can then be tested individually, which is significantly easier.

Makes rebuilding software more efficient.

Makes version control more powerful.

Makes changing and maintaining the code easier.

Ramses van Zon Modular Programming PHY1610 Winter 2024 6 / 33

Up-front work

Think about the blocks of functionality that you are going to need.

How are the routines within these blocks going to be used?

Think about what you might want to use these routines for; only then design the interface.

The interfaces to your routines may change a bit in the early stages of your code development, but if
it changes a lot you should stop and rethink things – you’re not using the functionality the way you
expected to.

More work up-front but results in higher productivity in the long run.

Developing good infrastructure is always time well spent.

Ramses van Zon Modular Programming PHY1610 Winter 2024 7 / 33

A simple example of modularization
The code writes out the array in binary and text formats.Let’s start with putting those parts in functions.
//hydrogen.cpp
#include <string>

void writeBinary(const std::string& s, int n, const double x[]) {
std::ofstream g(s, std::ios::binary);
g.write((char*)(x), n*sizeof(x[0]));
g.close();

}
void writeText(const std::string& s, int n, const double x[]) {

std::ofstream f(s);
for (int i=0; i<n; i++)

f << a[i] << std::endl;
f.close();

}
//...
int main() {

//...
writeText("data.txt", n, a);
writeBinary("data.bin", n, a);
//...

}
Ramses van Zon Modular Programming PHY1610 Winter 2024 8 / 33

A simple example of modularization
The code writes out the array in binary and text formats. Let’s extract function declarations.
//hydrogen.cpp
#include <string>

void writeBinary(const std::string& s, int n, const double x[]) {
std::ofstream g(s, std::ios::binary);
g.write((char*)(x), n*sizeof(x[0]));
g.close();

}
void writeText(const std::string& s, int n, const double x[]) {

std::ofstream f(s);
for (int i=0; i<n; i++)

f << a[i] << std::endl;
f.close();

}
//...
int main() {

//...
writeText("data.txt", n, a);
writeBinary("data.bin", n, a);
//...

}
Ramses van Zon Modular Programming PHY1610 Winter 2024 9 / 33

A simple example of modularization
The code writes out the array in binary and text formats. Let’s extract declarations.
//hydrogen.cpp
#include <string>
void writeBinary(const std::string& s, int n, const double x[]);
void writeText(const std::string& s, int n, const double x[]);
void writeBinary(const std::string& s, int n, const double x[]) {

std::ofstream g(s, std::ios::binary);
g.write((char*)(x), n*sizeof(x[0]));
g.close();

}
void writeText(const std::string& s, int n, const double x[]) {

std::ofstream f(s);
for (int i=0; i<n; i++)

f << a[i] << std::endl;
f.close();

}
//...
int main() {

//...
writeText("data.txt", n, a);
writeBinary("data.bin", n, a);
//...

}
Ramses van Zon Modular Programming PHY1610 Winter 2024 10 / 33

A simple example of modularization
The code writes out the array in binary and text formats. Let’s extract declarations.
//hydrogen.cpp
#include <string>
void writeBinary(const std::string& s, int n, const double x[]);
void writeText(const std::string& s, int n, const double x[]);
void writeBinary(const std::string& s, int n, const double x[]) {

// bunch of commands

}
void writeText(const std::string& s, int n, const double x[]) {

// bunch of commands

}
//...
int main() {

//...
writeText("data.txt", n, a);
writeBinary("data.bin", n, a);
//...

}
Ramses van Zon Modular Programming PHY1610 Winter 2024 11 / 33

A simple example of modularization
The code writes out the array in binary and text formats. Function definitions can be moved.
//hydrogen.cpp
#include <string>
void writeBinary(const std::string& s, int n, const double x[]);
void writeText(const std::string& s, int n, const double x[]);
void writeBinary(const std::string& s, int n, const double x[]) {

// bunch of commands

}
void writeText(const std::string& s, int n, const double x[]) {

// bunch of commands

}
//...
int main() {

//...
writeText("data.txt", n, a);
writeBinary("data.bin", n, a);
//...

}
Ramses van Zon Modular Programming PHY1610 Winter 2024 12 / 33

A simple example of modularization
The code writes out the array in binary and text formats. Function definitions can be moved.
//hydrogen.cpp
#include <string>
void writeBinary(const std::string& s, int n, const double x[]);
void writeText(const std::string& s, int n, const double x[]);

//...

int main() {
//...
writeText("data.txt", n, a);
writeBinary("data.bin", n, a);
//...

}

void writeBinary(const std::string& s, int n, const double x[]) {
// bunch of commands

}

void writeText(const std::string& s, int n, const double x[]) {
// bunch of commands

}
Ramses van Zon Modular Programming PHY1610 Winter 2024 13 / 33

A simple example of modularization
The code writes out the array in binary and text formats. We’re ready to make a module now!
//hydrogen.cpp
#include <string>
void writeBinary(const std::string& s, int n, const double x[]);
void writeText(const std::string& s, int n, const double x[]);

//...

int main() {
//...
writeText("data.txt", n, a);
writeBinary("data.bin", n, a);
//...

}

void writeBinary(const std::string& s, int n, const double x[]) {
// bunch of commands

}

void writeText(const std::string& s, int n, const double x[]) {
// bunch of commands

}
Ramses van Zon Modular Programming PHY1610 Winter 2024 14 / 33

Creating the module

To create our own module, put the declarations for the functions in their own ’header’ file.
//outputarray.h
#include <string>
void writeBinary(const std::string& s, int n, const double x[]);
void writeText(const std::string& s, int n, const double x[]);

The source code with the definitions of the functions should be put into its own separate file.
//outputarray.cpp
#include "outputarray.h"
#include <fstream>
void writeBinary(const std::string& s, int n, const double x[]) {

// bunch of commands
}

void writeText(const std::string& s, int n, const double x[]) {
// bunch of commands

}

Ramses van Zon Modular Programming PHY1610 Winter 2024 15 / 33

Using the module
The original code that uses these would look like:
//hydrogen.cpp
#include "outputarray.h"

//...

int main() {
//...
writeText("data.txt", data, n);
writeBinary("data.bin", data, n);
//...

}

Must now combine the pieces!

Ramses van Zon Modular Programming PHY1610 Winter 2024 16 / 33

Compiling + Linking = Building
So how to compile this code?

Before the full program can be compiled, all the source files (hydrogen.cpp,
outputarray.cpp) must be compiled.

No main function in outputarray.cpp, so it can’t become executable.

Instead outputarray.cpp is compiled into an object file using the “-c” flag

It is advisable to separately compile all the code pieces into object files.

After all the object files are generated, they are linked together to create the
working executable.
$ g++ -std=c++17 outputarray.cpp -c -o outputarray.o // compile
$ g++ -std=c++17 hydrogen.cpp -c -o hydrogen.o // compile
$ g++ outputarray.o hydrogen.o -o hydrogen // link

If you leave out one of the needed .o files you will get a fatal linking error:
“undefined reference to . . . ”.

Ramses van Zon Modular Programming PHY1610 Winter 2024 17 / 33

Interface v. Implementation

By creating a header file, we separated the interface from the implementation.

The implementation - the actual code for writeBinary and writeText - goes in the .cpp (or .cc or .cxx)
or ’source’ file. This is compiled on its own, separately from any program that uses its functions.

The interface - what the calling code needs to know - goes in the .h or ’header’ files. This is also
called the API (Application Programming Interface).

//outputarray.h
#include <string>
void writeBinary(const std::string& s, int n, const double x[]);
void writeText(const std::string& s, int n, const double x[]);

This distinction is crucial for writing modular code.

Ramses van Zon Modular Programming PHY1610 Winter 2024 18 / 33

Interface v. Implementation

So, to review:

When hydrogen.cpp is being compiled, the header file outputarray.h is included to tell the compiler
that there exists out there somewhere functions of the form
void writeBinary(const std::string& s, int n, const double x[]);
void writeText(const std::string& s, int n, const double x[]);

This allows the compiler to check the number and type of arguments and the return type for those
functions (the interface).

The compiler does not need to know the details of the implementation, since it’s not compiling the
implementation (the source code of the routine).

The programmer of hydrogen.cpp also does not need to know the implementation, and is free to
assume that writeBinary and writeText have been programmed correctly.

Ramses van Zon Modular Programming PHY1610 Winter 2024 19 / 33

Guards against multiple inclusion

Protect your header files!

Header files can include other header files.

It can be hard to figure out which header files are already included in the program.

Including a header file twice will lead to doubly-defined entities, which results in a compiler error.

The solution is to add a ’preprocessor guard’ to every header file:
//outputarray.h
#ifndef OUTPUTARRAY_H
#define OUTPUTARRAY_H
#include <string>
void writeBinary(const std::string& s, int n, const double x[]);
void writeText(const std::string& s, int n, const double x[]);
#endif

We’ll expect to see these in your homework.

Ramses van Zon Modular Programming PHY1610 Winter 2024 20 / 33

About the preprocessor
What do you mean by “preprocessor”?

Before the compiler actually compiles the code, a “preprocessor” is run on the code.

For our purposes, the preprocessor is essentially just a text-substitution tool.

Every line that starts with “#” is interpreted by the preprocessor.

The most common directives a beginner encounters are #include, #ifndef, #define, and #endif.

Future Feature

The new C++20 standard defines a way to define modules that does not rely on the preprocessor.

Support of C++20 modules by compilers are still not complete and buggy. And where implementations
exist, important details like how you compile and link these modules, how you should name your modules
files, and where the result of a module compilation goes, all varies wildly among compilers.

So unless you don’t want to compile your code, using C++20 modules at this point is more complex and
less portable than sticking with the #include technique.

Ramses van Zon Modular Programming PHY1610 Winter 2024 21 / 33

What goes into the interface (i.e. the header file)?

So what should one expect in a header file?

At the very least, the function declarations.

There may also be constants that the calling function and the routine need to agree on (error codes,
for example) or definitions of data structures, classes, etc.

Comments, which give a description of the module and its functions.

Further guidelines:

There should really only be one header file per module. In theory there can be multiple source files.

Not necessarily every function declaration is in the header file, just the public ones. Routines internal
to the module are not in the public header file.

Ramses van Zon Modular Programming PHY1610 Winter 2024 22 / 33

What goes into the implementation (source file)?

What should one expect in a source file?

Everything which is defined in the .h file which requires code that is not in the .h file. Particularly,
function definitions.

Internal routines which are used by the routines declared in the .h file.

To ensure consistency, include the corresponding .h file at the top of the file.

Everything that needs to be compiled and linked to code that uses the .h file.

Ramses van Zon Modular Programming PHY1610 Winter 2024 23 / 33

Modularity allows faster compilation

Ramses van Zon Modular Programming PHY1610 Winter 2024 24 / 33

Modularity allows faster compilation
Consider a build tree with several source files, e.g.

1 Source file compilations can be done
simultaneously.

Parallel processing of code!
2 If only one .cpp file has changed, only that file

needs to be recompiled.

Fast rebuilds

But:

Now you need to keep track of what depends
upon what.

You need to retype in the entire compilation
command every time you need to recompile.

This is where the make program comes in!
Ramses van Zon Modular Programming PHY1610 Winter 2024 25 / 33

Assignment 2

Ramses van Zon Modular Programming PHY1610 Winter 2024 26 / 33

Your assignment

For this week’s assignment, you will be:

modularizing an existing, monolythic code

automating its build process with a Makefule

adding some functionality as a module

The monolythic code to start with compute a 1D version of Conway’s Game of Life.

Ramses van Zon Modular Programming PHY1610 Winter 2024 27 / 33

The Code 1/5
// gameof1d.cpp
//
// This code computes the evolution of a one-dimensional variant of Conway's Game of Life,
// as conceived by Jonathan K. Millen and published in BYTE magazine in December, 1978.
//
// This system is a linear set of cells that are either "alive" or "dead".
// Time in this system progresses in discrete steps.
//
// The state of each cell at the next time step depends on its present
// state and that of its neighbors, in the following way:
//
// - First, count the number of alive neighbors at most 2 cells away
// - An alive cell stays alive if that count is 2 or 4, else it dies
// - A dead cell becomes alive if that count is 2 or 3, else it stays dead.
//
// Since the first two and the last two cells would not have enough neighbours to apply
// this rule, we use cells on the other side as neighbours, i.e., 'periodic boundaries'.
//
// The initial state of this system is constructed with a given fraction of alive
// cells which are (nearly) equally spaced among dead cells.
//
// The code computes the time evolution for 120 steps, and for each step, prints out
// a line with a representation of the state and fraction of alive cells.
// Ramses van Zon Modular Programming PHY1610 Winter 2024 28 / 33

The Code 2/5
// We use bool to store the state of each cell, but for convenience define the following
const bool alive = true;
const bool dead = false;
using Cells = std::unique_ptr<bool[]>;
// Determine next state of a single cell based on the state of all the cells
bool next_cell_state(const Cells& cell_state, int cell_index, int num_cells) {

// the modulus operator (%) enforces periodic boundary conditions
int alive_neighbours = 0;
for (int j = 1; j <= 2; j++) {

if (cell_state[(cell_index+j+num_cells)%num_cells] == alive)
alive_neighbours++;

if (cell_state[(cell_index-j+num_cells)%num_cells] == alive)
alive_neighbours++;

}
if (cell_state[cell_index] == alive and

(alive_neighbours == 2 or alive_neighbours == 4))
return alive;

else if (cell_state[cell_index] == dead and
(alive_neighbours == 2 or alive_neighbours == 3))

return alive;
else

return dead;
}

Ramses van Zon Modular Programming PHY1610 Winter 2024 29 / 33

The Code 3/5
int main(int argc, char* argv[]) {

// Set default simulation parameters then accept command line arguments
int num_cells = 70;
int num_steps = 120;
double target_alive_fraction = 0.35;
try {

if (argc > 1)
num_cells = std::stoi(argv[1]);

if (argc > 2)
num_steps = std::stoi(argv[2]);

if (argc > 3)
target_alive_fraction = std::stod(argv[3]);

} catch(...) {
std::cout <<

"Computes a 1d version of Conway's game of life\n\n"
"Usage:\n"
" gameof1d [-h | --help] | [NUMCELLS [NUMSTEPS [FRACTION]]]\n\n";

if (std::string(argv[1]) != "-h" and std::string(argv[1]) !="--help") {
std::cerr << "Error in arguments!\n";
return 1;

} else
return 0;

}
Ramses van Zon Modular Programming PHY1610 Winter 2024 30 / 33

The Code 4/5
// Simulation creation
Cells cell(std::make_unique<bool[]>(num_cells));
// Fill cells such that the fraction of alive cells is approximately target_alive_fraction.
double fill = 0.0;
for (int i = 0; i < num_cells; i++) {

fill += target_alive_fraction;
if (fill >= 1.0) {

cell[i] = alive;
fill -= 1.0;

} else
cell[i] = dead;

}
// Output time step, state of cells, and fraction of alive cells
const char on_char = 'I', off_char = '-';
double alive_fraction = 0.0;
for (int i = 0; i < num_cells; i++)

if (cell[i] == alive)
alive_fraction++;

alive_fraction /= num_cells;
std::cout << 0 << "\t";
for (int i = 0; i < num_cells; i++)

if (cell[i] == alive)
std::cout << on_char;

Ramses van Zon Modular Programming PHY1610 Winter 2024 31 / 33

The Code 5/5
else

std::cout << off_char;
std::cout << " " << alive_fraction << "\n";
// Evolution loop
for (int t = 0; t < num_steps; t++) {

// Update cells
Cells newcell = std::make_unique<bool[]>(num_cells);
for (int i = 0; i < num_cells; i++)

newcell[i] = next_cell_state(cell, i, num_cells);
std::swap(cell, newcell); // swap without a copy
// Output time step, state of cells, and fraction of alive cells
alive_fraction = 0.0;
for (int i = 0; i < num_cells; i++)

alive_fraction += cell[i];
alive_fraction /= num_cells;
std::cout << t+1 << "\t";
for (int i = 0; i < num_cells; i++)

if (cell[i] == alive)
std::cout << on_char;

else
std::cout << off_char;

std::cout << " " << alive_fraction << "\n";
}

} // end mainRamses van Zon Modular Programming PHY1610 Winter 2024 32 / 33

To Do

Ramses van Zon Modular Programming PHY1610 Winter 2024 33 / 33

	Modularity
	Modularity allows faster compilation
	Assignment 2

