
BCH2203 Python for Biochemistry - 3. Dictionaries and
Functions

Ramses van Zon

Winter 2024

Ramses van Zon BCH2203 Python for Biochemistry - 3. Dictionaries and Functions Winter 2024 1 / 29

1

More composite data types

Ramses van Zon BCH2203 Python for Biochemistry - 3. Dictionaries and Functions Winter 2024 2 / 29

List-like data types

Sets: are lists in which an element can only
occur once.

Elements in a set an unordered (so no
indexing).

Sets are defined with curly braces:
>>> s = {5, 4, 6, 5}
>>> print(s)
{4, 5, 6}

Tuples: are lists that cannot be changed.

Tuples are denoted with parentheses.
>>> t = (1,2,1)
>>> print(t)
(1, 2, 1)

Generators: are lists generate their next
element upon request.
>>> r = range(4)
>>> print(r)
range(0, 4)
>>> for x in r:
... print(x)
...
0
1
2
3

Dictionaries: are key-value hash tables.

Ramses van Zon BCH2203 Python for Biochemistry - 3. Dictionaries and Functions Winter 2024 3 / 29

http://www.scinethpc.ca

Dictionaries

Key? Value? Hash? Table?

In Python, a dictionaries (dict for short) is a
look-up table.
Think of the directory of a building:

Suppose we need to allow look-up for
‘Airbnb’, ‘SciNet’, . . .

such that the result is the suite number in the
MaRS building.

In Python:

>>> directory={'Airbnb': 10, 'SciNet': 1140}
>>> print(directory['SciNet'])
1140

Ramses van Zon BCH2203 Python for Biochemistry - 3. Dictionaries and Functions Winter 2024 4 / 29

http://www.scinethpc.ca

Dictionaries

>>> directory={'Airbnb': 10, 'SciNet': 1140}
>>> print(directory['SciNet'])
1140

A dict translates a ‘key’ to its associated ‘value’.
In the above example, the keys are ‘Airbnb’ and ‘SciNet’, and the values are 10 and 1140.
You can give the key in square brackets to get the value out (a bit like a list).
Keys must be unique, but can be integers, strings, . . .
Values can be anything.

Other names for these structures:

Associate Array, Map, Hash Map, Unordered Map

Ramses van Zon BCH2203 Python for Biochemistry - 3. Dictionaries and Functions Winter 2024 5 / 29

http://www.scinethpc.ca

What can we do with these dicts?

Look up values:
>>> directory['SciNet']
1140

Get all the keys:
>>> directory.keys()
dict_keys(['SciNet', 'Airbnb'])

Get all the values:
>>> directory.values()
dict_values([1140, 10])

Add key-value pair:
>>> directory['TTC'] = 0

Loop over all keys
>>> for k in directory:
... print(k)
...
SciNet
Airbnb
TTC

Loop over key-value pairs
>>> for k,v in directory.items():
... print (k,v)
...
SciNet 1140
Airbnb 10
TTC 0

Ramses van Zon BCH2203 Python for Biochemistry - 3. Dictionaries and Functions Winter 2024 6 / 29

http://www.scinethpc.ca

2

Interfacing with the Shell

Ramses van Zon BCH2203 Python for Biochemistry - 3. Dictionaries and Functions Winter 2024 7 / 29

Shebang comment

Under Linux and MacOS, one often sees Python scripts that start with a “shebang” line:
#!/usr/bin/python

or (much better)
#!/usr/bin/env python3

Such a first line tells the operating system that this is a python script.
Being identified as a python script, it can be executed from the terminal command line:
$./mypythonscript.py

instead of
$ python mypythonscript.py

For this to work, you might need to tell the OS additionally that this file may be executed:
$ chmod +x mypythonscript.py

Ramses van Zon BCH2203 Python for Biochemistry - 3. Dictionaries and Functions Winter 2024 8 / 29

http://www.scinethpc.ca

3

Command-line arguments

Ramses van Zon BCH2203 Python for Biochemistry - 3. Dictionaries and Functions Winter 2024 9 / 29

What are Command-line arguments?

The terminal command line execution of python scripts, e.g.
$ python yearquery.py

can be augmented with arguments on the command line
$ python yearquery.py 1972 2000 2017

But this will not ‘just work’. The script will need to be expecting command line arguments and deal with
them.

Ramses van Zon BCH2203 Python for Biochemistry - 3. Dictionaries and Functions Winter 2024 10 / 29

http://www.scinethpc.ca

Command-line arguments: sys.argv

A script needs to expect command line arguments and deal with them, or those arguments will be
ignored.

The standard sys module contains a variable called argv which is a list of all command line
arguments, called argv.

To use it, import the sys module and use sys.argv as a list.

E.g.
#!/usr/bin/env python3
file: sys_argv_example.py
import sys
print("You gave",len(sys.argv),"arguments")
for arg in sys.argv:

print(arg)

With command line arguments, you can use a python script as a function within the shell, i.e., you could
use it in shell scripts.

Ramses van Zon BCH2203 Python for Biochemistry - 3. Dictionaries and Functions Winter 2024 11 / 29

http://www.scinethpc.ca

4

Functions

Ramses van Zon BCH2203 Python for Biochemistry - 3. Dictionaries and Functions Winter 2024 12 / 29

Functions

Repeated code is bad: can make mistakes in twice as many lines of code.

Functions are bits of reusable code.

(Not the same as mathematical functions, mind you!)

They are created with the def keyword.

Silly example
#!/usr/bin/env python3
example_silly.py
def printfruit():

print("apples and oranges")

printfruit()
printfruit()

$ python example_silly.py
apples and oranges
apples and oranges

Ramses van Zon BCH2203 Python for Biochemistry - 3. Dictionaries and Functions Winter 2024 13 / 29

http://www.scinethpc.ca

Function arguments

If functions did the same thing every time
(like our example), they’d be of little use.
The print function is an example of a
less-trivial function.
Depending on its arguments, the print
function does something else.
When we write our own functions, we can
allow for one or more arguments too.
The function definition must specify the
names of the argument.

#!/usr/bin/env python3
example_silly_argument.py
def printfruit(s)

print (s, "apples and oranges")

printfruit("I like")
printfruit("I do not like")

$ python example_silly_argument.py
I like apples and oranges
I do not like apples and oranges

printfruit takes one argument called s.
Inside the function, s acts like a variable.
After the function definition, we can use
“printfruit” with different arguments.

Ramses van Zon BCH2203 Python for Biochemistry - 3. Dictionaries and Functions Winter 2024 14 / 29

http://www.scinethpc.ca

More function arguments

We can also have multiple function arguments.

Simply list multiple names for function arguments, separated by commas.
#!/usr/bin/env python3
#example_fun_moreargs.py
def comparable(a,b):

if a != b :
print ('you cannot compare ', a, 'and', b)

else:
print (a, 'and', b, 'are comparable.')

comparable('apples','apples')
comparable('apples','oranges')

$ python example_fun_moreargs.py
apples and apples are comparable
you cannot compare apples and oranges

Ramses van Zon BCH2203 Python for Biochemistry - 3. Dictionaries and Functions Winter 2024 15 / 29

http://www.scinethpc.ca

Function output

So far our functions took arguments, i.e., input, but they produced output on the terminal.
Functions are more useful if they produce output that can be put in a variable.
To have your function produce such output, use the return statement.
Whatever follows the return statement of a function becomes the function’s return value. The
function exits at the return statement.
To use that return value to a variable, use the function call as if it’s a variable.

Silly example
#!/usr/bin/env python3
example_fun_output.py
def addone(x):

return x+1

a=10
b=addone(a)
print(a,b)

$ python example_fun_output.py
10 11
$

Ramses van Zon BCH2203 Python for Biochemistry - 3. Dictionaries and Functions Winter 2024 16 / 29

http://www.scinethpc.ca

More on functions

There’s a lot more to be said about functions, the scope of variables, default values, variable number of
arguments, keyword arguments, . . .

Later.

Ramses van Zon BCH2203 Python for Biochemistry - 3. Dictionaries and Functions Winter 2024 17 / 29

http://www.scinethpc.ca

5

Comments

Ramses van Zon BCH2203 Python for Biochemistry - 3. Dictionaries and Functions Winter 2024 18 / 29

Code is for humans

So far, we have been writing code for the computer.
(We tried to make the computer do something.)

Programs are meant to be read by humans and
only incidentally for computers to execute.
(Harold Abelson, Structure and Interpretation of Computer Programs)

How so?
I Programmers spend more time reading someone else’s code than writing their own.
I There’s no such this as a one-off script.

(If you have saved a script as a file, it’s no longer one-off, and you or someone else will eventually use it
again and want to adapt it.)

Readability, documentation, and maintainability very important.

Ramses van Zon BCH2203 Python for Biochemistry - 3. Dictionaries and Functions Winter 2024 19 / 29

http://www.scinethpc.ca

How do you code for humans?

1 Write clear code.
2 Comment your code.
3 Document your code.

Ramses van Zon BCH2203 Python for Biochemistry - 3. Dictionaries and Functions Winter 2024 20 / 29

http://www.scinethpc.ca

1. Write clear code: general principles
KISS: Keep It Simple, Stupid!

I Do not write code that is more complicated than necessary.
I It will take too long for the next programmer of your future self to decode.
I Your cleverest code will need someone cleverer than you to debug.

DRY: Don’t repeat yourself.

Use functions to extract repeated code.
⇒ Less code to figure out, less possible bugs, less code to maintain.

Separation of concerns

Each function should do only one thing, and do it well.

This makes it easier to figure out, bugs become less complex,
documentation becomes easier to write, and code can be reused
in more situations (DRY).

Ramses van Zon BCH2203 Python for Biochemistry - 3. Dictionaries and Functions Winter 2024 21 / 29

http://www.scinethpc.ca

1. Write clear code: style matters

A couple of code style guidelines can help too:

Clear variable and function names
b → calls_per_postal_code

One statement per line
Use a consistent style
Prefer small functions over long ones (as long as they perform a non-trivial task).
Don’t reinvent the wheel; use existing functions and packages.
No cleverness.
Use comments and documentation

Ramses van Zon BCH2203 Python for Biochemistry - 3. Dictionaries and Functions Winter 2024 22 / 29

http://www.scinethpc.ca

2. Comment your code

Comments start with #; anything after that is
a comment.
amount_flour = 2.2 # amount in pounds
brand = 'Brand #1' # string contains '#'

Keep comments succinct.

Describe why your the code is doing
something.
a_is_prime = all(a%i for i in range(2,a))

brute force determination of whether
a is prime (was easier to code than
a more sophisticated algorithm).

Describe on a high level what parts of the
code are doing.
Get to user input an integer
while True:

try:
input_string = input("Enter an integer a=")
a = int(input_string)
break

except:
print("Not an integer; try again")

Determine if integer a is prime
a_is_prime = all(a%i for i in range(2,a))

brute force determination of whether
a is prime (was easier to code than
a more sophisticated algorithm).

Report back result to screen
print("a is prime?", a_is_prime)

Ramses van Zon BCH2203 Python for Biochemistry - 3. Dictionaries and Functions Winter 2024 23 / 29

http://www.scinethpc.ca

3. Document your code

You would also add comments describing
what a function does, what parameters they
take, and what they return.
This would be the first line of defence in
documenting that function.

However, Python has a separate mechanism
for such function documentation, called a
docstring.

Doc-strings are placed at the first line of the
function.

The docstring is returned by the help
function.
>>> help(find_second)

>>> def find_second(searchin, forthis):
... """Finds the 2nd occurance of a string.
...
... Args:
... searchin (str): string to search in.
... forthis (str): string to search for.
...
... Returns:
... int: The index in the search where the
... second occurance starts.
... -1 if there is no 2nd occurance.
... """
... # code would follow
...

The triple quotes are the python syntax for
multi-line strings.

Ramses van Zon BCH2203 Python for Biochemistry - 3. Dictionaries and Functions Winter 2024 24 / 29

http://www.scinethpc.ca

How to code for humans, continued

1 Write clear code
2 Comment your code
3 Document your code

Some schools of thought say that #2 and #3 are unnecessary if you write “self-documenting code”.

Humbug!

Points #2 and #3 can be done simultaneously with Python only up to a point.

For more complex code, you will need to write files like README, doc.txt, manual.pdf . . .

Ramses van Zon BCH2203 Python for Biochemistry - 3. Dictionaries and Functions Winter 2024 25 / 29

http://www.scinethpc.ca

6

Writing modules

Ramses van Zon BCH2203 Python for Biochemistry - 3. Dictionaries and Functions Winter 2024 26 / 29

What are modules and packages?
Modules are python files.

Modules are meant to be imported into other python files or scripts.

Convenient way to store functions that you might use in multiple projects.

One or more modules can form a package.

Example
module file:
file: yearprop.py
"""Deal with properties of calendar years."""
def is_leap_year(year):

"""Determines if a give year is a leap year.
Argument year is the year to investigate.
Returns True is year is a leap year, else
False.
"""
...

usage in another script:
#!/usr/bin/env python3
file: yearquery.py
"""Ask for years and say if they're leap years"""
import yearprop

use the function yearprop.is_leap_year
year = int(input("Give a year"))
if yearprop.is_leap_year(year):

print(year,"is a leap year")
else:

print(year,"is not a leap year")
Ramses van Zon BCH2203 Python for Biochemistry - 3. Dictionaries and Functions Winter 2024 27 / 29

http://www.scinethpc.ca

Module Example
module file:
file: yearprop.py

"""Deal with properties of calendar years."""

def is_leap_year(year):
"""Determines if a give year is a leap year.
Argument year is the year to investigate.
Returns True is year is a leap year, else
False.
"""

if year%400 == 0:
return True:

elif year%100 == 0:
return False

elif year%4 ==0:
return True

else:
return False

usage in another script:
#!/usr/bin/env python3
file: yearquery.py
"""Ask for years and say if they're leap years"""
import yearprop
while True: # keep processing new input

keep asking input until we get an integer
while True:

try:
year = int(input("Year (0 to stop)? "))
break;

except:
print("That is not an integer.")

process input
if yearprop.is_leap_year(year):

print(year, "is a leap year!")
else:

print(year, "is not a leap year.")
if year==0: break # stop processing input

print("Done")

Ramses van Zon BCH2203 Python for Biochemistry - 3. Dictionaries and Functions Winter 2024 28 / 29

http://www.scinethpc.ca

Modules - Details

We do not have to specify .py in the import statement.

The file name without .py is the name of the module.

The module file has to be in the same directory as the script, unless you install it (later)

When putting functions in a module and importing that module, it gets put in the namespace of the
modules. The name of the namespace is the name of the module.

(in the example, the namespace was yearprop)

Ramses van Zon BCH2203 Python for Biochemistry - 3. Dictionaries and Functions Winter 2024 29 / 29

http://www.scinethpc.ca

	More composite data types
	Interfacing with the Shell
	Command-line arguments
	Functions
	Comments
	Writing modules

