
Debugging and Building

Ramses van Zon

PHY1610H Winter 2024

Ramses van Zon Debugging and Building PHY1610H Winter 2024 1 / 27

Debugging

Ramses van Zon Debugging and Building PHY1610H Winter 2024 2 / 27

What if your program or test isn’t running correctly. . .

Nonsense. All programs execute “correctly’ ’.

We just told it to do the wrong thing.

Debugging is the art of reconciling your mental
model of what the code is doing with what you
actually told it to do.

https://imgs.xkcd.com/comics/debugger.png
Debugger: program to help detect errors in other programs.

Ramses van Zon Debugging and Building PHY1610H Winter 2024 3 / 27

Tips to avoid debugging
Write better code.

I simple, clear, straightfoward code.
I modularity (avoid global variables and 10,000 line functions).
I avoid “cute tricks’ ’, (no obfuscated C code winners – IOCCC).

Don’t write code, use existing libraries.

Write (simple) tests for each module.

Use version control and small commits.

Switch on the -Wall flag, inspect all warnings, fix them or understand them all.

Use defensive programming:

Check arguments, use assert (which can be
switched of with -DNDEBUG compilation flag)
E.g.:

#include <cassert>
#include <cmath>
double mysqrt(double x) {

assert(x>=0);
return sqrt(x);

}

Ramses van Zon Debugging and Building PHY1610H Winter 2024 4 / 27

Despite that, still errors?

Some common issues:

Arithmetic Corner cases (sqrt(-0.0)), infinities
Memory access Index out of range, uninitialized pointers
Logic Infinite loop, corner cases
Misuse Wrong input, ignored error, no initialization
Syntax Wrong operators/arguments
Resource starvation Memory leak, quota overflow
Parallel Race conditions, deadlock

Ramses van Zon Debugging and Building PHY1610H Winter 2024 5 / 27

Debugging workflows

As soon as you are convinced there is a real problem, create the simplest situation in which it
repeatedly occurs.

Take a scientific approach: model, hypothesis, experiment, conclusion.

Try a smaller problem size, turning off different physical effects with options, etc, until you have a
simple, fast, repeatable example.

Try to narrow it down to a particular module/function/class.

Integrated calculation: Write out intermediate results, inspect them.

Ramses van Zon Debugging and Building PHY1610H Winter 2024 6 / 27

Ways to debug

To figure out what is going wrong, and where in the code, we can

Put strategic print statements in the code.

Use a debugger.

Ramses van Zon Debugging and Building PHY1610H Winter 2024 7 / 27

What’s wrong with using print statements?

Strategy

Constant cycle:
I strategically add print statements
I compile
I run
I analyze output
I repeat

Removing the extra code after the bug is fixed

Repeat for each bug

Problems with this approach

A bug is always unexpected, so you don’t know
where to put those strategic print statements.

As a result, this approach:

is time consuming
is error prone (print statements can have bugs)
changes memory layout, output format, timing
. . .

There’s a better way!

Ramses van Zon Debugging and Building PHY1610H Winter 2024 8 / 27

Debuggers
are programs that can show what happens in a program at runtime.

Features

1 Crash inspection
2 Function call stack
3 Step through code
4 Automated interruption
5 Variable checking and setting

Use a graphical/IDE debugger or not?

Local work station: graphical/IDE is convenient

Remotely (SciNet): can be slow or hard to set up.

In any case, graphical and text-based debuggers use the same concepts.

Ramses van Zon Debugging and Building PHY1610H Winter 2024 9 / 27

Debuggers

Preparing the executable for debugging

Add required compilation flags, -g

(both in compiling and linking!)

Recommended: switch off optimization -O0
(Recommended for production: -O3 -march=native)

Command-line based symbolic debugger: gdb

Free, GNU license, symbolic debugger.

Available on many systems.

Been around for a while, but still developed and up-to-date

Command-line based, does not show code listing by default, unless you use the -tui option.

Ramses van Zon Debugging and Building PHY1610H Winter 2024 10 / 27

Example: Hydrogen Atom Ground State
$ module load gcc/13 rarray/2.7 gdb/13
$ g++ -g -O0 eigenval.cpp initmat.cpp \
hydrogen.cpp outputarr.cpp -o hydrogen

$ gdb -tui ./hydrogen

Ramses van Zon Debugging and Building PHY1610H Winter 2024 11 / 27

GDB command summary
help h print description of command
run r run from beginning (+args)
start start run from main
backtrace ba function call stack
break b set breakpoint
delete d delete breakpoint
continue c continue
list l print part of the code
step s step into function
next n continue until next line
print p print variable
display disp print variable at every prompt
finish fin continue until function end
set variable set var change variable
down do go to called function
until unt continue until line/function
up up go to caller
watch wa stop if variable changes
quit q quit gdbRamses van Zon Debugging and Building PHY1610H Winter 2024 12 / 27

Graphical debuggers
DDD: free, bit old, can do serial and threaded
debugging.
module load ddd

DDT: commercial, on SciNet, part of “Linaro Forge”
good for parallel debugging.
module load forge

Ramses van Zon Debugging and Building PHY1610H Winter 2024 13 / 27

Code in multiple source file

Ramses van Zon Debugging and Building PHY1610H Winter 2024 14 / 27

Three bits of reality about scientific software:

Scientific software can be large, complex and subtle.

Scientific software is constantly evolving.

Code will be handed down, shared, reused.

Example of this complexity

Consider the relatively simple hydrogen code. It has to :
1 Create a matrix
2 Compute its eigenvalues
3 Output the result
4 And some code has to put it altogether.

At some point in the research project, any of these aspects may need to change independently. . . .

Ramses van Zon Debugging and Building PHY1610H Winter 2024 15 / 27

Managing complexity using modularity

Modularity is extracing the different parts of the program that are responsible for different things into
different files.

Each of these should be fairly independent.

Implementation changes of one module should not affect other modules.

Each part can be maintained by a different person.

Once a part is working well, it can be used as an appliance.

We’ll discuss modularity more in detail int the next lecture.

First, we need to discuss how to compile such multifile codes.

Ramses van Zon Debugging and Building PHY1610H Winter 2024 16 / 27

Make

Ramses van Zon Debugging and Building PHY1610H Winter 2024 17 / 27

Make

make is a build program that is used to build programs from multiple .cpp, .h, .o, and other files.

It is actually a very general framework that is used to compile code, of any type.

make takes a Makefile as its input, which specifies what to do, and how.

The Makefile contains variables, rules and dependencies.

The Makefile specifies executables, compiler flags, library locations, . . .

Build programs are a crucial component of professional software development.

https://www.gnu.org/software/make/manual/html_node/index.html

Ramses van Zon Debugging and Building PHY1610H Winter 2024 18 / 27

https://www.gnu.org/software/make/manual/html_node/index.html

Basic usage

Make is invoked with a list of target files to build as command-line arguments:
$ make [TARGET ...]

Without arguments, make builds the first target that appears in its makefile, which is traditionally a
symbolic target named all.

Make uses the rules in the Makefile to decide which targets needs to be (re)generated based on file
modification times.

This solves the problem of avoiding the building of files which are already up to date, as long as the
timestamps are consistent and correct.

Ramses van Zon Debugging and Building PHY1610H Winter 2024 19 / 27

Rules

A Makefile is a plain text file consisting of rules.

Each rule begins with a textual dependency line which defines a target followed by a colon (:) and
optionally an enumeration of prerequisites (files or other targets) on which the target depends.

The dependency line is arranged so that the
target (left of the colon) depends on the
“prerequisites” (to its right)

Each command-line must start with a TAB
character to be recognized as a command.

TARGET: prerequisites1 prerequisite2 ...
[command 1]
:
[command n]

Unfortunately, as you can’t easily see in your editor whether you have a TAB character or a set of spaces. If you
have spaces instead of a TAB, make will print the unhelpful error:

Makefile:3: *** missing separator. Stop.

Ramses van Zon Debugging and Building PHY1610H Winter 2024 20 / 27

Simple Makefile Example
Consider this set of commands:
$ g++ -std=c++17 -O2 outputarray.cpp -c -o outputarray.o
$ g++ -std=c++17 -O2 hydrogen.cpp -c -o hydrogen.o
$ g++ -O2 outputarray.o hydrogen.o -o hydrogen

Here, -O2 stands for Optimization level 2.
This option makes the compiler create faster machine code.
Do this unless you know why you shouldn’t.

This can be encoded into this Makefile:
Makefile
hydrogen: outputarray.o hydrogen.o

g++ -O2 outputarray.o hydrogen.o -o hydrogen

outputarray.o: outputarray.cpp outputarray.h
g++ -std=c++17 -O2 outputarray.cpp -c -o outputarray.o

hydrogen.o: hydrogen.cpp outputarray.h
g++ -std=c++17 -O2 hydrogen.cpp -c -o hydrogen.o

which will build what is needed when running make.
Ramses van Zon Debugging and Building PHY1610H Winter 2024 21 / 27

Rules - commands

Each command is executed by a separate shell or command-line interpreter instance.

Comments are included using #

A rule may have no command lines defined.
The dependency line can consist solely of components that refer to targets.
This means either there is nothing to do, or there is a predefined rule.

The Makefile dependencies are declarative.
They define the build tree.
Their order does not matter.

Need multiple commands?

The backslash \ can be used to have commands executed by the same shell, it represents
line-continuation

Commands can be separated by ;

Ramses van Zon Debugging and Building PHY1610H Winter 2024 22 / 27

Macros & Variables
Macros are usually referred to as variables
when they hold simple string definitions, like
CXX = g++.

Macros in makefiles may be overridden by the
command-line arguments passed to the Make
utility (e.g. “make CXX=icpc”).

Macros allow users to specify the programs
invoked and other custom behavior during the
build process.

For example, the macro CXX is used in
makefiles to refer to the location of the C++
compiler

To use variables, you need to use a dollar sign
($) followed by the name of the variable in
parenthesis (or curly braces).

Examples
MACRO = definition

PACKAGE = package
VERSION = `date +"\%Y.\%m\%d"`
ARCHIVE = $(PACKAGE)-$(VERSION)

dist:
Notice that only now macros are
expanded for shell to interpret:
tar -cf ../package-`date +"\%Y\%m\%d"`.tar
tar -cf ../$(ARCHIVE).tar .

Note: Environment variables are also available as
macros.

Ramses van Zon Debugging and Building PHY1610H Winter 2024 23 / 27

Extended Example: Compilation and Linking
Example Makefile for the `hydrogen` program (after modularization)
CXX=g++
CXXFLAGS=-std=c++17 -O2
LDFLAGS=-O2
all: hydrogen

hydrogen: hydrogen.o outputarray.o initmatrix.o eigenvalue.o
$(CXX) $(LDFLAGS) -o hydrogen hydrogen.o outputarray.o initmatrix.o eigenvalue.o $(LDLIBS)

hydrogen.o: hydrogen.cpp outputarray.h initmatrix.h eigenvalue.h
$(CXX) -c $(CXXFLAGS) -o hydrogen.o hydrogen.c

outputarray.o: outputarray.cpp outputarray.h
$(CXX) -c $(CXXFLAGS) -o outputarray.o outputarray.c

initmatrix.o: initmatrix.cpp initmatix.h
$(CXX) -c $(CXXFLAGS) -o initmatrix.o initmatrix.c

eigenvalue.o: eigenvalue.cpp eigenvalue.h
$(CXX) -c $(CXXFLAGS) -o eigenvalue.o eigenvalue.c

clean:
$(RM) eigenvalue.o initmatrix.o outputarray.o hydrogen.o

.PHONY: all clean
Ramses van Zon Debugging and Building PHY1610H Winter 2024 24 / 27

Compilation and Linking

What happens when you type make?

make will only recompile those dependencies that have source files that are newer then the library,
thus only the code you are working on is modified.

If a target is not a file, you should declare it ‘PHONY’.
Otherwise, should a file by that name exist, make thinks it’s done already.

It’s good practice to put a clean rule in your Makefile that allows the whole compilation to restart.

Several rules could be processed at the same time; you can tell make to try and use multiple
processes when the dependencies allow it, but specifying a -j option, e.g.
$ make -j 4

Ramses van Zon Debugging and Building PHY1610H Winter 2024 25 / 27

Special Variables

$@: the target filename

$*: the target filename without the file extension

$<: the first prerequisite filename

$ˆ: the filenames of all the prerequisites, separated by spaces, discard duplicates.

$+: similar to $ˆ, but includes duplicates

$?: the names of all prerequisites that are newer than the target, separated by spaces

Ramses van Zon Debugging and Building PHY1610H Winter 2024 26 / 27

Extended Example with Variables
Example Makefile for the `hydrogen` program (after modularization)
CXX=g++
CXXFLAGS=-std=c++17 -O2
LDFLAGS=-O2
all: hydrogen

hydrogen: hydrogen.o outputarray.o initmatrix.o eigenvalue.o
$(CXX) $(LDFLAGS) -o $@ $ˆ $(LDLIBS)

hydrogen.o: hydrogen.cpp outputarray.h initmatrix.h eigenvalue.h
$(CXX) -c $(CXXFLAGS) -o $@ $<

outputarray.o: outputarray.cpp outputarray.h
$(CXX) -c $(CXXFLAGS) -o $@ $<

initmatrix.o: initmatrix.cpp initmatix.h
$(CXX) -c $(CXXFLAGS) -o $@ $<

eigenvalue.o: eigenvalue.cpp eigenvalue.h
$(CXX) -c $(CXXFLAGS) -o $@ $<

clean:
$(RM) eigenvalue.o initmatrix.o outputarray.o hydrogen.o

.PHONY: all clean
Ramses van Zon Debugging and Building PHY1610H Winter 2024 27 / 27

	Debugging
	Code in multiple source file
	Make

