
Quantitative Applications for Data Analysis:
Linux command line I

Erik Spence

SciNet HPC Consortium

9 January 2024

Erik Spence (SciNet HPC Consortium) Linux Command Line I 9 January 2024 1 / 42

Today’s slides

Today’s slides can be found here. Go to the ”Quantitative Applications for Data Analysis”
page, on the right, under ”Lectures”, ”Intro to Linux Shell I”.

https://education.scinet.utoronto.ca

You can also access the class web site directly, here:

https://scinet.courses/1346

Erik Spence (SciNet HPC Consortium) Linux Command Line I 9 January 2024 2 / 42

https://education.scinet.utoronto.ca
https://scinet.courses/1346

Who are we?

We are Erik Spence and Alexey Fedoseev.

We are Applications Analysts at SciNet (https://www.scinethpc.ca).

SciNet is a High-Performance-Computing (HPC) consortium, one of six in Canada, run by
the University of Toronto.

These consortia run massively parallel computers, with tens of thousands of cores, to
perform computations that couldn’t be done otherwise.

Our job at SciNet is to help users get their code to run on these machines.

We also educate users on how to write fast, efficient code.

Erik Spence (SciNet HPC Consortium) Linux Command Line I 9 January 2024 3 / 42

https://www.scinethpc.ca

About this class

Some notes about this class:

This class aims to be a graduate course on data analysis and research computing, using R
and Python.

We will meet for twelve weeks, two lectures per week, on Tuesdays, 10:00am - 12:00pm
and Thursdays, 11:00am - 12:00pm.

Classes will be held in AA207 on Tuesdays and IC120 on Thursdays.

The class unbalanced scheduling is new for us. We are still trying to figure out how that
will affect the material.

This class can be taken for credit by UTSC graduate students (EES1137), as well as
graduate students at other campuses.

Erik Spence (SciNet HPC Consortium) Linux Command Line I 9 January 2024 4 / 42

About this class, continued

Some notes about this class:
There will be 10 approximately-weekly homework assignments, probably assigned on
Tuesdays, since those classes are two-hours long, and due one week later at midnight.

The assignments are 100% of your grade.

Late assignments will be accepted until one week after the deadline (at 10:00am), with a
penalty of 0.5 points per day (out of 10).

The assignments are submitted through the class website.

Office hours will be held on Thursdays from 12:30pm - 2:00pm (after Thursday’s lecture),
in EV340.

Please, please ask for help if you need it!
I Post questions to the class forum.
I Talk to us, or email us if you have questions: courses@scinet.utoronto.ca.

Ask questions!

Erik Spence (SciNet HPC Consortium) Linux Command Line I 9 January 2024 5 / 42

mailto:courses@scinet.utoronto.ca

SciNet certificates

In addition to official UofT class credit, SciNet also offers its own certificates.

We offer certificates in High Performance Computing, Scientific Computing and Data
Science.

Each certificate requires 36 SciNet credits; specific classes qualify for specific certificates.

This class qualifies for 28 credits toward the Data Science certificate, and 8 credits toward
the Scientific Computing certificate.

Visit the SciNet education website to see what other courses are available.

https://scinet.courses

Erik Spence (SciNet HPC Consortium) Linux Command Line I 9 January 2024 6 / 42

https://scinet.courses

Class expectations
Some details about the class:

Prerequisites: minimal-to-no programming experience is sufficient. The goal is to start
slowly so all will be on the same page.

Software you will need:
I a Terminal program (needed immediately). On Windows, we recommend

F ”git bash”, which contains both the terminal and ”git”, which will be needed later.
F if you’re using the Windows Subsystem for Linux (WSL), the terminal will be built in.

I On a Mac you may use ”Terminal”.
I A text editor (needed Thursday): Sublime, VSCode, Brackets.
I R, and various R libraries (needed by week 2).
I git, for version control (needed by week 4?).

Grading scheme: the final grade will be based on the homework assignments.

Attendance is not mandatory, though encouraged. If you don’t attend, listen to the
recordings! The slides do NOT constitute all of the class material!

Erik Spence (SciNet HPC Consortium) Linux Command Line I 9 January 2024 7 / 42

Class website

SciNet hosts its own web site for its classes.

https://scinet.courses, or https://education.scinet.utoronto.ca

We will not be using Quercus.

Log in with your SciNet account, or temporary account.

Click on ”Quantitative Applications for Data Analysis”.

Or go directly to the class web site: https://scinet.courses/1346

All assignments will be submitted through this website.

Let us know if you do not yet have an account.

All work for the class will go through this web site, so it is important that you have access.

Erik Spence (SciNet HPC Consortium) Linux Command Line I 9 January 2024 8 / 42

https://scinet.courses
https://education.scinet.utoronto.ca
https://scinet.courses/1346

Student Code of Conduct

Some details about doing the assignments:

You are welcome to discuss your assignments with each other.

You are not welcome to copy each other’s code.

You are not welcome to copy code you find on the internet, without giving credit.

http://tinyurl.com/UofTCodeOfConduct

Erik Spence (SciNet HPC Consortium) Linux Command Line I 9 January 2024 9 / 42

http://tinyurl.com/UofTCodeOfConduct

Class topics

Our adventure in data analysis will cover the following:

Getting started with the Linux command line.

Getting start with R.

Vectors, arrays, data frames.

Version control, modular programming.

Statistics and machine learning.

Visualization.

Much of the above, using Python.

Other topics.

This list is subject to change. If there’s a particular topic that you’d like covered, let us know.

Erik Spence (SciNet HPC Consortium) Linux Command Line I 9 January 2024 10 / 42

Before we start

This class is intended to be fairly interactive. Eventually you will need R on your computers.
This week we will be using the Linux command line. Hopefully you’ve already got a terminal
program installed.

Windows users: we strongly recommend downloading ”git bash” and using that as your R
interface.

https://git-scm.com/downloads

As mentioned, R will be needed, but not just yet. Please install it at your convenience.

Erik Spence (SciNet HPC Consortium) Linux Command Line I 9 January 2024 11 / 42

https://git-scm.com/downloads

Today’s class

Today we will visit the following topics:

Motivation for using the command line.

The file system from the command line.

Manipulating files from the command line.

The point of today’s class is to give you a first taste of the Linux command line. Please stop
me if you have a question.

Erik Spence (SciNet HPC Consortium) Linux Command Line I 9 January 2024 12 / 42

The Truth about interfaces

Why are we looking at the command line interface?

Nobody. Nobody. Nobody, uses a Graphical User Interface (GUI) for HPC
(High-Performance Computing). Nobody.

And this includes repetitive or large-scale data analysis, and the majority of programming
environments.

Who cares? Well, if you’re going to do repetitive data analysis it’s possible you might
need to use HPC to get it done.

Even if you don’t, knowing how to use this infrastructure will allow you to be significantly
more efficient, consistent and productive in the management and analysis of your data.

Erik Spence (SciNet HPC Consortium) Linux Command Line I 9 January 2024 13 / 42

GUIs versus the command line
Graphical User Interfaces (GUIs) have many strengths.

Very good at using existing functionality, existing controls.

Programs tend to have lots of functionality built into them, but can only do what they’ve
been programmed to do.

Can’t save a series of commands to replicate functionality.

Easy to learn. Hard to use for big tasks.

The Command Line Interface (CLI) has a different approach.

A blank canvas; you get to program what you want to do.

Good at creating new things.

Commands that do already exist are very good at doing one thing.

Commands that you create can be saved and re-used.

Hard to learn. Easy to use for big tasks.

Erik Spence (SciNet HPC Consortium) Linux Command Line I 9 January 2024 14 / 42

Why are we learning this?

I thought this was a data analysis class. Why are we learning this?

The goal of this class is to make you a more-productive researcher.

To that end we are going to teach you more than just statistics and how to program.
We’re going to teach you programming best practices.

It will be painful, because you will be learning new ways of doing things.

But we can promise you that you’ll be more productive if you adopt the practises that we
are going to teach you.

Running code from the command line, instead of through a GUI, is a necessary part of
improving your productivity.

Erik Spence (SciNet HPC Consortium) Linux Command Line I 9 January 2024 15 / 42

”The” shell
Open a Terminal:

Windows: start up ”git bash” (or ”MobaXterm”).

Mac: Applications/Utilities/Terminal (drag this to the dock).

Linux: xterm, eterm, ...

The terminal launches a shell. The shell is what you are actually interacting with when
you type commands.

The shell provides access to files, the network, and other programs.
I You type in commands.
I The shell interprets them.
I Performs actions on its own, or launches other programs.

The most commonly used shell in Linux is ’bash’.

There are others; mostly the same but some syntax is different.

Erik Spence (SciNet HPC Consortium) Linux Command Line I 9 January 2024 16 / 42

The command line prompt

Now that we’ve got a terminal open, what do we see? We see the command line prompt!

On ”git bash”, the prompt looks something like this:

ejspence@mycomp MINGW64 ~

Where ’ejspence’ is my username, and ’mycomp’ is the name of my computer. On a Mac my
prompt might look like this:

mycomp:~ ejspence$

On a Linux machine, my prompt might look like this:

[ejspence@mycomp ~]$

All of these are customizable, which we won’t be covering today. It doesn’t matter what it
looks like, so long as you’re comfortable with the prompt.

Erik Spence (SciNet HPC Consortium) Linux Command Line I 9 January 2024 17 / 42

~
~
~

Basics: home sweet home
Where am I?

Whenever you are using a shell you are located in some directory. You ”are somewhere”.
This is called the ”path”.

When you first launch a shell, you start in your ”home directory”, this is the top directory
of all of your stuff.

The home directory is /c/Users/username for ”git bash”, /Users/username on Macs,
/home/username on Unix/Linux systems, /home/g/group/username on SciNet.

If a path starts with a ”/”, it is a ”full path” (or ”absolute path”), otherwise it is a
”relative path” (meaning the path relative to where you are currently located.

The home directory is universally represented by the ~ symbol.

Directories are sometimes called folders because of how they are represented in GUIs. We
will call them directories.

On Unix systems directories are listings of files, including other directories.

Erik Spence (SciNet HPC Consortium) Linux Command Line I 9 January 2024 18 / 42

~

A typical Linux directory tree
The top directory is ’/’; under that are home and
other directories, under home are the user home
directories, etc. You can always specify
a file or directory by its full ’path’:
/home/ejspence/work/README.

/

home etc

ejspence brelier

Desktop Downloads firstMPI.c work

code README

Erik Spence (SciNet HPC Consortium) Linux Command Line I 9 January 2024 19 / 42

Basics: the file system
I will be assuming I am on a ”git bash” terminal, with a custom prompt. Your output will
likely differ somewhat if you are on a different system.

[ejspence.mycomp]

[ejspence.mycomp] pwd

/c/Users/ejspence

[ejspence.mycomp] ls

Desktop LauncherFolder MyDocuments

[ejspence.mycomp] ls /c/Users

ejspence Public

Our commands
pwd present working directory
ls [dir] list the directory contents

arg mandatory argument
[arg] optional argument

’pwd’ stands for ’present working directory’. It will print the directory you are currently in.
As mentioned on the last slide, you begin in your home directory.

’ls’ stands for ’list’. If no argument is given it lists the contents of the current directory,
otherwise it lists the contents of the argument. Some implementations of ls
include colour.

Erik Spence (SciNet HPC Consortium) Linux Command Line I 9 January 2024 20 / 42

Creating directories

[ejspence.mycomp] pwd

/c/Users/ejspence

[ejspence.mycomp] ls

Desktop LauncherFolder MyDocuments

[ejspence.mycomp] mkdir firstdir

[ejspence.mycomp] ls -F

Desktop LauncherFolder MyDocuments

firstdir/

[ejspence.mycomp] mkdir /c/Users/ejspence/2ndir

[ejspence.mycomp] ls -F

2ndir/ Desktop LauncherFolder MyDocuments

firstdir/

Our commands
pwd present working directory
ls [dir] list the directory contents
mkdir dir create a directory

arg mandatory argument
[arg] optional argument

’mkdir’ stands for ’make directory’. It creates a new directory, putting it in the current
directory unless a different path is specified.

’ls -F’ lists the directory, as before, but labels directories with a ’/’.

Erik Spence (SciNet HPC Consortium) Linux Command Line I 9 January 2024 21 / 42

Moving between directories
[ejspence.mycomp] ls

2ndir Desktop LauncherFolder MyDocuments firstdir

[ejspence.mycomp] mkdir firstdir/temp

[ejspence.mycomp] cd firstdir

[ejspence.mycomp] pwd

/c/Users/ejspence/firstdir

[ejspence.mycomp] ls

temp

[ejspence.mycomp] cd temp

[ejspence.mycomp] pwd

/c/Users/ejspence/firstdir/temp

[ejspence.mycomp] cd ..

[ejspence.mycomp] pwd

/c/Users/ejspence/firstdir

[ejspence.mycomp] cd ~
[ejspence.mycomp] pwd

/c/Users/ejspence

Our commands
pwd present working directory
ls [dir] list the directory contents
mkdir dir create a directory
cd [dir] change directory

arg mandatory argument
[arg] optional argument

’cd’ stands for ’change directory’. It
moves you to the directory you specify.
With no argument it moves you to the
home directory.

Erik Spence (SciNet HPC Consortium) Linux Command Line I 9 January 2024 22 / 42

~

Tips for getting around
Some common commands for moving around your directories:

The directory above is represented by the ’..’ symbol; the current directory is represented
by the ’.’ symbol:

I ’cd ..’ goes up a directory.
I ’cd ../..’ goes up two directories.
I ’cd ../otherdir’ goes up one directory and then down into ’otherdir’.
I ’cd firstdir/seconddir/../..’ goes nowhere.
I ’cd ./././.’ also goes nowhere.

You can use absolute paths: ’cd /c/Users/ejspence/firstdir/temp’.

~ is the symbol for your home directory, on whatever system you are using. ’cd ~/work’
goes to /c/Users/ejspence/work.

’cd’ without any arguments goes to your home directory (~), from no matter where you
are.

’cd -’ goes back to the directory you were in previously.

Erik Spence (SciNet HPC Consortium) Linux Command Line I 9 January 2024 23 / 42

~
~
~

Tips for using the command line

Some more helpful tips for using the command line:

Use the ’tab’ key, it will ’auto-complete’ the available options based on what you’ve
already typed,

I start typing your command, and then hit ’tab’
I the shell will fill in the rest, if there is only one option.
I if nothing happens, there is either no option or more than one option.
I hit the tab key twice, this will list all available options
I continue typing to reduce the number of options, then hit tab again to fill in the rest.

Use ’Ctrl-a’ to go to the beginning of the command line, ’Ctrl-e’ to go to the end of the
line.

Use the up arrow. This scrolls through the shell’s ’history’.

Erik Spence (SciNet HPC Consortium) Linux Command Line I 9 January 2024 24 / 42

History
[ejspence.mycomp] history

.

.

15 [2014-06-05 11:23:47] cd firstdir

16 [2014-06-05 11:23:49] pwd

17 [2014-06-05 11:23:50] ls

18 [2014-06-05 11:23:53] cd temp

19 [2014-06-05 11:23:55] pwd

20 [2014-06-05 11:23:58] cd ..

21 [2014-06-05 11:23:59] pwd

22 [2014-06-05 11:24:03] cd

23 [2014-06-05 11:24:05] pwd

24 [2014-06-05 11:24:11] history

[ejspence.mycomp]

Our commands
echo arg echo the argument
pwd present working directory
ls [dir] list the directory contents
mkdir dir create a directory
cd [dir] change directory
history [num] print the shell history

arg mandatory argument
[arg] optional argument

The history command prints the commands that you’ve typed at the command line.
”history 10” prints the last 10 commands.

Use the up arrow to access the entries.

Erik Spence (SciNet HPC Consortium) Linux Command Line I 9 January 2024 25 / 42

Cleaning up
[ejspence.mycomp] pwd

/c/Users/ejspence

[ejspence.mycomp]

[ejspence.mycomp] cd firstdir/temp

[ejspence.mycomp] ls

[ejspence.mycomp]

[ejspence.mycomp] cd ..

[ejspence.mycomp] ls

temp

[ejspence.mycomp] rmdir temp

[ejspence.mycomp]

[ejspence.mycomp] cd ..

[ejspence.mycomp]

[ejspence.mycomp] rmdir firstdir

[ejspence.mycomp] rmdir 2ndir

[ejspence.mycomp]

Our commands
pwd present working directory
ls [dir] list the directory contents
mkdir dir create a directory
cd [dir] change directory
history [num] print the shell history
rmdir dir delete a directory

arg mandatory argument
[arg] optional argument

To delete a directory, use the ’rmdir’
command. The directory must be
empty.

Erik Spence (SciNet HPC Consortium) Linux Command Line I 9 January 2024 26 / 42

Man pages

Know a command but aren’t sure how to use the options? Use the man (manual) page!

Most programs have a man page describing its use and all available options.

These pages are good for finding out more about a command you already use, but are less
good for learning new commands.

Many programs have gazillions of options.

No human being who has ever lived has know all the options for ’ls’.

Over time you will find a few that you find useful for your favourite commands.

Type ’q’ to get out of the man page.

Unfortunately, the ’man’ command doesn’t work with ”git bash”. Try adding the ”--help”
flag after a command to see the command-line options.

Erik Spence (SciNet HPC Consortium) Linux Command Line I 9 January 2024 27 / 42

Man pages: help!
Use the man (manual) page for a list of all flags for a command.

[ejspence.mycomp] man ls

NAME

ls - list directory contents

SYNOPSIS

ls [OPTION]... [FILE]...

DESCRIPTION

List information about the FILEs (the current di-

rectory by default). Sort entries alphabetically

if none of -cftuvSUX nor --sort.

Mandatory arguments to long options are mandatory

for short options too.

-a, --all

do not ignore entries starting with .

-A, --almost-all

do not list implied . and ..

...

Our commands
pwd present working directory
ls [dir] list the directory contents
mkdir dir create a directory
cd [dir] change directory
history [num] print the shell history
rmdir dir delete a directory
man cmd command’s man page

arg mandatory argument
[arg] optional argument

Not sure how to use the command? Not
sure what options there are? Check the
man page!

Type ’q’ to get out of the man page.

Erik Spence (SciNet HPC Consortium) Linux Command Line I 9 January 2024 28 / 42

Setting up for the rest of this class

[ejspence.mycomp] pwd

/c/Users/ejspence

[ejspence.mycomp]

[ejspence.mycomp] mkdir EES1137

[ejspence.mycomp]

[ejspence.mycomp] cd EES1137

[ejspence.mycomp] pwd

/c/Users/ejspence/EES1137

[ejspence.mycomp]

[ejspence.mycomp] mkdir assignment0

[ejspence.mycomp]

[ejspence.mycomp] cd assignment0

[ejspence.mycomp]

[ejspence.mycomp] pwd

/c/Users/ejspence/EES1137/assignment0

[ejspence.mycomp]

Our commands
pwd present working directory
ls [dir] list the directory contents
mkdir dir create a directory
cd [dir] change directory
history [num] print the shell history
rmdir dir delete a directory
man cmd command’s man page

arg mandatory argument
[arg] optional argument

Here we are creating a directory to hold
your work for this class.

We create a directory, ’assignment0’, to
hold the files we’ll download today.

Erik Spence (SciNet HPC Consortium) Linux Command Line I 9 January 2024 29 / 42

Downloading today’s data
[ejspence.mycomp] pwd

/c/Users/ejspence/EES1137/assignment0

[ejspence.mycomp] ls

[ejspence.mycomp] curl -O https://pages.scinet.utoronto.ca/~ejspence/UTSCfile

% Total % Received % Xferd Average Speed Time

Dload Upload Total

0 0 0 0 0 0 0 0 --:--:--

100 185 100 185 0 0 276 0 --:--:--

100 15927 100 15927 0 0 16492 0 --:--:--

[ejspence.mycomp]

[ejspence.mycomp] ls

UTSCfile

[ejspence.mycomp]

The ’curl’ command can download files from the internet:

-O (capital O) tells curl to keep the filename.

Erik Spence (SciNet HPC Consortium) Linux Command Line I 9 January 2024 30 / 42

Downloading today’s data, continued
[ejspence.mycomp] ls

UTSCfile

[ejspence.mycomp] tar -z -x -f UTSCfile

[ejspence.mycomp]

[ejspence.mycomp] ls -F

UTSCfile data/

What happened?

’curl’ downloads the (tarred) data file. A ’tar’ file (also called a ’tarball’) is a file in which
has been bundled a number of other files, for easy of moving around.

’tar’ handles a tar file,
I -z means gunzip it.
I -x means extract the contents of the file.
I -f specifies which file you are applying this command to.

The data is now in the ’data’ directory.

Erik Spence (SciNet HPC Consortium) Linux Command Line I 9 January 2024 31 / 42

Wildcards

Wildcards (*) capture all possible combinations that fit a given description.

[ejspence.mycomp] pwd

/c/Users/ejspence/EES1137/assignment0

[ejspence.mycomp]

[ejspence.mycomp] cd data

[ejspence.mycomp] ls

alexander Bert Frank Richard gerdal jamesm

Lawrence THOMAS

[ejspence.mycomp] ls -d *er*

alexander Bert gerdal

[ejspence.mycomp] ls -d *e

Lawrence

With the ’-d’ flag ’ls’ will only print the names
of the directories, not the directory contents.

Our commands
pwd present working directory
ls [dir] list the directory contents
mkdir dir create a directory
cd [dir] change directory
history [num] print the shell history
rmdir dir delete a directory
man cmd command’s man page

arg mandatory argument
[arg] optional argument

The shell expands the wildcard into a
list of all possible matches, and passes
the list to the command.

Erik Spence (SciNet HPC Consortium) Linux Command Line I 9 January 2024 32 / 42

Manipulating files: copying

[ejspence.mycomp] ls

Bert Lawrence alexander jamesm

Frank Richard THOMAS gerdal

[ejspence.mycomp] cd gerdal

[ejspence.mycomp] ls

.

Data0413 Data0468 Data0528 Data0558

[ejspence.mycomp] ls *27*

Data0227 Data0279

[ejspence.mycomp] cp Data0227 Data0227-new

[ejspence.mycomp] ls *27*

Data0227 Data0227-new Data0279

[ejspence.mycomp] cp Data0227 ..

[ejspence.mycomp] ls ..

Bert Frank Richard THOMAS gerdal

Data0227 Lawrence alexander jamesm

Our commands
pwd present working directory
ls [dir] list the directory contents
mkdir dir create a directory
cd [dir] change directory
history [num] print the shell history
rmdir dir delete a directory
man cmd command’s man page
cp file1 file2 copy a file

arg mandatory argument
[arg] optional argument

’cp’ stands for ’copy’; it copies a file.

Wildcards can appear anywhere in the
variable you are searching for. They
don’t need to come at the end.

Erik Spence (SciNet HPC Consortium) Linux Command Line I 9 January 2024 33 / 42

File names

Some notes about file names.

Do not try to name files the same names as built-in commands (’echo’, ’pwd’, ’cp’).

Do not put spaces in your file names!

File name extensions do not matter in Linux systems.

Periods in filenames is fine.

Note that Linux systems are case sensitive (”A” is not the same as ”a”). Windows systems
(git bash) may not respect this in general.

Erik Spence (SciNet HPC Consortium) Linux Command Line I 9 January 2024 34 / 42

Manipulating files: moving
[ejspence.mycomp] pwd

/c/Users/ejspence/EES1137/assignment0/data/gerdal

[ejspence.mycomp] ls *27*

Data0227 Data0227-new Data0279

[ejspence.mycomp] mv Data0227-new new.txt

[ejspence.mycomp] ls *27*

Data0227 Data0279

[ejspence.mycomp] ls *txt

new.txt

[ejspence.mycomp] mv new.txt ../Data0227

[ejspence.mycomp] ls *txt

ls: *txt: No such file or directory

[ejspence.mycomp] cd ..

[ejspence.mycomp] ls *27*

Data0227

Our commands
pwd present working directory
ls [dir] list the directory contents
mkdir dir create a directory
cd [dir] change directory
history [num] print the shell history
rmdir dir delete a directory
man cmd command’s man page
cp file1 file2 copy a file
mv file1 file2 move/rename a file

arg mandatory argument
[arg] optional argument

’mv’ stands for ’move’; it moves a file and/or renames it.

mv can overwrite a file, so be careful when moving things!

Erik Spence (SciNet HPC Consortium) Linux Command Line I 9 January 2024 35 / 42

Manipulating files: deleting

[ejspence.mycomp] pwd

/c/Users/ejspence/EES1137/assignment0/data

[ejspence.mycomp] ls

Bert Frank Richard THOMAS gerdal

Data0227 Lawrence alexander jamesm

[ejspence.mycomp] ls *27*

Data0227

[ejspence.mycomp] rm Data0227

[ejspence.mycomp] ls *227*

ls: *227*: No such file or directory

[ejspence.mycomp]

Our commands
pwd present working directory
ls [dir] list the directory contents
mkdir dir create a directory
cd [dir] change directory
history [num] print the shell history
rmdir dir delete a directory
man cmd command’s man page
cp file1 file2 copy a file
mv file1 file2 move/rename a file
rm file delete a file

arg mandatory argument
[arg] optional argument

’rm’ stands for ’remove’; it deletes a file. It does not delete directories, by default.

rm does not ’move the file to the Trash’. It deletes it; it’s gone; it’s not recoverable. Be
sure before you use rm.

Erik Spence (SciNet HPC Consortium) Linux Command Line I 9 January 2024 36 / 42

Looking inside files

[ejspence.mycomp] cd alexander

[ejspence.mycomp] pwd

/c/Users/ejspence/data/alexander

[ejspence.mycomp] cat data 560.DATA

#

Reported: Sat May 7 10:50:03 2011

Subject: georgeSpice437

Year/month of birth: 1997/12

Sex: M

CI type: 20

Volume: 3

Range: 5

Discrimination:

[ejspence.mycomp]

Our commands
pwd present working directory
ls [dir] list the directory contents
mkdir dir create a directory
cd [dir] change directory
history [num] print the shell history
rmdir dir delete a directory
man cmd command’s man page
cp file1 file2 copy a file
mv file1 file2 move/rename a file
rm file delete a file
cat file print the file contents

arg mandatory argument
[arg] optional argument

’cat’ outputs the contents of the file.

Erik Spence (SciNet HPC Consortium) Linux Command Line I 9 January 2024 37 / 42

Looking inside files, continued
[ejspence.mycomp] more data 560.DATA

#

Reported: Sat May 7 10:50:03 2011

Subject: georgeSpice437

.

.

[ejspence.mycomp] less data 560.DATA

#

Reported: Sat May 7 10:50:03 2011

Subject: georgeSpice437

.

.

’more’ (doesn’t work in git bash), ’cat’, and
’less’ all output the contents of the file, but in
different ways. Can you tell the differences?
Type ’q’ to get out of ’more’ or ’less’.

Our commands
pwd present working directory
ls [dir] list the directory contents
mkdir dir create a directory
cd [dir] change directory
history [num] print the shell history
rmdir dir delete a directory
man cmd command’s man page
cp file1 file2 copy a file
mv file1 file2 move/rename a file
rm file delete a file
cat file print the file contents
more file scroll through file
less file scroll through file

arg mandatory argument
[arg] optional argument

Erik Spence (SciNet HPC Consortium) Linux Command Line I 9 January 2024 38 / 42

cat’ing files together

[ejspence.mycomp] ls *DATA

.

.

.

data 420.DATA data 502.DATA data 560.DATA

data 297.DATA data 357.DATA data 421.DATA

[ejspence.mycomp] cat *DATA > all-DATA

[ejspence.mycomp] ls *DATA

all-DATA data 297.DATA data 357.DATA
.
.
.

data 550.DATA data 292.DATA data 347.DATA

data 420.DATA data 502.DATA data 560.DATA

[ejspence.mycomp]

’cat’ dumps the input to the screen.

’>’ redirects the input to a file, instead of
the screen.

Our commands
pwd present working directory
ls [dir] list the directory contents
mkdir dir create a directory
cd [dir] change directory
history [num] print the shell history
rmdir dir delete a directory
man cmd command’s man page
cp file1 file2 copy a file
mv file1 file2 move/rename a file
rm file delete a file
cat file print the file contents
more file scroll through file
less file scroll through file
cmd > file redirect output to file

arg mandatory argument
[arg] optional argument

Erik Spence (SciNet HPC Consortium) Linux Command Line I 9 January 2024 39 / 42

cat’ing files together, continued
[ejspence.mycomp] less all-DATA

#

Reported: Wed Aug 17 13:56:38 2011

Subject: madonnaStarr178

Year/month of birth: 1995/02

Sex: N

CI type: 8

Volume: 7

Range: 3

Discrimination: 5

#

Reported: Thu May 19 09:08:14 2011

Subject: paulSpice199

Year/month of birth: 1994/01

Sex: M

CI type: 24

Volume: 4
.
.
.

Our commands
pwd present working directory
ls [dir] list the directory contents
mkdir dir create a directory
cd [dir] change directory
history [num] print the shell history
rmdir dir delete a directory
man cmd command’s man page
cp file1 file2 copy a file
mv file1 file2 move/rename a file
rm file delete a file
cat file print the file contents
more file scroll through file
less file scroll through file
cmd > file redirect output to file

arg mandatory argument
[arg] optional argument

Erik Spence (SciNet HPC Consortium) Linux Command Line I 9 January 2024 40 / 42

Redirection fun

cmd > file takes the output that would
have gone to the screeen, creates a new
file called file, and redirects (dumps) the
output to the file. If the file already exists
the previous content of the file is
overwritten.

cmd >> file takes the output that would
have gone to the screen, and appends it
to file. If the file doesn’t already exist
then it is created.

Our commands
pwd present working directory
ls [dir] list the directory contents
mkdir dir create a directory
cd [dir] change directory
history [num] print the shell history
rmdir dir delete a directory
man cmd command’s man page
cp file1 file2 copy a file
mv file1 file2 move/rename a file
rm file delete a file
cat file print the file contents
more file scroll through file
less file scroll through file
cmd > file redirect output to file
cmd >> file append output to file

arg mandatory argument
[arg] optional argument

Erik Spence (SciNet HPC Consortium) Linux Command Line I 9 January 2024 41 / 42

Our commands so far

There are a couple of things to observe about
the commands we’ve seen so far:

The commands are designed to be fast
and easy to use.

The commands do, essentially, only one
specific thing.

The commands are pretty cryptic. Either
you know them or you don’t.

Commands can take options. These are
usually indicated with a ’-something’ flag
(such as ’ls -F’).

Our commands
pwd present working directory
ls [dir] list the directory contents
mkdir dir create a directory
cd [dir] change directory
history [num] print the shell history
rmdir dir delete a directory
man cmd command’s man page
cp file1 file2 copy a file
mv file1 file2 move/rename a file
rm file delete a file
cat file print the file contents
more file scroll through file
less file scroll through file
cmd > file redirect output to file
cmd >> file append output to file

arg mandatory argument
[arg] optional argument

As you may have hoped, the purpose of this class, and the next, is to teach you
enough commands that you will be able to survive the Unix command line.

Erik Spence (SciNet HPC Consortium) Linux Command Line I 9 January 2024 42 / 42

	The class
	Class details
	Class topics

	Interfaces
	The shell

	The File System
	The home directory
	Creating directories
	Tips for getting around
	History

	Misc. Commands
	Man pages

	Today's data
	Dealing with files
	Wildcards
	Manipulating files
	Manipulating directories
	Redirection

