
Scientific Computing for Physicists

Ramses van Zon

PHY1610H 2024 Winter

Ramses van Zon Scientific Computing for Physicists PHY1610H 2024 Winter 1 / 86

Course Intro

Ramses van Zon Scientific Computing for Physicists PHY1610H 2024 Winter 2 / 86

Examples of Scientific Computations
BioInformatics Smooth Particle Hydrodynamics

Computational Fluid Dynamics Molecular Dynamics

Ramses van Zon Scientific Computing for Physicists PHY1610H 2024 Winter 3 / 86

Course Topics

This course aims at making you a more productive and efficient computational scientist.

It will cover best practices in scientific computing and programming skills, optimization and a bit of
parallel programming.

There are three main themes in this course:
1 Scientific Software Development
2 Numerical Tools for Physical Scientists
3 High Performance Scientific Computing

Ramses van Zon Scientific Computing for Physicists PHY1610H 2024 Winter 4 / 86

Your Instructor

My name is Ramses van Zon

I am a High-Performance Computing Analyst at the SciNet HPC Consortium here at the University
of Toronto.

After a Ph.D. in Mathematical Physics, I postdoc-ed in Chemical and Theoretical Physics, which
included development of molecular dynamics simulations and other computational projects.

Nowadays, I’m involved in training and education and various aspects of running and supporting
“high performance computing”.

The TA for this course is Kayhan Momeni. He’ll be helping with the grading of the assignments.
He has taken this course in the past, so he knows what you’re going through.

Ramses van Zon Scientific Computing for Physicists PHY1610H 2024 Winter 5 / 86

What is SciNet?

SciNet is UofT’s supercomputer centre, which hosts
and supports one of Canada’s fastest
supercomputers available to academic researchers.

https://www.scinethpc.ca

We also do a lot of other teaching (Bash, Python,
R, Fortran, C++, GPU programming, databases,
machine learning, parallel programming, . . .)

https://scinet.courses

On a national level, we are a partner of the Digital
Research Alliance of Canada (the successor of the
Compute Canada Federation).

Ramses van Zon Scientific Computing for Physicists PHY1610H 2024 Winter 6 / 86

https://www.scinethpc.ca
https://scinet.courses

Course website

https://scinet.courses/1296

Lectures

Recordings

Assignments

Forum

Near-weekly assignments posted on the site on
Thursdays.

To be able to hand in assignments to the course
website, you need to be able to login to the site
(use your Alliance/CCDB account if you have one).

Ramses van Zon Scientific Computing for Physicists PHY1610H 2024 Winter 7 / 86

https://scinet.courses/1296

Accounts for this course

If you do not have an Alliance account, your login name on the course site is something that starts
with tmp_...

For assignments, you’ll have access to SciNet’s Teach cluster using a separate account.

ssh USERNAME@teach.scinet.utoronto.ca

Your USERNAME for the Teach cluster will be of the form lcl_uotphy1610s...

You will receive information regarding your USERNAME and password by email.

Initially, you can choose to do the assignments on your own computer, provided it has a unix-like
environment with the g++ compiler, make, and git.

If you want to keep working on SciNet after the course, get an Alliance/SciNet account,
See www.scinet.utoronto.ca/getting-a-scinet-account

Ramses van Zon Scientific Computing for Physicists PHY1610H 2024 Winter 8 / 86

https://www.scinet.utoronto.ca/getting-a-scinet-account

Assignments and grading

10 programming assignments (so nearly weekly) will be posted on the website.

These assignments are due the next week.

They need to be uploaded to the course’s website.

Each student should hand in their own work.

Assignments are graded on how they can be compiled and run on the Teach cluster.

The average of the 10 assignments will make up your grade.
(no midterm nor a final exam)

All assignments need to be handed in for a passing grade.

Ramses van Zon Scientific Computing for Physicists PHY1610H 2024 Winter 9 / 86

Late penalty policy

Assignments may be handed in up to 1 week after the due date, at a penalty of 5% per day.

Deviations of this rule will only be considered, on a case-by-case basis, in exceptional circumstances
(i.e., not “I was busy”).

If, due to exceptional circumstances, an assignment was missed, a make-up assignment on a topic of
the instructor’s choice can be given at the end of the course.

Have an accommodation? Email me, please.

Ramses van Zon Scientific Computing for Physicists PHY1610H 2024 Winter 10 / 86

Lectures, office hours, questions
Lectures

Lectures will be held in person on Tuesdays and Thursdays from 11:00 AM to 12:00 noon (EST) in the
SciNet Teaching Room, which is located on the 11th floor of the West Tower of the MaRS building, 661
University Ave., Suite 1140, Toronto, ON M5G 1M1.

Lectures are recorded and posted on the site afterwards (often towards the end of the day).

Office hours

In Person, Wednesdays from 2:00 pm to 3:00 pm, in the SciNet Teaching Room

Virtually over Zoom, Fridays from 12 noon to 1 pm.

Questions/comments/concerns/etc. about the course?

Use the forum on the course website or use the email courses@scinet.utoronto.ca.

Ramses van Zon Scientific Computing for Physicists PHY1610H 2024 Winter 11 / 86

Course Outline

1. Software development

C++

Modular programming

Building software with make

Arrays and objects

Version control with git

Unit testing

I/O

2. Numerical tools

Using libraries

Ordinary differential
equations

Partial differental equations
and linear algebra

Fast Fourier transforms

Random numbers/Monte
Carlo

3. High-performance

Profiling tools

Intro to parallel computing

Batch processing

Shared memory
programming

Distributed parallel
programming

GPU programming

Ramses van Zon Scientific Computing for Physicists PHY1610H 2024 Winter 12 / 86

Scientific Software Development

Ramses van Zon Scientific Computing for Physicists PHY1610H 2024 Winter 13 / 86

Basic programming concepts

Ramses van Zon Scientific Computing for Physicists PHY1610H 2024 Winter 14 / 86

Basic programming concepts

memory

instructions

time

Von Neuman model: A computer executes a
set of instructions one-by-one on values stored
in memory.

A program contains a set of instructions.

When a program is running, its instructions
and its data are held in the computer’s memory.
The data in memory is also called its state.

Each instruction will have a net effect on the
program’s state.

There is limited set of predefined instructions,
in terms of which we must express all other
actions.

Ramses van Zon Scientific Computing for Physicists PHY1610H 2024 Winter 15 / 86

Programming concepts: Programs and functions

An algorithm is a common pattern of actions
to achieve a specific net effect (computation).
Algorithms are described in words and math,
and in a specific programming language.

Ramanujan’s formula for π:

1
π

=
∞∑

k=0

2
√
2

992
(4k)!
k!4

26390k + 1103
3964k

Algorithm:
1 Start with k=0, and compute the k=0 term
2 Compute the term for the next k value
3 If less than the required accuracy, go to step 5
4 If not, add that term and repeat from step 2
5 Compute the inverse of the added terms.

A function, procedure, or subroutine is a set
of actions, written in a specific programming
language, that define a new action.

#include <cmath>
double computeterm(int k) {

return 2*sqrt(2)/pow(99, 2)
*tgamma(4*k + 1)/pow(tgamma(k + 1), 4)
*(26390*k + 1103)/pow(396, 4*k);

}
double computepi(double accuracy) {

double sum = 0;
for (int k = 0; ; k++) {

double term = computeterm(k);
if (term < accuracy) break;
sum += term;

}
return 1/sum;

}

A program is a function that can be executed
(a.k.a. application or app).

#include <iostream>
int main() {

std::cout << "pi=" << computepi(1.e-12) << "\n";
}

Ramses van Zon Scientific Computing for Physicists PHY1610H 2024 Winter 16 / 86

Programming concepts: Programs and functions

An algorithm is a common pattern of actions
to achieve a specific net effect (computation).
Algorithms are described in words and math,
and in a specific programming language.

Ramanujan’s formula for π:

1
π

=
∞∑

k=0

2
√
2

992
(4k)!
k!4

26390k + 1103
3964k

Algorithm:
1 Start with k=0, and compute the k=0 term
2 Compute the term for the next k value
3 If less than the required accuracy, go to step 5
4 If not, add that term and repeat from step 2
5 Compute the inverse of the added terms.

A function, procedure, or subroutine is a set
of actions, written in a specific programming
language, that define a new action.

from math import sqrt,factorial
def computeterm(k):

return 2*sqrt(2)/99**2*(
factorial(4*k)/factorial(k)**4
*(26390*k + 1103)/396**(4*k))

def computepi(accuracy):
sum = 0.0
k = 0
while True:

term = computeterm(k)
if term < accuracy:

break
sum += term
k += 1

return 1/sum

A program is a function that can be executed
(a.k.a. application or app).

def main():
print("pi = ",computepi(1.e-12))

if __name__ == "__main__":
main()

Ramses van Zon Scientific Computing for Physicists PHY1610H 2024 Winter 17 / 86

Programming concepts: Languages

The computer’s Central Processing Unit (CPU) does not understand programming languages, only
machine code.

To execute code written in a programming language, one needs another program, either a
I Compiler: translates source code files into executable or object files containing machine code.
I Interpreter: does that translation on the fly, one line of code at a time.

C++ falls in the category of compiled programming languages.

Python is an example of an interpreted language.

Ramses van Zon Scientific Computing for Physicists PHY1610H 2024 Winter 18 / 86

Programming concepts: State

Program state is stored in memory.

At least part of the state is made up of the program’s variables.

Variables are stored values that are assigned to a variable name.

This variable name is associated with a portion of memory that holds the variable’s value.

What the variable stores can change in time.

Note on persistance

The common definition of state above involves only what is in memory.

When a program ends, its state is gone.

Files are a way to store data persistently, but fall under I/O (input/output)

Ramses van Zon Scientific Computing for Physicists PHY1610H 2024 Winter 19 / 86

Programming concepts: Control structures

Some actions could be done conditionally on the state of the program and external input.

Conditional control structures perform a different actions depending on whether a certain
assertion of the state of the system is true.

These are usually some variation of an if-then-else statement.

Repetition of a set of actions, i.e., loops, are also a type of control structure: they keep doing the
same while there are loop iterations left.

Ramses van Zon Scientific Computing for Physicists PHY1610H 2024 Winter 20 / 86

Programming concepts: I/O

Programs can receive input
Interactive (keyboard, mouse, camera, microphone)
Files containing parameters
Files containing data
Input from other programs
Input from a local network or from the internet

Programs can (should) produce output.
Output to console
Graphical output
Output to files
Output to other programs
Response to web requests

Ramses van Zon Scientific Computing for Physicists PHY1610H 2024 Winter 21 / 86

Other programming paradigms

This overview described so-called imperative programming paradigm, in which a list of commands acting
on data is executed in order.

There are also other paradigms:

functional programming
declarative programming
object-oriented programming
generic or metaprogramming.

Imperative programming mimics more or less what the computer actually does when running a program,
and will be our main focus.

Ramses van Zon Scientific Computing for Physicists PHY1610H 2024 Winter 22 / 86

C++

Ramses van Zon Scientific Computing for Physicists PHY1610H 2024 Winter 23 / 86

Why C++?
We’ll be using the C++ language in this course.

It’s not the simplest language, but it is a language that can cover all use cases in this course.

Advantages

High performance

Both low-level and high-level programming

Ubiquitous and standardized

Useful libraries

Modular design

Supports imperative, functional,
object-oriented, and metaprogramming

Supports many parallelization techniques

Interoperable with C and Fortran.

Disadvantages

Precise syntax

Errors can be hard to interpret

Non-interactive

Steeper learning curve

No standard portable graphics

Susceptible to hidden performance pitfalls

Susceptible to memory errors

Note: Fortran shares many of the
advantages.

Ramses van Zon Scientific Computing for Physicists PHY1610H 2024 Winter 24 / 86

C++ Introduction

C++ is a compiled language: files containing the basic ‘actions’ are to be compiled into a set of
basic machine language instructions that the CPU can execute.

The C language, upon which C++ builds, was designed for system programming.

The C language has a very small base.

Most functionality is in (standard) libraries.

Every 3 years, a new C++ standard comes out, which is mostly backwards compatible.

For definiteness sake, use the C++17 standard.

Ramses van Zon Scientific Computing for Physicists PHY1610H 2024 Winter 25 / 86

C++ Introduction: Basic C++ programming
The following code prints “Hello, world!” on the
console:
// @file helloworld.cpp
// Hello world program in C++
#include <iostream>
using std::cout;

int main()
{

cout << "Hello, world!\n";
}

To run this, we need to compile the code.

1 We’ll do this on the teach cluster:
$ ssh USERNAME@teach.scinet.utoronto.ca

2 First, avail yourself of a g++ compiler:
$ module load gcc/13

3 Start a new code file in a text editor, e.g.
$ nano helloworld.cpp

4 Type in the code, save it, and exit the editor.
5 Then, compile this into an executable

$ g++ -std=c++17 -o helloworld helloworld.cpp

6 Finally, run it.
$./helloworld
Hello, world!

Ramses van Zon Scientific Computing for Physicists PHY1610H 2024 Winter 26 / 86

Short intro to the terminal a.k.a. console

Ramses van Zon Scientific Computing for Physicists PHY1610H 2024 Winter 27 / 86

How to get a terminal
On Windows

Get MobaXterm:

MobaXterm’s local terminal runs
the bash shell and comes with ssh
and X11.

You can also use the Linux
Subsystem for Windows.

On Linux

Find your terminal application.

The most common shell
interpreter on Linux is bash.

It should have the ssh command.

On MacOS

Find your terminal application.

The default shell is zsh or bash,
depending on the MacOS version.

It should have the ssh command.

You need Xquartz for remote X
graphics to work.

Ramses van Zon Scientific Computing for Physicists PHY1610H 2024 Winter 28 / 86

Command line interface
Command prompt

There is a prompt, e.g. "[rzon@teach01:~]$"
after which you can type in commmands.

Any command you type at the prompt is read by a
shell interpreter. Teach uses the bash shell.

Current directory

You are always “in” a current directory/folder in
the file system tree. Your default directory, called
your “home” directory, is where you start.

You can change to a directory with cd DIRNAME

~ is a shorthand for that home directory.
. is a shorthand for the current directory
.. is a shorthand for the parent directory.

Commands are either:
built-in, or

provided by executables in standard locations
(encoded in the so called PATH variable), or

executables of which the path is specified

Command examples:
List the files in the current directory with ls.
If the current directory contains an executable
“first”, execute it with the command ./first.
Connect to a different computer with ssh.

Command line arguments
After a command, more words can be entered, the
“arguments” of the command.

Ramses van Zon Scientific Computing for Physicists PHY1610H 2024 Winter 29 / 86

Tips on editing code
When logged into Teach with ssh, you cannot see the files on your computer.
Text-based editing of files in the terminal on Teach can be done using different applications.

vi

ubiquitous but not loved by all.

emacs

often available; not loved by all.

nano

beginner friendly editor

Note: VS code and other GUI editors can be slow and tricky to setup on remote systems.

Ramses van Zon Scientific Computing for Physicists PHY1610H 2024 Winter 30 / 86

C++ by Example

Ramses van Zon Scientific Computing for Physicists PHY1610H 2024 Winter 31 / 86

Back to the C++ example

Here is, again, the code that prints “Hello, world!”:
// @file helloworld.cpp
// Hello world program in C++
#include <iostream>
using std::cout;

int main()
{

cout << "Hello, world!\n";
}

Let’s look at what each line in this code means:

Lines starting with // are comments and are
ignored by the compiler.

Printing to console is in a library called
iostream, which needs to be included

We tell the compiler that we’re using the
object cout (console output)

int main is a function, and is, by definition,
called when the program is run.

What that function does is enclosed in curly
braces { and }.

cout << THING prints that THING.

Statements end in a semi-colon, i.e. ;

Strings, i.e., literal text that is not code, has
to be given between quotation marks ”. . . “.

\n inside a string is a newline and means the
next console output should start on the
next line.

Ramses van Zon Scientific Computing for Physicists PHY1610H 2024 Winter 32 / 86

Another C++ Example: Input and variables
// @file inputex.cpp
#include <iostream>
#include <string>
using namespace std;
int main()
{

string name;
cout << "Type your name: ";
cin >> name;
cout << "Type your age: ";
int age;
cin >> age;
cout << "You typed: \n"

<< "Name: " << name << "\n"
<< "Age: " << age << "\n";

}

This program uses many std:: objects, so
we import all of that namespace.

(not generally a good idea)

int main starts by defining a variable named
name of type string.
All variables have a type in C++

It reads from cin (console in, i.e., keyboard)
into the existing variable name

It also defines and reads an age variable,
which is of type int.

And it reports what was typed by the user.

Note that variables and their types must be defined before they can be used!

Ramses van Zon Scientific Computing for Physicists PHY1610H 2024 Winter 33 / 86

Let’s add a conditional statement
// @file inputex.cpp
#include <iostream>
#include <string>
using namespace std;
int main()
{

string name;
cout << "Type your name: ";
cin >> name;
cout << "Type your age: ";
int age = -1;
cin >> age;
if (age <= 0) {

cout << "Something is wrong!\n";
} else {

cout << "You typed: \n"
<< "Name: " << name << "\n"
<< "Age: " << age << "\n";

}
}

Depending on the age variable, the program
prints one thing or another, using if/else.

Note that the code for the “one thing” has to
be in a code block, delineated by curly braces,
i.e. {. . . } .

Similarly, the else code block is delineated by
braces.

Ramses van Zon Scientific Computing for Physicists PHY1610H 2024 Winter 34 / 86

Let’s add a return value
// @file inputex.cpp
#include <iostream>
#include <string>
using namespace std;
int main()
{

string name;
cout << "Type your name: ";
cin >> name;
cout << "Type your age: ";
int age = -1;
cin >> age;
if (age <= 0) {

cout << "Something is wrong!\n";
return 1;

} else {
cout << "You typed: \n"

<< "Name: " << name << "\n"
<< "Age: " << age << "\n";

return 0;
}

}

In addition to errors writing to console, we
return an exit code to the shell indicating
success (0) or failure (non-zero).
The value returned by main must be an int.

$ g++ -std=c++17 -o inputex inputex.cpp
$ echo Alex -1 | ./inputex
Something is wrong
$ echo $?
1
$ echo Alex 48 | ./inputex
You typed:
Name: Alex
Age: 48
$ echo $?
0

In bash, the exit code of the last executed
command is stored in the variable $?.
Here, bash types input with “echo” and
”pipes” that into “inputex”.

Ramses van Zon Scientific Computing for Physicists PHY1610H 2024 Winter 35 / 86

How to ask again: Repetition
#include <iostream>
#include <string>
using namespace std;
int main()
{

string name;
cout << "Type your name: ";
cin >> name;
cout << "Type your age: ";
int age = -1;
cin >> age;
while (age <= 0) {

cout << "Something is wrong!\n";
cout << "Type your age again: ";
cin >> age;

}
cout << "You typed: \n";
cout << "Name: " << name << "\n";
cout << "Age: " << age << "\n";

}

The idea here is to keep asking numbers for
the age variable until a positive one is given.

The while construct is good for this.

But this can fail if we do not give an integer.
(will fix later)

Ramses van Zon Scientific Computing for Physicists PHY1610H 2024 Winter 36 / 86

Arrays
#include <iostream>
#include <string>

using namespace std;
int main() {

string name;
cout << "Type your name: ";
cin >> name;
int nmax = 10;
int numbers[nmax] = {0,0,0,0,0,0,0,0,0,0};
int n;
for (n = 0; n < nmax; n++) {

string word;
cout << "Type a number (-1 to stop): ";
cin >> word;
numbers[n] = stoi(word);
if (numbers[n] == -1)

break;
}
cout << "You typed: \n";
cout << "Name: " << name << "\n";

cout << "Numbers:";
for (int i = 0; i < n; i++) {

cout << " " << numbers[i];
}
cout << "\n";

}

Purpose of this code is get several numbers
and store them.

C++ supports ”C-style automatic arrays”.
numbers is defined as an array by putting the
number of elements in square brackets.

Also use square brackets for element access.

The first element is element [0]

The for loop is suitable for iterating over such
an array.

Ramses van Zon Scientific Computing for Physicists PHY1610H 2024 Winter 37 / 86

Vectors
#include <iostream>
#include <string>
#include <vector>
using namespace std;
int main() {

string name;
cout << "Type your name: ";
cin >> name;
int nmax = 10;
vector<int> numbers;
int n;
for (n = 0; n < nmax; n++) {

string word;
cout << "Type a number (-1 to stop): ";
cin >> word;
numbers.push_back(stoi(word));
if (numbers[n] == -1)

break;
}
cout << "You typed: \n";
cout << "Name: " << name << "\n";

cout << "Numbers:";
for (int number : numbers) {

cout << " " << number;
}
cout << "\n";

}

Here again we want to get several numbers
and store them.

But we’re using the C++ standard vector.

These have variable sizes.

Can use square brackets are used for indexing,
with the first element begin [0].

But they also support range-based for loop.

Ramses van Zon Scientific Computing for Physicists PHY1610H 2024 Winter 38 / 86

Functions
The code is starting to look a bit messy; we can make it clearer with some functions.
#include <iostream>
#include <string>
#include <vector>
using namespace std;
string getword(const string& prompt) {

string result;
cout << prompt;
cin >> result;
return result;

}
int getint(const string& prompt) {

while (true) {
string word = getword(prompt);
try {

return stoi(word);
} catch (invalid_argument& e) {

cout << "Error: invalid input\n";
if (cin.eof()) return -1;

}
}

}

int main() {
string name = getword("Type your name: ");
int nmax = 10;
vector<int> numbers;
while (true) {

int x = getint("Type a number (-1 to stop): ");
if (x != -1)

numbers.push_back(x);
if (numbers.size() == nmax or x == -1)

break;
}
cout << "You typed: \n";
cout << "Name: " << name << "\n";
cout << "Numbers:";
for (int number : numbers) {

cout << " " << number;
}
cout << "\n";

}

Ramses van Zon Scientific Computing for Physicists PHY1610H 2024 Winter 39 / 86

Dealing with input errors
You may have noticed thet the getint function does something interesting to catch errors.

We could just have
int getint(const string& prompt) {

string word = getword(prompt);
return stoi(word);

}

but this would crash when the word does not
contain an integer.

This code can handle that:
int getint(const string& prompt) {

while (true) {
string word = getword(prompt);
try {

return stoi(word);
} catch (invalid_argument& e) {

cout << "Error: invalid input\n";
if (cin.eof()) return -1;

}
}

}

Catching errors using exceptions
Exceptions can be used to catch unexpected events, like entering a non-number for age.
This goes via the try/catch construct.
If stoi encounters an error, an exception is “thrown”.
The exception is caught by the catch clause (in fact of a specific type).

Ramses van Zon Scientific Computing for Physicists PHY1610H 2024 Winter 40 / 86

C++ Details

Ramses van Zon Scientific Computing for Physicists PHY1610H 2024 Winter 41 / 86

C++ Details: Variable definition
type name [=value];

Here, type may be a:

floating point type:

float, double, long double,
std::complex<float>, ...

integer type:

[unsigned] short, int, long, long long

character or string of characters:

char, char*, std::string

boolean i.e., truth value: bool

array, pointer, class, structure, . . .

Examples:
int a;
int b;
a = 4;
b = a + 2;

float f = 4.0f;
double d = 4.0;
d += f;

char* str = "Hello There!";

bool itis2018 = false;

Non-initialized variables are not 0, but have
random values!
const

The type can be proceeded by const to make it
immutable.

Ramses van Zon Scientific Computing for Physicists PHY1610H 2024 Winter 42 / 86

C++ Details: Functions

Function = a piece of code that can be reused.

A function has:
1 a name
2 a set of arguments of specific type
3 and returns a value of some specfic type

These three properties are called the function’s signature.

To write a piece of code that uses (”calls”) the functions, we only need to know its signature or
interface;

To make the signature known, one has to place a function declaration before the piece of code that is
to use the function.

The actual code (function definition) can be in a different file or in a library.

Ramses van Zon Scientific Computing for Physicists PHY1610H 2024 Winter 43 / 86

C++ function example
// funcexample.cpp

// external function declarations:
#include <iostream>
#include <cmath>

// function declaration:
double geometric_mean(double a, double b);

// main function to call when program starts:
int main() {

double x = 16.3;
double y = 102.4;
std::cout << geometric_mean(x,y) << "\n";

}

// function definition:
double geometric_mean(double a, double b) {

return sqrt(a*b);
}

$ ssh USERNAME@teach.scinet.utoronto.ca

$ module load gcc/13

$ g++ -std=c++17 -o funcexample funcexample.cpp

$./funcexample
40.8549

$

Ramses van Zon Scientific Computing for Physicists PHY1610H 2024 Winter 44 / 86

C++ Details: Functions
Function declaration (prototype/signature/interface)
returntype name(argument-spec);

argument-spec = comma separated list of variable definitions

Function definition (code/implementation)
returntype name(argument-spec) {

statements
return expression-of-type-returntype ;

}

Functions which do not return anything have to be declared with a returntype of void.
Functions which have a non-void return type must have a return statement (except main).
The function definition can double as the declaration if it preceeds all uses of it in the same source file.

Function call
var = name(argument-list);
f(name(argument-list));
name(argument-list);

argument-list = comma separated list of values

Ramses van Zon Scientific Computing for Physicists PHY1610H 2024 Winter 45 / 86

C++ Details: Scope

Variables do not live forever, they have well-defined scopes in which they exist. These are the rules:

If you define a variable inside a code block, it exists only until the code hits the closing curly brace (})
that correspond to the opening curly brace ({) that started the block. This is its local scope.

The variable will only be known in that code block and its subblocks.

If you call a function from a code block, variables from that block will not be known in the body of the
function.

It is possible to define variables outside of any code block; these are global variables. Avoid those.

When a variable goes out of scope, the memory associated with it is returned to the system, except for
memory that was dynamically allocated.

Ramses van Zon Scientific Computing for Physicists PHY1610H 2024 Winter 46 / 86

C++ Details: Arguments by value or by reference

Passing function arguments by value
// passval.cpp
#include <iostream>

void inc(int i) {
i = i + 1;

}

int main() {
int j = 10;
inc(j);
std::cout << j << "\n";

}

$ g++ -std=c++17 -o passval passval.cpp
$./passval
10
$

j is set to 10.

j is passed to inc,

where it is copied into a variable called i.

i is increased by one,

but the original j is not changed.

Ramses van Zon Scientific Computing for Physicists PHY1610H 2024 Winter 47 / 86

C++ Details: Arguments by value or by reference

Passing function arguments by reference
// passref.cpp
#include <iostream>

void inc(int &i) {
i = i + 1;

}

int main() {
int j = 10;
inc(j);
std::cout << j << "\n";

}

$ g++ -std=c++17 -o passref passref.cpp
$./passref
11
$

j is set to 10.

j is passed to inc,

where it referred to as i (but it’s still j).

i is increased by one,

because i is just an alias for j,
j reflects this change.

Ramses van Zon Scientific Computing for Physicists PHY1610H 2024 Winter 48 / 86

C++ Details: Operators
Arithmetic

a+b Add a and b

a-b Subtract a and b

a*b Multiply a and b

a/b Divide a and b

a%b Remainder of a over b

Logic

a==b a equals b

a!=b a does not equal b

!a a is not true (also: not a)

a&&b both a and b are true (also: a and b)

a||b either a or b is true (also: a or b)
Assignment

a=b Assign a expression b to the variable b

a+=b Add b to a (result stored in a)

a-=b Substract b from a (result stored in a)

a*=b Multiply a with b (result stored in a)

a/=b Divide a by b (result stored in a)

a++ Increase value of a by one

a-- Decrease value of a by one

Logic/Numeric

a<b is a less than b

a>b is a greater than b

a<=b is a less then or equal to b

a>=b is a greater than or equal to b

Ramses van Zon Scientific Computing for Physicists PHY1610H 2024 Winter 49 / 86

C++ Details: What is 1/4?
1/4 = 0

Why?

In 1/4 both operands, i.e., 1 and 4, are integers.

Hence, the result of 1/4 is the integer part of the division, which is 0.

Generally, literal expressions, such as "Hi", 0, 1.2e-4, 2.4f, 0xff, true have types, just as
variables do.

The result-type of an operator depends on the types of the operands.

The fix for 1/4 = 0? Convert between types.
In C/C++ this is called type casting.

Ramses van Zon Scientific Computing for Physicists PHY1610H 2024 Winter 50 / 86

Casting one numeric type into another
Use static_cast<OTHERTYPE>(...)

Example:

// 1over4.cpp
#include <iostream>

int main() {
int a = 1;
int b = 4;
int c = a/b;
float d = static_cast<float>(a)

/ static_cast<float>(b);

std::cout << c << " "
<< d << " "
<< static_cast<int>(d) << "\n";

}

$ g++ -std=c++17 1over4.cpp -o 1over4

$./1over4
0 0.25 0

Note: the older C++-style casting, float(a), int(d), etc. still works, but less precise.

Ramses van Zon Scientific Computing for Physicists PHY1610H 2024 Winter 51 / 86

Automatic Casting
If an expression expects a variable or literal of a certain type, but it receives another, C++ may be able to
convert it automatically. E.g.
1.0/4

is equal to
1.0/4.0

The expression may be a function call too. E.g in
#include <iostream>
double unchanged(int i) {

return i;
}
int main() {

std::cout << unchanged(2.3) << "\n";
}

the argument 2.3 gets converted to an int first, and then passed to the function unchanged,
so the printed value is 2.

Ramses van Zon Scientific Computing for Physicists PHY1610H 2024 Winter 52 / 86

C++ Details: Namespaces
Variables and function, as well as variable types, have names.

In larger projects, you could have variable types of the same name.

To avoid such name clashes, one can use namespaces

One usually puts all functions, types, etc. of a module in a namespace:
namespace modname {
...
}

(namespace is the keyword, modname is an identifier of your choosing)

Effectively prefixes anything defines in . . . with modname::

Many standard functions/types are in namespace std.

You can make all things in a namespace available without the prefix with “using namespace
modname”. You can also make just one thing available, e.g.
using std::cout;
cout << "Hello, world" << "\n";

Ramses van Zon Scientific Computing for Physicists PHY1610H 2024 Winter 53 / 86

C++ Details: Loops

In scientific computing, we often want to do
the same thing for all points on a grid, or for
every piece of experimental data, etc.

If the grid points or data points are numbers,
this means we consecutively want to consider
the first point, do something with it, then the
second point, do something with it, etc., until
we run out of points.

That’s called a loop, because the same ‘do
something’ is executed again and again for
different cases.

Ramses van Zon Scientific Computing for Physicists PHY1610H 2024 Winter 54 / 86

C++ Details: Loops
Three forms:

traditional for loop
for (initialization ; condition ; increment){

statements
}

range-based for loop
for (type var : iterable-object-or-expression){

statements
}

while loop
while (condition) {

statements
}

You can use the break statement to exit the loop.

Example
#include <iostream>
int main() {

for (int i = 1; i <= 10; i++) {
std::cout << i << " ";

}
std::cout << "\n";

}

#include <iostream>
int main() {

for (int i : {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}) {
std::cout << i << " ";

}
std::cout << "\n";

}

$ g++ -std=c++17 -o count count.cpp
$./count
1 2 3 4 5 6 7 8 9 10

Ramses van Zon Scientific Computing for Physicists PHY1610H 2024 Winter 55 / 86

C++ Details: Pointers

Pointers are memory addresses of variables.

For each type of variable type, there is a
pointer type type* that can hold an address
of such a variable.

The null pointer, denoted by nullptr, points
to nowhere.

Definition:
type* name ;

Assignment (“take-address-of”):
name = &variable-of-type ;

Deferencing (“get-content-at-address”):
variable-of-type = *name ;

Pointers are used for:
I Arrays
I Dynamic memory allocation
I Linked lists, binary trees, . . .
I Calling functions written in C or Fortran

Example:
int main() {

int a = 5; // a equal to 5
int* addr = &a; // addr points to a
*addr = 7; // *b is equivalent to a
return a; // so this returns 7

}

Ramses van Zon Scientific Computing for Physicists PHY1610H 2024 Winter 56 / 86

Danger!
These are so-called raw pointers, in contrast with smart pointers that are in the C++ standard library.
Raw pointers are considered dangerous. What could go wrong?

Raw pointers support arithmetic, which can cause pointers to point to invalid or undefined memory.
int* addr;
int a = 1;
addr = &a;
*addr = 2; // fine, sets a to 2
addr += 1; // allowed, but undefined what addr points at
*addr = 3; // mayhem!

Uninitialized pointers can point anywhere: using those can cause undefined mayhem too.
int* addr;
*addr = 1 ; // syntactically allowed, but undefined where in memory '1' is written.

Pointers can be used for resource management, but are susceptible to resource leaks;
we’ll cover this, and its solution, later.

Pointers are used for arrays (next topic), and can give access beyond the array’s end.r

Ramses van Zon Scientific Computing for Physicists PHY1610H 2024 Winter 57 / 86

C++ Details: Automatic C-style arrays

type name [number];

(square brackets are not indicating an optional part here, but are part of the syntax)

name is equivalent to a pointer to the first element.

Access to elements: name[i].

C/C++ arrays are zero-based.

They’re dangerous.

Ramses van Zon Scientific Computing for Physicists PHY1610H 2024 Winter 58 / 86

C++ Details: Automatic C-style arrays, example

// autoarr.cpp
#include <iostream>

int main() {
int a[6] = {2, 3, 4, 6, 8, 2};
int sum = 0;
for (int i = 0; i < 6; i++) {

sum += a[i];
}
std::cout << sum << "\n";

}

$ g++ -std=c++17 -o autoarr autoarr.cpp
$./autoarr
25
$

What’s so dangerous about automatic C-style arrays?

C standard only says at least one automatic array of at least 65535 bytes can be used.
In practice, limit is set by compiler and OS.
Compiler will not warn about the limit; the program will just crash.

Ramses van Zon Scientific Computing for Physicists PHY1610H 2024 Winter 59 / 86

C++ Details: Automatic C-style arrays, example

// autoarr1e8.cpp
#include <iostream>

int main() {
int a[100000000] = {2, 3, 4, 6, 8, 2};
int sum = 0;
for (int i = 0; i < 100000000; i++) {

sum += a[i];
}
std::cout << sum << "\n";

}

$ g++ -std=c++17 -o autoarr autoarr.cpp
$./autoarr
25
$

$ g++ -std=c++17 -o autoarr1e8 autoarr1e8.cpp
$./autoarr1e8
Segmentation fault (core dumped)
$

What’s so dangerous about automatic C-style arrays?

C standard only says at least one automatic array of at least 65535 bytes can be used.
In practice, limit is set by compiler and OS.
Compiler will not warn about the limit; the program will just crash.

Ramses van Zon Scientific Computing for Physicists PHY1610H 2024 Winter 60 / 86

C++ Details: Dynamically allocated array (raw)

Dynamically allocated arrays are accessed using a pointer to memory:
type* name ;

They can be allocated using the keyword new :
name = new type [number];

(the square brackets are part of the syntax)

and deallocated with the delete statement:
delete [] name ;

Usage of these arrays is the same as for automatic C-style arrays.
Can access all available memory.
Can control when memory is given back.
Must deallocate, or you’ll have a memory leak.
name has no idea of its size.

Ramses van Zon Scientific Computing for Physicists PHY1610H 2024 Winter 61 / 86

Dynamic arrays - Improved version of the example

// dynarr.cpp

#include <iostream>

int main() {
int* a = new int[6]{2, 3, 4, 6, 8, 2};
int sum = 0;
for (int i = 0; i < 6; i++) {

sum += a[i];
}
std::cout << sum << "\n";
delete[] a;

}

$ g++ -std=c++17 -o dynarr dynarr.cpp
$./dynarr
25
$

Ramses van Zon Scientific Computing for Physicists PHY1610H 2024 Winter 62 / 86

Dynamic arrays - Improved version of the example

// dynarr1e8.cpp

#include <iostream>

int main() {
int* a = new int[100000000]{2, 3, 4, 6, 8, 2};
int sum = 0;
for (int i = 0; i < 100000000; i++) {

sum += a[i];
}
std::cout << sum << "\n";
delete[] a;

}

$ g++ -std=c++17 -o dynarr dynarr.cpp
$./dynarr
25
$

$ g++ -std=c++17 -o dynarr1e8 dynarr1e8.cpp
$./dynarr1e8
25
$

Multidimensional arrays, you ask?

Unfortunately, no fully dynamic multi-dimensional
version of the new keyword exists C++.

More about multi-dimensional arrays and other data structures in a later class.

Ramses van Zon Scientific Computing for Physicists PHY1610H 2024 Winter 63 / 86

C++ Details: Dynamic allocation of single variables
One can also dynamically allocate a single variable:
int main() {

double* v = new double;
*v = 4.2;
std::cout << *v << "\n";
delete v;

}

Note the absence of [] in the delete statement.

You might use this in more dynamic data structures.

Note: this is where smart pointers like a unique_ptr or shared_ptr is useful.
#include <memory>
int main() {

std::unique_ptr<double> v = std::make_unique<double>();
*v = 4.2;
std::cout << *v << "\n";
// no delete necessary

}

Ramses van Zon Scientific Computing for Physicists PHY1610H 2024 Winter 64 / 86

C++ Details: C-style arrays as function arguments
C-style array expressions and pointers are equivalent. Consider e.g. a function to print an array:
void printarr(int size, int x[]) {

for (int i = 0; i < size; i++) {
std::cout << x[i] << " ";

}
std::cout << "\n";

}

We would call this function with an automatic array as follows:
int main() {

int numbers[4] = {1, 2, 3, 4};
printarr(4, numbers);

}

Here, the size of the array has to be explicitly given to the function as its first argument.

This is because the array variable numbers, which used as an expression for the seconds argument, is
converted to a pointer to the first element of the array.

From this point on, there is no other way to deduce how big the array was.

Ramses van Zon Scientific Computing for Physicists PHY1610H 2024 Winter 65 / 86

C++ Details: Command Line Arguments

Linux commands can be followed by arguments.

To get their value in a C++ program, we need change from int main() to
int main(int argc, char* argv[]) {

....
}

where:

argc is the number of arguments, where the command itself counts as an argument as well

argv is an array of character string, with the first string, argv[0] equal to the command

All arguments are strings. To convert them to integers or floats, use functions like atoi and atof, e.g.
int n = atoi(argv[1]); stores the integer value of the first command line argument into the variable
n.

Ramses van Zon Scientific Computing for Physicists PHY1610H 2024 Winter 66 / 86

C++ Details: Command Line Arguments Example

#include <iostream>
int main(int argc, char* argv[]) {

for (int i = 0; i < argc; i++) {
std::cout << argv[i] << "\n";

}
}

$ g++ -std=c++17 -o printargs printargs.cpp
$./printargs Hello There!
./printargs
Hello
There!
$

Ramses van Zon Scientific Computing for Physicists PHY1610H 2024 Winter 67 / 86

C++ Details: Exceptions
Syntax:
try {

statements
} catch (type varname) {

statements
}

// exex.cpp
int main() {

int n = 20;
int* a;
try {

a = new int[n];
} catch (std::bad_alloc b) {

std::cout << "Error in main" << "\n";
return 1;

}
for (int i = 0; i < n; i++)

a[i] = i*i;
printarr(n,a);
delete[] a;

}

$ g++ -std=c++17 -o exex exex.cpp
$./exex
0 1 4 9 16 25 36 49 64 81 100
121 144 169 196 225 256 289
324 361

Change n = 20 to n = 2000000000:
$ g++ -std=c++17 -o exex exex.cpp
$./exex
Error in main
$

Ramses van Zon Scientific Computing for Physicists PHY1610H 2024 Winter 68 / 86

Object-oriented programming and templates

Ramses van Zon Scientific Computing for Physicists PHY1610H 2024 Winter 69 / 86

C++ Overview: Using classes and objects

Classes are a generalization of types.
Objects are a generalization of variables.

Syntax similar to variable declarations
classname objectname;
classname objectname(arguments);
classname objectname{arguments};

Differences between classes and regular types
Object declarations can have arguments, supplied to construct the object.
An object has members (fields) and member functions (methods), accessed using the “.” notation.

object.field
object.method(arguments)

You can create your own classes (though this isn’t required for your course work).

Ramses van Zon Scientific Computing for Physicists PHY1610H 2024 Winter 70 / 86

C++ Overview: Using classes and objects

Example of a member function/method
#include <string>
std::string s("Hello");
int stringlen = s.size();

Example of a member/field
#include <utility>
std::pair<int,float> p(1, 0.314e01);
int int_of_pair = p.first;
float float_of_pair = p.second;

What are those angular brackets with types in between them?

Ramses van Zon Scientific Computing for Physicists PHY1610H 2024 Winter 71 / 86

Templates

Some algorithms and classes depend on a type. E.g. an list of doubles, a list of ints, . . .

These objects can often be implemented with the same code, except for a change in type.

Using generic programming, one can write this code once, with one or more type parameters.

In C++, generic programming uses templates.

Type parameters appear in between angular brackets <> instead of parenthesis.

Many templated functions and classes are in the standard library.

Ramses van Zon Scientific Computing for Physicists PHY1610H 2024 Winter 72 / 86

Templates

Usage

To create an object from a template class called tmplcls:
tmplcls<type> object(arguments);

Examples:
std::complex<float> z; // single precision complex number
std::vector<int> i(20); // array of 20 integers
rarray<float,2> x(20,20); // 2d array of 20x20 floats (using the rarray library)

Ramses van Zon Scientific Computing for Physicists PHY1610H 2024 Winter 73 / 86

Scope revisited for objects

When an object goes out of scope, the memory associated with it is returned to the system, except for
memory that was dynamically allocated.

In addition, when going out of scope, a special member function of the called the destructor is called.
This gives objects that dynamically allocate memory the opportunity to delete that memory.

This is how std::unique_ptr and std::shared_ptr work.

Ramses van Zon Scientific Computing for Physicists PHY1610H 2024 Winter 74 / 86

Dynamic allocation revisited using smart pointers
Dynamically allocated arrays can also be defined as a smart pointer to memory:
#include <memory>
std::shared_ptr<type[]> sarr ; // can be shared by copying
std::unique_ptr<type[]> uarr ; // cannot be shared

Allocated as follows:
uarr = std::unique_ptr<type[]>(new type[number]);
uarr = std::make_unique<type[]>(number);
sarr = std::shared_ptr<type[]>(new type[number]);
sarr = std::make_shared<type[]>(number); // only in C++20

Memory is automatically deallocated when pointer goes out of scope (and no copies are left)!
No pointer arithmetic allowed!
Usage of these arrays is the same as for automatic arrays.
Can access all available memory.
But these smart arrays still have no idea of their size.
So can still access beyond end of array with sarr[i], uarr[i] if i >= number.

Ramses van Zon Scientific Computing for Physicists PHY1610H 2024 Winter 75 / 86

Array allocation - Smart version

// smartarr.cpp

#include <memory>
#include <iostream>

int main() {
std::unique_ptr<int[]> a(new int[6]{2,3,4,6,8,2});
int sum = 0;
for (int i = 0; i < 6; i++) {

sum += a[i];
}
std::cout << sum << "\n";

}

$ g++ -std=c++17 -o smartarr smartarr.cpp
$./smartarr
25
$

Ramses van Zon Scientific Computing for Physicists PHY1610H 2024 Winter 76 / 86

Variable definitions revisited: auto
Every variable must be defined and in that definition, has to be declared as a specific type.
But that sometimes means you have to mention the type several times, e.g.

std::unique_ptr<int[]> a;
a = std::unique_ptr<int[]>(new int[6]);

The type int[] is specified 3 times, and has to be the same in all three spots.

Combine declaration and initialization

To avoid mistakes, combine declaration and initialization, e.g. the above can become:
std::unique_ptr<int[]> a(new int[6]);

When initialization value determines type, use auto

When you combine variable declaration with initialization, if the C++ compiler can deduce the variable
type from the initialization value, you may replace the type specification with the auto keyword.

auto a = std::make_unique_ptr<int[]>(6);

Ramses van Zon Scientific Computing for Physicists PHY1610H 2024 Winter 77 / 86

Auto caution
While it is tempting to always use auto, for numerical types, declare the variable types explicitly.

E.g., do not replace code like this:
double x = 1;
double y = 0.5;
x += y;

with
auto x = 1;
auto y = 0.5;
x += y;

In this case, x will have the wrong value (can you see why?)

Tip: Be explicit about numerical and other basic types

Furthermore, if the initializing expression does not have a type that is obvious to the programmer,
don’t use auto. So never:
auto a = f();

Ramses van Zon Scientific Computing for Physicists PHY1610H 2024 Winter 78 / 86

Libraries in C++

Ramses van Zon Scientific Computing for Physicists PHY1610H 2024 Winter 79 / 86

C++ Overview: Libraries
Usage

Put an include line in the source code, e.g.
#include <iostream>
#include <mpi.h>

Include the libraries at link time using -l[libname]. Implicit for the standard libraries.

Common standard libraries (Standard Template Library)
string: character strings
iostream: input/output, e.g., cin and cout
fstream: file input/output, e.g., ifstream and ofstream
containers: vector, complex, list, map,
algorithm: sort, find, min, max, . . .
cmath: special functions (inherited from C), e.g. sqrt
cstdlib, cstring, cassert, : C header files

Ramses van Zon Scientific Computing for Physicists PHY1610H 2024 Winter 80 / 86

Standard Library Example: Sort an array

#include <iostream>
#include <memory>
#include <algorithm>

int main() {
std::unique_ptr<int[]> a(new int[6]{2, 3, 4, 6, 8, 2});
std::sort(&a[0], &a[6]);
for (int i = 0; i < 6; i++) {

std::cout << a[i] << "\n";
}

}

The algorithm library contains a template function to sort containers.

You give it the pointers (or iterators) to the beginning and to the end.

The ‘end’ here is one further than the last element (this should sound familiar if you know Python’s
list slicing).

Ramses van Zon Scientific Computing for Physicists PHY1610H 2024 Winter 81 / 86

C++ IO Standard Library
In C++, stream object are responsible for I/O.
We saw this already: You can output an object obj to a stream str simply by
str << obj

while you can read an object obj from a stream str simply by
str >> obj

The stream will encode these object in ascii format, provided a proper operator is defined
(true for the standard c++ types).

Standard streams
std::cout For output to the console (buffered)
std::cin For input from the keyboard
std::cerr For error messages (by default to console too)

These are defined in the header file iostream.

Ramses van Zon Scientific Computing for Physicists PHY1610H 2024 Winter 82 / 86

C++ IO Standard Library Example

#include <iostream>
int main() {

std::cout << "Print a number: " << "\n";
int i;
std::cin >> i;
std::cout << "Twice that is: " << 2*i << "\n";

}

Ramses van Zon Scientific Computing for Physicists PHY1610H 2024 Winter 83 / 86

C++ File IO Standard Library

Classes for file IO are defined in the header fstream.

The ofstream class is for output to a file.

The ifstream class is for input from a file.

You have to declare an object of these classes first.

Then you can use the streaming operators << and >> .

Use member functions read / write to read/write binary.

Ramses van Zon Scientific Computing for Physicists PHY1610H 2024 Winter 84 / 86

C++ File IO Standard Library Examples
Writing to a file
#include <fstream>
int main() {

std::ofstream fout("out.txt");
int x = 4;
float y = 1.5;
fout << x << " " << y << "\n";
fout.close();

}

Reading from a file
#include <fstream>
#include <iostream>
int main() {

std::ifstream fin("out.txt");
int x;
float y;
fin >> x >> y;
fin.close();
std::cout << "x=" << x << " y=" << y <<"\n";

}
Ramses van Zon Scientific Computing for Physicists PHY1610H 2024 Winter 85 / 86

This was only a brief introduction of bits of C++ you may need for this course.

The only way to learn a programming language is to use it.

Some online C++ resource that may help you out
https://www.learncpp.com/cpp-tutorial
https://www.cplusplus.com/doc/tutorial
https://w3schools.com/cpp/cpp_exercises.asp

Ramses van Zon Scientific Computing for Physicists PHY1610H 2024 Winter 86 / 86

https://www.learncpp.com/cpp-tutorial
https://www.cplusplus.com/doc/tutorial
https://w3schools.com/cpp/cpp_exercises.asp

	Course Intro
	Scientific Software Development
	Basic programming concepts
	C++
	Short intro to the terminal a.k.a. console
	C++ by Example
	C++ Details
	Object-oriented programming and templates
	Libraries in C++

