File Input and Output

Introduction to Computational BioStatistics with R

Alexey Fedoseev

November 23, 2023

&2 UNIVERSITY OF TORONTO

I

Alexey Fedoseev File Input and Output

Basic File Input and Output in R

There are number of ways you can view files on your computer:

_ -zsh X8
roject :
proj » Q user@scinet |
README . txt
L— mydata.bin
program
data README.txt 1 directory, 3 files
user@scinet]
CLS O -zsh X7
user@scinet | [find . -type f
./program
program ./README . txt

./data/mydata.bin
user@scinet |

Alexey Fedoseev November 23, 2023 2/22

Directory management

You can use commands directly in R to
view and manipulate your files and
directories. For example:
@ use getwd() to check where you are
@ use dir() or list.files() to view
files in the current directory

> dir()

[1] "data" "program" "README.txt"
> dir.exists("data")

[1] TRUE

if (dir.exists("data")) {

\4

n n
@ use setwd('scripts') to change N s eir)
_ + } else {
the directory i ("data")
+
@ use dir.create('mydir') to create) ir.createtidata
_ +
a directory

@ use dir.exists('mydir') to check
whether the directory exists (returns
TRUE or FALSE)

Alexey Fedoseev File Input and Output November 23, 2023 3/22

File management

File management commands:

o file.exists("filename") g dlf() . .\ .\ . .
@ normalizePath("filename") L el program README. txt
o dirname("filename") > file.exists("README.txt")

[1] TRUE

> normalizePath("README.txt")
[1] "/Users/alexey/project/README. txt"

Alexey Fedoseev File Input and Output

November 23, 2023 4/22

Writing to a file

o file(filename, 'w') opens the file
for writing. Use ‘r’ to read and ‘a’ to
append

@ writeLines writes lines to the file,
depending on how the file was opened

@ write opens, writes and closes the file in
one shot

@ cat writes to a file, but it doesn't
automatically add newlines

@ This technique is useful if you need to
save some meta-data from an analysis

o If you are writing something in a loop,
open a file once before the loops starts,
use the loop to write data to the file,
close the file after the loop

myfile <- file("output.txt", "w")
writeLines("Hello", myfile)
writeLines("World", myfile)
close(myfile)

write(file = "output.txt", "Hello")

write(file
append = T)

"output.txt", "World",

cat("Hello\n", file = "output.txt",
append = T)

+ 1V V + Vv VIV vV VvV VvV VvV V

Alexey Fedoseev File Input and Output November 23, 2023 5/22

Writing a data frame to a file

You can save a whole data frame to a text file:
@ Not generally recommended, especially if it's large
@ It's better to save it as a binary file, using one of the techniques we'll cover later
@ There is a whole family of functions: write.csv and write.table in particular

@ Using row.names = F tells R to not include the row indices in the file, which you generally
don't want

@ If your data has actual row names though, you will probably want to keep them.

> mydata <- trees
> write.csv(mydata, file = "mydata.csv", row.names = F)

Alexey Fedoseev File Input and Output November 23, 2023 6/22

Using readLines

How to read from a text file:
@ readLines by default reads the entire contents of the file
@ Use the n = 1 option to read just one line at a time.
@ readLines will start at the beginning of the file once you reach the end

@ You can also use read.csv, read.delim, read.table, etc.

> myfile <- file("output.txt", "r")
> file.content <- readLines(myfile)
> str(file.content)
chr [1:3] "Hello" "World" "Hello2"
> fst.line <- readlLines(myfile, n = 1)
> fst.line
[1] "Hello"
> close(myfile)

Alexey Fedoseev File Input and Output November 23, 2023 7/22

Using file wildcards

@ The glob2rx function takes a Unix-style wildcard expression and converts it to a regular
expression pattern.

@ This is useful for finding files.

> dir(pattern = glob2rx("*.txt"))
[1] "output.txt" "README.txt"

Alexey Fedoseev File Input and Output November 23, 2023 8/22

Minimizing 10Ps

It is important that you minimize file input and output operations as much as possible.

Common mistake is to open and close file in a loop when it is not necessary. Doing this will slow
down your program a lot!

When reading data from a file, make sure to open file once, read/write the data in the file at
once or in a loop if required, and finally close the file.

> mydata <- "Hello world"

>

> myfile <- file("hiworld.txt", "w")

> cat(mydata, file = myfile)

> close(myfile)

>

> cat("\n", file = "hiworld.txt", append = T)

Alexey Fedoseev File Input and Output November 23, 2023 9/22

Tips for IOPs

@ Disk I/O is almost always the slowest part of a data pipeline

e If manipulating data from files is most of what you do, try to minimize IOPs (Input/Output
Operations per second)

Tips for making things better: - Load everything into memory once
@ Reuse data, don't keep re-reading it from your files
o If you must keep writing temporary things to disk, use ramdisk (memory as disk)
@ Keep your results in memory, and then write your results in one shot when you are finished

@ Use binary files

Alexey Fedoseev File Input and Output November 23, 2023 10/22

What's in a file?

Files come in different formats. For our purposes there are two basic types:
Text:

@ On its face this seems attractive: you can just read it

@ But this is not as trivial as it may sound

@ A bit pattern must be assigned to each letter or symbol (encoding)
Binary:

@ This corresponds to saving data the way the machine keeps the data in memory: fast and
efficient

@ Good binary formats include information about the data within the file, e.g.: HDF5,
NetCDF.

Alexey Fedoseev File Input and Output November 23, 2023 11/22

Text format

An introduction to text: ASCII
@ ASCII Encoding: 7 bits = 1 character
@ 128 possible, but only 95 printable Integers Characters
characters
@ Uses 8-bit bytes: storage efficiency 82% at 32 (space)
best 33-47 “#$%&'()*+.-./
o ASCII representation of floating point 48-57 0-9
numbers: 58-64 H<=>7
> Needs about 18 bytes vs 8 bytes in binary: 65-90 A-Z
inefficient 91-96 AV
» Representation must be computed: slow 97-122 a-z
» Non-exact representation. 123-126 {‘}~

Alexey Fedoseev File Input and Output November 23, 2023 12/22

Text Encodings

There are a variety of text encoding available:
@ ASCII: 7-bit encoding. For English.
@ Latin-1: 8-bit encoding. For western European Languages mostly

@ UTF-8: Variable-width encoding that can represent every character in the Unicode
character set.

@ Unicode: standard containing more than 110,000 characters.
R can deal with these encodings:

@ Use the Encoding function to set the encoding of a string

@ Use the iconv function to convert between encodings.

@ Use the unicode escape character \U to indicate to R that the following is a Unicode
character.

Alexey Fedoseev File Input and Output November 23, 2023 13/22

Text Encodings

> x <- "fa\xe7ile"

> Encoding(x)

[1] "unknown"

> Encoding(x) <- "latinl"

> x

[1] "fagile"

> xx <- iconv(x, "latinl", "UTF-8")
> Encoding(xx)

[1] "UTF-8"

> x

[1] "fagile"

> a <- "\UOOB5"
> a

[1] "P“

Alexey Fedoseev File Input and Output

Binary format

Binary is a different way of storing information.
@ The data are output to storage in the same format in which they are stored in memory
@ Fast and space-efficient, especially numbers

Writing 128M doubles

SciNet file system ramdisk

ASCIl 173 s 174 s
binary 6 s ls

@ Not human readable

Alexey Fedoseev File Input and Output November 23, 2023 15/22

Why you should not use raw binary data

Data which is dumped to disk without any added formatting is called ‘raw’. Such a dump of the
memory is very fast, but you lose the information describing the data. For example:

@ Suppose you dump a 2D array of 100x100 floating point numbers
@ This gives you a file of 40,000 bytes

o If you give this to someone else, how will he know what it is? It could be almost anything:
> a 2D array of 100x100 numbers
» a 1D array of 10,000 floating point numbers
> a string of 40,000 characters

> etc.

Obviously we need some metadata to go with the actual information we are trying to save.

Alexey Fedoseev File Input and Output November 23, 2023 16 /22

Binary Formats

You could invent your own binary format, but it's better to take an existing standard: this saves
you potential bugs, the burden of documentation and/or maintaining an I/O library.

@ Rdata: An R-specific format. Cannot be read by other languages
@ RDS: Another R-specific format. Stores a single R object only

@ HDF5: Another standard, self-describing format. Almost a file system in a file. Several
bio-informatics packages use this as a back-end

Bioinformatics, genetics, and other bio-type fields all have their own formats.

Alexey Fedoseev File Input and Output November 23, 2023 17 /22

The Rdata type

The simplest way to save and retrieve data:
@ You can save variables using the save function

@ To load saved data, use load

@ Note that your loaded data will overwrite any existing variables of the same name
> varl <- 10; var2 <- "hello"
> save(varl, var2, file = "mydata.Rdata")

Now exit and re-launch the R prompt:

> load("mydata.Rdata")
> print(varl); print(var2)

[1] 10
[1] "hello"

November 23, 2023 18 /22

RDS files

RDS is similar to the Rdata file format, with some exceptions:
@ only a single object can be saved
@ the object is serialized during the saving

@ when loaded, the object is directly assigned to a variable, instead of relying on the variable
name that it had previously

@ load() can overwrite objects, silently; readRDS () cannot.
>a <- 1:10
> saveRDS(a, file = "mydata.RDS")
> b <- readRDS("mydata.RDS")
> b
[11 123456789 10

Alexey Fedoseev File Input and Output November 23, 2023 19/22

On the use of meta-data

What is meta-data? Simply put: data-about-the-data
@ The best binary formats have the meta-data baked right into the data file
@ This way the meta-data and the data are never separated; the meta-data is always available.
@ Always, always, include the meta-data with the data itself

@ If you don't keep your meta-data in the same file as the data, at least keep it in the same
directory

@ Why? You need to know where did it come from. Under what conditions? Can you trust it?

Alexey Fedoseev File Input and Output November 23, 2023 20/22

On the use of meta-data

What do | include in my meta-data (data about the data)?

@ Include your name, as the author of the data.

@ Include the date and time the data was created or collected.

@ Include the name of the code, and the version number of the code, which was used to
create it.

@ Include where it was created, what operating system.

@ Include the values of key variables that were used to create the data, if your functions have
optional values.

@ Include anything and everything that might help you, in six months, to understand the
what/where/why /how of the data.

@ Include any other information that will allow you to TRUST the data.

If you're not sure, include it!

Alexey Fedoseev File Input and Output November 23, 2023 21/22

Final Tips

Some tips for optimizing your IOPS:

@ Don't create millions of files: it's unworkable and slows down directories. If must have lots
of directories, bundle them into tarballs.

@ Stick to letters, numbers, underscores and periods in file names (no spaces!)

@ Minimize IOPS: write/read big chunks at a time; try to reuse data or load more into
memory.

o If your data is not text, do not save it as text.

o Always always save your meta-data with your data.

Alexey Fedoseev File Input and Output November 23, 2023 22/22

	Basic File Input and Output (I/O) in R

