
ReferenceCounted Multidimensional Arrays for C++: Rarray

Ramses van Zon

Compute Ontario Colloquium Nov 8, 2023

Ramses van Zon ReferenceCounted Multidimensional Arrays for C++: Rarray Compute Ontario Colloquium Nov 8, 2023 1 /32

An essential data type in scientific computing

Something that is used in code for

Artifical Intelligence

Computational Fluid Dynamics

Optimization

Molecular dynamics

and many more computational
applications.

This data type is themultidimensional array.

Ramses van Zon ReferenceCounted Multidimensional Arrays for C++: Rarray Compute Ontario Colloquium Nov 8, 2023 2 /32

Multidimensional arrays

What are these?

A set of values of the same type.

Ordered in a regular grid with multiple dimensions.

The number of dimensions is called the rank.
(this is a different from the rank of a matrix!)

The sizes of the dimensions are called the extents of the array.

Representations are not standard/universal.

Example

A threedimensional grid of size 200 by 300 by 20, where each grid point holds a
floating point number.
Such a grid may e.g. hold the temperature of the atmosphere over a piece of land.

Ramses van Zon ReferenceCounted Multidimensional Arrays for C++: Rarray Compute Ontario Colloquium Nov 8, 2023 3 /32

History

Ramses van Zon ReferenceCounted Multidimensional Arrays for C++: Rarray Compute Ontario Colloquium Nov 8, 2023 4/32

The rise of scientific computing

Electronic computers came about towards the end of WWII. Interest in scientific computing quickly arose.

Initially computers had to be programmed in machine code or assembly language.

This was not ideal because this offered no abstractions and led to lengthy, machinedependent codes.

FORTRAN (1957)

Programs written in FORTRAN could be compiled into machine language of different computers.
Even the earliest version of FORTRAN supported multidimensional arrays.

FORTRAN IV (1961)

N=10
DIMENSION A(10,10)
DO 20 I=1,N
DO 10 J=1,N
A(I,J) = I + N*J

10 CONTINUE
20 CONTINUE

Fortran 90 (1990)

integer :: n = 10, i, j
real(4), allocatable :: a(:,:)
allocate(a(n,n))
do i=1,n

do j=1,n
a(i,j) = i + n*j

enddo
enddo
deallocate(a)

Ramses van Zon ReferenceCounted Multidimensional Arrays for C++: Rarray Compute Ontario Colloquium Nov 8, 2023 5 /32

C (1978)
C is a generalpurpose computer programming language.
Static multidimensional arrays but not dynamic; must implement these oneself.
Used as a system language.
Interfaces well with software libraries.

Static/automatic array

#define n 10
int i,j;
float a[n][n];
for (i=0;i<n;i++)

for (j=0;j<n;j++)
a[i][j] = i + n*j;

For large n this will break, because automatic arrays
are allocated on the “stack”.

How much stack space is available depends on the
machine, its operating system, its configuration, and
what other automatic variables you have defined.

Dynamic array

int n = 10, i, j;
float** a = malloc(n*sizeof(float*));
*a = malloc(n*n*sizeof(float));
for (i=1;i<n;i++)

a[i] = a[0] + n*i;
for (i=0;i<n;i++)

for (j=0;j<n;j++)
a[i][j] = i + n*j;

free(*a);
free(a);

malloc allocates on the “heap”
“array of arrays”
same indexing as static

Ramses van Zon ReferenceCounted Multidimensional Arrays for C++: Rarray Compute Ontario Colloquium Nov 8, 2023 6/32

C++ (1985)

Started as “C with classes”, now much larger language than C.
Also used outside of scientific computing.
Can get lowlevel.
Can also get highlevel.
Interfaces well with software libraries, but often through pointers.

Static/automatic array

int n = 10, i, j;
float a[n][n];
for (i=0;i<n;i++)

for (j=0;j<n;j++)
a[i][j] = i + n*j;

Dynamic array

int n = 10, i, j;
float** a = new float*[n];
*a = new float[n*n];
for (i=1;i<n;i++)

a[i] = a[0] + 10*i;
for (i=0;i<n;i++)

for (j=0;j<n;j++)
a[i][j] = i + n*j;

delete [] *a;
delete [] a;

Vectors

int n = 10, i, j;
std::vector<

std::vector<float> > a(n);
for (i=1;i<n;i++) a[i].reserve(n);
for (i=0;i<n;i++)

for (j=0;j<n;j++)
a[i][j] = i + n*j;

Not contiguous!
Expensive copies!

C++23 will offer nonowning multidimensional views on existing arrays (later).

Ramses van Zon ReferenceCounted Multidimensional Arrays for C++: Rarray Compute Ontario Colloquium Nov 8, 2023 7 /32

Not ideal, but what do we want?

Ramses van Zon ReferenceCounted Multidimensional Arrays for C++: Rarray Compute Ontario Colloquium Nov 8, 2023 8/32

The concept of multidimensional arrays

In C and C++, multidimesnional arrays are viewed as arrays of arrays of
arrays of…, and thus if you can do 1D arrays, you can do multidimensional
arrays.

There are issues with the arrayofarraysof…. idea:

It is an additional abstraction that is not inherent to the concept.
Should one view the athmosphere as an array of layers, and each layer
an an array of longitudes, or as an array of lattitude slabs that are an
arrays…?It is more natural to think of arrays as data with a shape.
Complicates how one creates and works with multidimensional arrays.
It allows noncontiguous data; contiguous memory accessed
contiguously has performance benefits, and interfaces with libraries
(e.g. fftw).

Want:

Multidimensional arrays to be objects containing contiguous data with a given shape.

Ramses van Zon ReferenceCounted Multidimensional Arrays for C++: Rarray Compute Ontario Colloquium Nov 8, 2023 9/32

Usability of multidimensional arrays

Multidimensional arrays should be easy to create and manipulate.

Preferably with the same syntax as the rest of the C++ language: square brackets.

They should be able to have arbitrary sizes, only limited by physical constraints.

They should be able to work with C++ standard libraries.

They should be able to work with C libraries that expect pointers.

Wants #2

Easy to use, no limits, square brackets accessors, data pointer access, STL compatibility

Ramses van Zon ReferenceCounted Multidimensional Arrays for C++: Rarray Compute Ontario Colloquium Nov 8, 2023 10 /32

Performance of multidimensional arrays

There should be no/minimal overhead in creating or using them.

By default, they should not suffer copy overhaead, i.e. use shallow copies.
Deep copies should be possible.

They should be sharable between components of a calculations, or not.

Wants #3

Compiler needs to be able to optimize away any overhead. Shallow copy default, deep copy
possible. Optional shared ownership.

Ramses van Zon ReferenceCounted Multidimensional Arrays for C++: Rarray Compute Ontario Colloquium Nov 8, 2023 11 /32

Solutions

Ramses van Zon ReferenceCounted Multidimensional Arrays for C++: Rarray Compute Ontario Colloquium Nov 8, 2023 12 /32

Earlydays C++ solution: Write your own
class Matrix
{
private:

int nrows_, ncols_;
double* data_;

public:
Matrix(): nrows_(0), ncols_(0), data_(0) {}
Matrix(int nrows, int ncols)
: nrows_(nrows), ncols_(ncols),
data_(new double[nrows*ncols])
{}
~Matrix()
{ delete[] data_; }

double& operator()(int i, int j)
{ return data_[i*ncols_ + j]; }
const double& operator()(int i, int j) const
{ return data_[i*ncols_ + j]; }

int extent(int i) const
{ return i?ncols_:nrows_; }

};

Features

Construct a matrix:
Matrix m(10,10);

Access elements with parentheses:
m(0,3) = -2.5;

Request its size: ncols = m.extent(1);

Drawbacks

Implicit copy constructors do the wrong thing.
Cannot copy one matrix to another.
Cannot pass a Matrix by value to a function.

Requires computation for each element access.

Why (i,j) instead of the standard [i][j]?

Ramses van Zon ReferenceCounted Multidimensional Arrays for C++: Rarray Compute Ontario Colloquium Nov 8, 2023 13 /32

Write your own #2: Using C++17 features
#include <array>
#include <memory>
class Matrix
{
private:

std::array<size_t,2> shape_;
std::shared_ptr<double[]> data_;

public:
Matrix() = default;
Matrix(size_t nrows, size_t ncols)
: shape_{nrows,ncols},

data_{new double[](nrows*ncols)}
{}

double& operator()(size_t i, size_t j)
{ return data_[i*shape_[0] + j]; }
const double& operator()(size_t i, size_t j)const
{ return data_[i*shape_[0] + j]; }

size_t extent(int i) const
{ return shape_[i]; }

};

Features

Construct a matrix: Matrix m(10,10);

Access elements with parentheses:
m(0,3) = -2.5;

Request its size: ncols=m.extent(1);

Standard library types allow:

Trivial constructor implemented trivially.
Copying, moving, destructing are implicitly
implemented and correct.

Drawbacks

Requires computation for each element access.
Why (i,j) instead of the standard [i][j]?
And why std::shared_ptr?

Ramses van Zon ReferenceCounted Multidimensional Arrays for C++: Rarray Compute Ontario Colloquium Nov 8, 2023 14 /32

Write your own #3: Now with repeated brackets
#include <array>
#include <memory>
class Matrix
{
private:

std::array<size_t,2> shape_;
std::shared_ptr<double[]> data_;

public:
Matrix() = default;
Matrix(size_t nrows, size_t ncols)
: shape_{nrows,ncols},

data_{new double[](nrows*ncols)}
{}

double* operator[](size_t i)
{ return data_ + i*shape_[0]; }
const double* operator[](size_t i) const
{ return data_ + i*shape_[0]; }

size_t extent(int i) const
{ return shape_[i]; }

};

Features

Construct a matrix: Matrix m(10,10);

Access elements with brackets:
m[0][3] = -2.5;
(Allows a lot of Clike code to be reused)

Request its size: ncols=m.extent(1);

Standard library types allow:
Trivial constructor implemented trivially.
Copying, moving, destructing are implicitly
implemented and correct.

Drawbacks

Requires computation for each element access.
And why std::shared_ptr?

Ramses van Zon ReferenceCounted Multidimensional Arrays for C++: Rarray Compute Ontario Colloquium Nov 8, 2023 15 /32

Reference Counted Pointers

The shared smart pointer std::shared_ptr is a referencecounted pointer.

Let’s break this down:

Smart: it will deallocate the memory held by the pointer when the pointer is no longer owned.
(note: since C++17 is knows to deallocate an array with delete[].)

Shared: the ownership of this memory can be held by several parts of the code.

Reference counted: there is a counter that keeps track of the number of owner.

Ramses van Zon ReferenceCounted Multidimensional Arrays for C++: Rarray Compute Ontario Colloquium Nov 8, 2023 16 /32

How does reference counting work?
A referencecounted object is one that is coowned by several part of the code.
When a copy is made, only its reference counter is increased. That copy is now a coowner.
When the copy goes out of scope or is deleted, the reference counter is decreaxsed.
When the reference counter hits zero, the object is deleted.

1 #include <memory>
2 #include <iostream>
3 using pdouble = std::shared_ptr<double>;
4 pdouble adddecimalpart(pdouble x) {
5 *x += 0.14159;
6 return x;
7 }
8 int main() {
9 pdouble pi;
10 pdouble b(new double{3.0});
11 pi = adddecimalpart(b);
12 b.reset();
13 std::cout << "pi = " << *pi << std::endl;
14 }

Example

Line 10: assigns 3.0 to b as only owner.
Line 11: calls function adddecimalpart with
an argument.
Line 4: argument x becomes an owner too.
Line 6: x is returned.
Line 11: Now owned by pi as well.
Line 7: x goes out of scope, so is no longer an
owner.
Line 12: b is no longer an owner.
Line 13: pi remains as an owner, so it writes
out the result 3.14159.

Ramses van Zon ReferenceCounted Multidimensional Arrays for C++: Rarray Compute Ontario Colloquium Nov 8, 2023 17 /32

More features
Now let’s add:

Precomputation of row pointers
Move sematics
A copy() method for a deep copy
A data() method to get the data out
A size() method to get the total number of elements
Iterators for going over all elements
Conversion from automatic arrays and to pointers
Nonowning views of existing arrays
Reshaping functionality
Bounds checking that can be switch on and off
Ways to assign values to the whole array easily
Streaming operators to read and print arrays
Generalization to any rank (1D, 3D, 4D, …)
Generalization to any data type.

Actually, don’t do this yourself, use...

Ramses van Zon ReferenceCounted Multidimensional Arrays for C++: Rarray Compute Ontario Colloquium Nov 8, 2023 18 /32

RARRAY

A library for
dynamically allocated,
referencecounted,
multidimensional arrays
of arbitrary rank and type.

Consists of one header file.

Has all the features of the previous slide.

Download

$ git clone https://github.com/vanzonr/rarray
$ cd rarray
$ git checkout v2.6.0 # current version
$ cp rarray WHEREEVERYOUWANT
$ # read rarraydoc.pdf

Ramses van Zon ReferenceCounted Multidimensional Arrays for C++: Rarray Compute Ontario Colloquium Nov 8, 2023 19 /32

Rarray Details by Example: Initialization
#include <rarray>
int main() {
rarray<int,1> a(5);
a = 1,2,3,4,5;
std::cout << a << "\n";
}
$ g++ -O3 arr1.cpp
$./a.out
{1,2,3,4,5}

#include <rarray>
int main() {
int adata[] = {1,2,3,4,5};
rarray<int,1> a(adata);
std::cout << a << "\n";
}
$ g++ -O3 arr2.cpp
$./a.out
{1,2,3,4,5}

#include <rarray>
int main() {

rarray<int,1> a = linspace(1,5);
std::cout << a << "\n";
}
$ g++ -O3 arr3.cpp
$./a.out
{1,2,3,4,5}

#include <rarray>
int main() {
rarray<int,2> a(2,3);
a = 1,2,3,4,5,6;
std::cout << a << "\n";
}
$ g++ -O3 r2d1.cpp
$./a.out
{
{1,2,3},
{4,5,6}
}

#include <rarray>
int main() {
int adata[][3]={{1,2,3},{4,5,6}};
rarray<int,2> a(adata);
std::cout << a << "\n";
}
$ g++ -O3 r2d2.cpp
$./a.out
{
{1,2,3},
{4,5,6}
}

#include <rarray>
int main() {
rarray<int,2> a(2,3);
for (int i=1; auto& x: a) x=i++;
std::cout << a << "\n";
}
$ g++ -std=c++20 -O3 r2d3.cpp
$./a.out
{
{1,2,3},
{4,5,6}
}

Ramses van Zon ReferenceCounted Multidimensional Arrays for C++: Rarray Compute Ontario Colloquium Nov 8, 2023 20/32

Rarray Details by Example: Methods
#include <iostream>
#include <rarray>
int main() {

rarray<int,2> a(3,4);
a.fill(13);
std::cout << "a=" << a << "\n"

<< "a[1][2] = " << a[1][2] << "\n"
<< "a.empty() = " << a.empty() << "\n"
<< "a.rank() = " << a.rank() << "\n"
<< "a.size() = " << a.size() << "\n"
<< "a.extent(0) = " << a.extent(0) << "\n"
<< "a.extent(1) = " << a.extent(1) << "\n"
<< "a.shape()[0] = " << a.shape()[0] << "\n"
<< "a.shape()[1] = " << a.shape()[1] << "\n\n";

int* data = a.data();
int*const* b = a.ptr_array();
int** c = a.noconst_ptr_array(); // danger!
std::cout

<< "data= " << data << "\n"
<< "data[6] = " << data[6] << "\n"
<< "b[1][2] = " << b[1][2] << "\n"
<< "c[1][2] = " << c[1][2] << "\n";

}

$ g++ -O3 rprops.cpp

$./a.out

a={
{13,13,13,13},
{13,13,13,13},
{13,13,13,13}
}
a[1][2] = 13
a.empty() = 0
a.rank() = 2
a.size() = 12
a.extent(0) = 3
a.extent(1) = 4
a.shape()[0] = 3
a.shape()[1] = 4

data= 0x58b2b0
data[6] = 13
b[1][2] = 13
c[1][2] = 13

Ramses van Zon ReferenceCounted Multidimensional Arrays for C++: Rarray Compute Ontario Colloquium Nov 8, 2023 21 /32

Rarray Details by Example: Copying
#include <iostream>
#include <rarray>

int main()
{

// create an rarray a
rarray<double,1> a(4);
a.fill(1);
// assign a to another rarray, b
rarray<double,1> b = a;
std::cout << "1. " << a << b << "\n";
// modify b and see he effect
b[3] = 2;
std::cout << "2. " << a << b << "\n";
// copy a to another array, c
rarray<double,1> c = b.copy();
// modify c and see the effect
c[2] = 3;
std::cout << "3. " << a << b << c << "\n";

}

$ g++ -O3 rcopying.cpp

$./a.out
1. {1,1,1,1}{1,1,1,1}
2. {1,1,1,2}{1,1,1,2}
3. {1,1,1,2}{1,1,1,2}{1,1,3,2}

“=” creates a reference, like std::shared_ptr.
.copy() returns a fully independent rarray.
Similarly for function arguments:

void f1(rarray<double,1> b) {
b[0][0] = 4; //changes original array

}
void f2(const rarray<double,1> b) {

b[0][0] = 4; //not allowed!
}
void f4(const rarray<double,1>& b) { //no refcount!

b[0][0] = 4; //not allowed!
}

Ramses van Zon ReferenceCounted Multidimensional Arrays for C++: Rarray Compute Ontario Colloquium Nov 8, 2023 22 /32

Rarray Details by Example: Reshaping
Reshape an rarray

rarray<double,2> r(12,2);
r.fill(20);
r.reshape(4,6);

The data stays the same.
The rank must stay the same.

Shrink an rarray

r.reshape(2,6, ra::RESIZE::ALLOWED);

The superfluous elements become inaccessible.

Flatten an array:

r.reshape(1,r.size());
rarray<double,1> rflatref(r[0]);

Shapes are independently!

You can reshape an rarray without affecting the
other references to it.

rarray<double,2> r(12,2);
rarray<double,2> s = r;
s.reshape(4,6);
// only s is reshaped, still shares data with r

This can be very useful in functions, e.g.

void printflattened(const rarray<double,3>& a)
{

rarray<double,3> aref = a;
aref.reshape(1,1,a.size());
rarray<double,1> aflatref(aref[0][0]);
std::cout << aflat;

}

Ramses van Zon ReferenceCounted Multidimensional Arrays for C++: Rarray Compute Ontario Colloquium Nov 8, 2023 23 /32

Performance details

Compilation with optimization is needed for intermediate structures to be zerocost.

Then, its performance is identical to a good pointertopointer structure, as that is what it uses under
the hood.

Good pointertopointer structure: means it is contiguous in memory. As a result, it usually fits in
cache, thus alleviating the dreaded cost of “pointer chasing”.

Reference counting is done atomically.

Bounds checking

You can have rarray check at runtime that indices to not go out of bounds by defining a preprocessor
constant RA_BOUNDSCHECK

g++ -DRA_BOUNDSCHECK -O3 myrarrayprog.cpp

Good for debugging, but slows down all access.

Ramses van Zon ReferenceCounted Multidimensional Arrays for C++: Rarray Compute Ontario Colloquium Nov 8, 2023 24/32

Conclusions and outlook

Ramses van Zon ReferenceCounted Multidimensional Arrays for C++: Rarray Compute Ontario Colloquium Nov 8, 2023 25 /32

Conclusions

The Rarray provides multidimensional arrays.

These are smart, shared arrays.

They offer reference counting under control of the programmer.
(and, yes, threadsafe)

Layout is always rowmajor, contiguous in memory.

Only requires C++11.

C++23 will have std::mdspan that is a nonowning, nonreference counting option.

Ramses van Zon ReferenceCounted Multidimensional Arrays for C++: Rarray Compute Ontario Colloquium Nov 8, 2023 26/32

Outlook to the Future

Allow slicing which does not break contiguity.

Support for C++20’s multidimensional index operator with square brackets:

rarray<double,2> a;
a[1,2] = 4.0; // instead of a[1][2] = 4.0;

Should a[1][2] be 100% equivalent to a[1,2]? Maybe. Probably.(already in progress)

Automatic conversions to c++23’s std::mdspan.

Elementwise expressions

rarray<double,2> a(2,2),b(2,2),c(2,2);
a.fill(1); b.fill(2);
c.fill(a+2*b);

or something like that, would be nice.
(and be very Fortranlike).

These may find their way into a version 3 series of Rarray.

Ramses van Zon ReferenceCounted Multidimensional Arrays for C++: Rarray Compute Ontario Colloquium Nov 8, 2023 27 /32

Thank you for your attention! Questions?

Ramses van Zon ReferenceCounted Multidimensional Arrays for C++: Rarray Compute Ontario Colloquium Nov 8, 2023 28/32

Extra slides

Ramses van Zon ReferenceCounted Multidimensional Arrays for C++: Rarray Compute Ontario Colloquium Nov 8, 2023 29/32

When to use reference counting

1 Copies of the object are stored in different other objects.
Sometimes it makes sense to rewrite the code, but sometimes shared ownership is natural.

Example:
The temperature grid at the beginning may be used by a monitoring object as well as a weather
prediction object.
In this case, it would be unnatural to rewrite the code and design a dedicated owner of this grid, and
making sure that owner exists throughout the computation.

2 There is a good chance that case 1 might happen.

3 You’re not quite sure if your algorithm properly keeps track of ownership without it.

4 You’re sure your algorithm needs it to track of ownership.

5 You need a smart pointer, and std::unique_ptr does not fit the bill.

Ramses van Zon ReferenceCounted Multidimensional Arrays for C++: Rarray Compute Ontario Colloquium Nov 8, 2023 30/32

When not to use reference counting

When single ownership suffices.

When ownership is clear, and it is clear that it will remain unchanged.

Example: the function adddecimalpart does not need x to be an owner.
x was passed in, thus an owner exists, and cannot cease to exist.
Make the argument a reference:

4 pdouble& adddecimalpart(pdouble& x) {
5 *x += 0.14159;
6 return x;
7 }

Although x is reference counted, the counter is now not changed or touched in the call to this function.

When the cost is too large: but profile first.

For the large sizes that multidimensional arrays tend to have in scientific computing, the cost of
increasing a counter (even atomically) is small.

Note that if you are not copying, there is no cost.

Ramses van Zon ReferenceCounted Multidimensional Arrays for C++: Rarray Compute Ontario Colloquium Nov 8, 2023 31 /32

Rarray API in a Nutshell
rarray header provides the type rarray<T,R>, where T is a type and R is the rank.

Define a n×m×k array of doubles: rarray<double,3> b(n,m,k);
Define it with preallocated memory: rarray<double,3> c(ptr,n,m,k);
Element i,j,k of the array b: b[i][j][k]
Pointer to the contiguous data in b: b.data()
Total number of elements in b: b.size()
Extent in the ith dimension of b: b.extent(i)
Array of all extents of b: b.shape()
Define an array with same shape as b: rarray<double,3> b2(b.shape());
Shallow copy of the array: rarray<double,3> d = b;
Deep copy of the array: rarray<double,3> e = b.copy();
A rarray reusing an automatic array: double f[10][20][8] = {{{...}}};
. rarray<double,3> g(f);
Output a rarray: std::cout << h << endl;
Read in a rarray: std::cin >> h;

Ramses van Zon ReferenceCounted Multidimensional Arrays for C++: Rarray Compute Ontario Colloquium Nov 8, 2023 32 /32

	History
	Not ideal, but what do we want?
	Solutions
	Conclusions and outlook
	Thank you for your attention! Questions?
	Extra slides

