
Numerical Computing with Python, Lecture 6: Data and I/O

Ramses van Zon

November 28, 2019

Ramses van Zon Numerical Computing with Python, Lecture 6: Data and I/O November 28, 2019 1 / 37

Basic File Input and Output in Python

Files contain your data

Files are organized in directories or folders

A directory is a file too

Path: sequence of directories to get to a file

Python modules/packages for files:

Built-in Python file objects

os (particularly os.path)

shutil

pickle, shelve

json, zipfile, tarfile, csv, . . .

numpy, scipy.io.netcdf, pytables,
pandas, . . .

Ramses van Zon Numerical Computing with Python, Lecture 6: Data and I/O November 28, 2019 2 / 37

Basic File Input and Output in Python

Files contain your data

Files are organized in directories or folders

A directory is a file too

Path: sequence of directories to get to a file

Python modules/packages for files:

Built-in Python file objects

os (particularly os.path)

shutil

pickle, shelve

json, zipfile, tarfile, csv, . . .

numpy, scipy.io.netcdf, pytables,
pandas, . . .

Ramses van Zon Numerical Computing with Python, Lecture 6: Data and I/O November 28, 2019 2 / 37

Basic (Text) File Input and Output in Python
Get current directory:
os.getcwd()

Create directory:
os.mkdir('folder1')

Change current directory:
os.chdir('folder1')
os.chdir('..')

Get file list:
os.listdir('folder1')

Get file list by wildcard pattern:
glob.glob('folder1/*')

Path manipulations: os.path module.

Open file for read,write,read/write,append:
f = open('folder1/world.txt','r')
f = open('folder1/world.txt','w')
f = open('folder1/world.txt','r+')
f = open('folder1/world.txt','a')

Write to file:
print(....,file=f)
f.write("Some line of text\n")

Read file:
f.read()
f.readlines()

Read line by line: f.readline()

Get/set file pointer:
f.tell(), f.seek(position)

Close file: f.close()

Ramses van Zon Numerical Computing with Python, Lecture 6: Data and I/O November 28, 2019 3 / 37

Basic (Text) File Input and Output in Python
Get current directory:
os.getcwd()

Create directory:
os.mkdir('folder1')

Change current directory:
os.chdir('folder1')
os.chdir('..')

Get file list:
os.listdir('folder1')

Get file list by wildcard pattern:
glob.glob('folder1/*')

Path manipulations: os.path module.

Open file for read,write,read/write,append:
f = open('folder1/world.txt','r')
f = open('folder1/world.txt','w')
f = open('folder1/world.txt','r+')
f = open('folder1/world.txt','a')

Write to file:
print(....,file=f)
f.write("Some line of text\n")

Read file:
f.read()
f.readlines()

Read line by line: f.readline()

Get/set file pointer:
f.tell(), f.seek(position)

Close file: f.close()

Ramses van Zon Numerical Computing with Python, Lecture 6: Data and I/O November 28, 2019 3 / 37

Metadata
File metadata describes the file and its properties:

File name

File size

Location on disk

File type (often through magic identifiers)

Dates/times

Read/write permissions

. . .

Getting the file metadata in Python
import os, stat
from datetime import datetime

Size:
>>> os.path.getsize('folder1/world.txt')
18

Permissions (linux)
>>> st=os.stat('folder1/world.txt')
>>> st.st_mode & stat.S_IXUSR
0
>>> st.st_mode & stat.S_IWUSR
128

Change, modification, access time
>>> st.st_ctime, st.st_mtime, st.st_atime
(1574952256.4632373, 1574952256.4632373, 1574952233.0070267)
>>> datetime.fromtimestamp(round(st.st_mtime))
datetime(2019, 11, 28, 9, 44, 16)

Ramses van Zon Numerical Computing with Python, Lecture 6: Data and I/O November 28, 2019 4 / 37

Metadata
File metadata describes the file and its properties:

File name

File size

Location on disk

File type (often through magic identifiers)

Dates/times

Read/write permissions

. . .

Getting the file metadata in Python
import os, stat
from datetime import datetime

Size:
>>> os.path.getsize('folder1/world.txt')
18

Permissions (linux)
>>> st=os.stat('folder1/world.txt')
>>> st.st_mode & stat.S_IXUSR
0
>>> st.st_mode & stat.S_IWUSR
128

Change, modification, access time
>>> st.st_ctime, st.st_mtime, st.st_atime
(1574952256.4632373, 1574952256.4632373, 1574952233.0070267)
>>> datetime.fromtimestamp(round(st.st_mtime))
datetime(2019, 11, 28, 9, 44, 16)

Ramses van Zon Numerical Computing with Python, Lecture 6: Data and I/O November 28, 2019 4 / 37

Content metadata
File content metadata described properties of the data stored in the file:

What is the data (labeled data)?
Where did it come from?
Who made it/owns it/. . . .?
Format of the data
Units

This metadata is not kept by the file system. One could use a separate metadata file for this.

Formats like netCDF and HDF5, which have interfaces for many different programming languages, allow
you to add metadata in the data file itself, and allow to add descriptions.

Even before the data is saved in the file, you need to have tracked of all of this metadata.

Python objects know their data format in memory, and this can be uses by Python packages to write out
data including some metadata like the format.

Furthermore, the xarray and pandas packages can be very convenient in dealing with labeled data.

Ramses van Zon Numerical Computing with Python, Lecture 6: Data and I/O November 28, 2019 5 / 37

Content metadata
File content metadata described properties of the data stored in the file:

What is the data (labeled data)?
Where did it come from?
Who made it/owns it/. . . .?
Format of the data
Units

This metadata is not kept by the file system. One could use a separate metadata file for this.

Formats like netCDF and HDF5, which have interfaces for many different programming languages, allow
you to add metadata in the data file itself, and allow to add descriptions.

Even before the data is saved in the file, you need to have tracked of all of this metadata.

Python objects know their data format in memory, and this can be uses by Python packages to write out
data including some metadata like the format.

Furthermore, the xarray and pandas packages can be very convenient in dealing with labeled data.

Ramses van Zon Numerical Computing with Python, Lecture 6: Data and I/O November 28, 2019 5 / 37

Content metadata
File content metadata described properties of the data stored in the file:

What is the data (labeled data)?
Where did it come from?
Who made it/owns it/. . . .?
Format of the data
Units

This metadata is not kept by the file system. One could use a separate metadata file for this.

Formats like netCDF and HDF5, which have interfaces for many different programming languages, allow
you to add metadata in the data file itself, and allow to add descriptions.

Even before the data is saved in the file, you need to have tracked of all of this metadata.

Python objects know their data format in memory, and this can be uses by Python packages to write out
data including some metadata like the format.

Furthermore, the xarray and pandas packages can be very convenient in dealing with labeled data.

Ramses van Zon Numerical Computing with Python, Lecture 6: Data and I/O November 28, 2019 5 / 37

I/O Tips

Minimize I/O Operations
Disk I/O is usually the slowest part of a pipe line.
When manipulating data from files, try and minimize I/O operations per seconds (IOPS).

>>> s = 'Hi world\n'
>>> for c in s:
... f = open('hiworld.txt','a')
... f.write(c)
... f.close()

>>> s = 'Hi world\n'
>>> f = open('hiworld.txt','w')
>>> f.write(s)
>>> f.close()
>>>

Ramses van Zon Numerical Computing with Python, Lecture 6: Data and I/O November 28, 2019 6 / 37

I/O Tips

Minimize I/O Operations
Disk I/O is usually the slowest part of a pipe line.
When manipulating data from files, try and minimize I/O operations per seconds (IOPS).

>>> s = 'Hi world\n'
>>> for c in s:
... f = open('hiworld.txt','a')
... f.write(c)
... f.close()

>>> s = 'Hi world\n'
>>> f = open('hiworld.txt','w')
>>> f.write(s)
>>> f.close()
>>>

Ramses van Zon Numerical Computing with Python, Lecture 6: Data and I/O November 28, 2019 6 / 37

I/O Tips

Minimize I/O Operations
Disk I/O is usually the slowest part of a pipe line.
When manipulating data from files, try and minimize I/O operations per seconds (IOPS).

>>> s = 'Hi world\n'
>>> for c in s:
... f = open('hiworld.txt','a')
... f.write(c)
... f.close()

>>> s = 'Hi world\n'
>>> f = open('hiworld.txt','w')
>>> f.write(s)
>>> f.close()
>>>

Ramses van Zon Numerical Computing with Python, Lecture 6: Data and I/O November 28, 2019 6 / 37

I/O Tips, continued

Close files automatically
Close a file when done, to flush any buffers and ensures that what is written actually gets to disk.
But it’s easy to forget.
The with statement can automatically close the file for you:

>>> with open('hiworld.txt','w') as f:
... f.write('Hi world!\n')
...

Ramses van Zon Numerical Computing with Python, Lecture 6: Data and I/O November 28, 2019 7 / 37

I/O Tips, continued

Be nice to the file system
Don’t create millions of files: each requires metadata activity, leading to unwieldy and slow-to-access
directories.
Stick to letters, numbers, underscores and periods in file names.
Try to reuse data or do more in memory.
Do not use the file system as a means of communication.

Ramses van Zon Numerical Computing with Python, Lecture 6: Data and I/O November 28, 2019 8 / 37

I/O Tips, continued

Write numerical data in binary
If your data is not text, do not save it as text.
Let’s expand on this one a bit.

Ramses van Zon Numerical Computing with Python, Lecture 6: Data and I/O November 28, 2019 9 / 37

What’s in a file?

Text
Seems attractive: you can just read it.
This is not as trivial as it may sound.
Must assign a bit pattern to each letter or symbol (encoding).
Ideally unique assignment across languages.

Binary
Output the numbers as they are stored in memory
Avoids expensive conversion to text:
Writing 128M doubles as text: 173 sec
Writing 128M doubles in binary: 6 sec
Not human readable, but is that really so bad?
If you have 100 million numbers in a file, is any human ever going to read them all?

Ramses van Zon Numerical Computing with Python, Lecture 6: Data and I/O November 28, 2019 10 / 37

Binary Formats

You could invent your own binary format, but it’s better to take an existing standard: Saves you potential
bugs, the burden of documentation and/or maintaining an IO library, as one probably already exists.

numpy: Has a binary format called npy or npz.

netCDF: A self-describing format: contains not only data but names, descriptions of
multi-dimensional arrays

Packages: scipy.io.netcdf and netCDF4

HDF5: Another standard, self-describing format
Package: PyTables (but called tables inside python)
Like a filesystem with annotations, all in one file.

For both netCDF and HDF5, there are tools to inspect/analyze the files. Won’t discuss HDF5 here.

Ramses van Zon Numerical Computing with Python, Lecture 6: Data and I/O November 28, 2019 11 / 37

Pickle
Pickle is a Python-native way to store (almost) any data object

Base64 encoding using “readable” ASCII

Portable for the same version of Python.

In the pickle module.

Flexible, can serialize any structure.
>>> import pickle, os
>>> import numpy as np
>>> a = np.zeros((10000,10000))
>>> f = open('a.pickle','w')
>>> pickle.dump(a,f)
>>> close(f)
>>> print(os.path.getsize('a.pickle'))
3200000198
>>> g = open('a.pickle','r')
>>> b = pickle.load(g)
>>> g.close()

pickle.dump wall time: 121.44 s
Ramses van Zon Numerical Computing with Python, Lecture 6: Data and I/O November 28, 2019 12 / 37

NumPy I/O Routines for dealing with arrays in files

The numpy file formats remember shape of the arrays

Straight binary dump of data

Surprisingly simple format but not ported to other languages much.

Just for NumPy arrays
>>> import os
>>> import numpy as np
>>> a = np.zeros((10000,10000))
>>> np.save('a.npy', a)
>>> print(os.path.getsize('a.npy'))
799997952
>>> b = np.load('a.npy')

numpy.save wall time: 1.21 s

Ramses van Zon Numerical Computing with Python, Lecture 6: Data and I/O November 28, 2019 13 / 37

Numpy I/O Routines

save(FILE,ARRAY)

save a NumPy array to a .npy file

savez(FILE, NAME1=ARRAY1, NAME2=ARRAY2)

save several NumPy arrays to an uncompressed zipped file with extension .npz

savez_compressed(FILE, NAME1=ARRAY1, NAME2=ARRAY2)

save several NumPy arrays to a compressed zipped file with extension .npz

load(FILE)

load NumPy array(s) from .npy (.npz) file. If FILE is an .npz, a dictionary with keys equal to the
names supplied to savez is returned.

Ramses van Zon Numerical Computing with Python, Lecture 6: Data and I/O November 28, 2019 14 / 37

netCDF and HDF

Both are standardized file formats for scientific
data, which are:

Self-describing

Binary format

Many tools use these formats

Parallel access (netCDF4 and HDF5)

Ramses van Zon Numerical Computing with Python, Lecture 6: Data and I/O November 28, 2019 15 / 37

netCDF

A format as well as an Applications Program
interface (API).

netCDF gives you a higher level approach to
writing and reading multi-dimensional arrays.

Two main versions: netCDF-3 and netCDF-4.

Ramses van Zon Numerical Computing with Python, Lecture 6: Data and I/O November 28, 2019 16 / 37

netCDF-3 files

There are three sections to a netCDF-3 file

Dimensions How many points in each direction of our multidimensional array?
Variables The data in our multidimensional array
Attributes Variable and other annotations (e.g. units)

Python modules
scipy.io.netcdf: for netcdf3 files
netCDF4: for netcdf4 files

Ramses van Zon Numerical Computing with Python, Lecture 6: Data and I/O November 28, 2019 17 / 37

netCDF-3 Data Model

Ramses van Zon Numerical Computing with Python, Lecture 6: Data and I/O November 28, 2019 18 / 37

netCDF-3 Data Model

Ramses van Zon Numerical Computing with Python, Lecture 6: Data and I/O November 28, 2019 19 / 37

netCDF-3 Data Model

Ramses van Zon Numerical Computing with Python, Lecture 6: Data and I/O November 28, 2019 20 / 37

netCDF-3 Data Model

Ramses van Zon Numerical Computing with Python, Lecture 6: Data and I/O November 28, 2019 21 / 37

netCDF-3 Data Model

Ramses van Zon Numerical Computing with Python, Lecture 6: Data and I/O November 28, 2019 22 / 37

netCDF-3 Data Model

Ramses van Zon Numerical Computing with Python, Lecture 6: Data and I/O November 28, 2019 23 / 37

netCDF-3 Data Model

Ramses van Zon Numerical Computing with Python, Lecture 6: Data and I/O November 28, 2019 24 / 37

netCDF-3 Data Model

Ramses van Zon Numerical Computing with Python, Lecture 6: Data and I/O November 28, 2019 25 / 37

netCDF-3 Data Model

Ramses van Zon Numerical Computing with Python, Lecture 6: Data and I/O November 28, 2019 26 / 37

netCDF-3 Data Model

Ramses van Zon Numerical Computing with Python, Lecture 6: Data and I/O November 28, 2019 27 / 37

netCDF-3 Data Model

Ramses van Zon Numerical Computing with Python, Lecture 6: Data and I/O November 28, 2019 28 / 37

netCDF-3 Data Model

Ramses van Zon Numerical Computing with Python, Lecture 6: Data and I/O November 28, 2019 29 / 37

netCDF example

Can check the ‘header’ of an netcdf file using the linux utility ncdump:
$ ncdump -h test.nc
netcdf test {
dimensions:

x = 1000 ;
variables:

double a(x, x) ;
a:units = "Kelvin" ;

// global attributes:
:history = "This is a test" ;

}

Let’s see how to create and use this file with the scipy.io.netcdf API.

Ramses van Zon Numerical Computing with Python, Lecture 6: Data and I/O November 28, 2019 30 / 37

scipy.io.netcdf: read and write files

Writing
>>> from scipy.io.netcdf import *

>>> f = netcdf_file('test.nc','w') #create file

>>> f.history = 'This is a test' # file attribute

>>> f.createDimension('x', 1000) #create dimension

>>> a = f.createVariable('a','d',('x','x')) #array
>>> a[:] = np.zeros((1000,1000)) #fill

>>> a.units = 'Kelvin' #array attribute

>>> f.close() #close file. Important!

Reading
>>> from scipy.io.netcdf import *

>>> f = netcdf_file('test.nc','r')

>>> print(f.history)
This is a test

>>> a = f.variables['a']

>>> print(a[100,300], a.units)
0.0 Kelvin

>>> f.close()

Ramses van Zon Numerical Computing with Python, Lecture 6: Data and I/O November 28, 2019 31 / 37

scipy.io.netcdf: read and write files

Writing
>>> from scipy.io.netcdf import *

>>> f = netcdf_file('test.nc','w') #create file

>>> f.history = 'This is a test' # file attribute

>>> f.createDimension('x', 1000) #create dimension

>>> a = f.createVariable('a','d',('x','x')) #array
>>> a[:] = np.zeros((1000,1000)) #fill

>>> a.units = 'Kelvin' #array attribute

>>> f.close() #close file. Important!

Reading
>>> from scipy.io.netcdf import *

>>> f = netcdf_file('test.nc','r')

>>> print(f.history)
This is a test

>>> a = f.variables['a']

>>> print(a[100,300], a.units)
0.0 Kelvin

>>> f.close()

Ramses van Zon Numerical Computing with Python, Lecture 6: Data and I/O November 28, 2019 31 / 37

scipy.io.netcdf overview
HANDLE = netcdf_file(FILENAME, MODE)

Opens a netcdf file. MODE='w’ for writing, 'r’ for reading, MODE='rw' for both.

HANDLE.ATTRIBUTE = VALUE
Sets a file ATTRIBUTE to the value VALUE

HANDLE.createDimension(NAME, VALUE)
Sets the dimension NAME (a string) to VALUE

HANDLE.createVariable(NAME, SHAPE)
Creates the variable NAME with SHAPE (tuple of strings as assigned with createDimension)

HANDLE.variables[NAME]
The array variable NAME

HANDLE.variables[NAME].ATTRIBUTE = VALUE
Set an attribute ATTIBUTE of the array variable NAME to the value VALUE

HANDLE.close()
Flush everything to disk and close the file.

Ramses van Zon Numerical Computing with Python, Lecture 6: Data and I/O November 28, 2019 32 / 37

netCDF-4
Adds some features:

64-bit offsets (allowing larger files)
User defined data types
Groups
Parallel I/O
Built upon HDF-5,
an even more general format

Python package: netCDF4

For simple cases, the netCDF4 API is largely the same as scipy.io.netcdf,
except that you open files with netCDF4.Dataset(...).

Nice intro: http://pyhogs.github.io/intro_netcdf4.html

Ramses van Zon Numerical Computing with Python, Lecture 6: Data and I/O November 28, 2019 33 / 37

http://pyhogs.github.io/intro_netcdf4.html

Labeled data in Python

There are a number of packages that enable working with labeled data, i.e., data with metadata attached.

pandas
Pandas’ main functionality centers around labeled tables, i.e., DataFrames.
Tables are composed or row and columns, and those rows and columns can have lables
(a bit like dicts).
Each column is saved as a 1d numpy array.
Pandas offer ways to read and write many different formats, including HDF5.

xarray
Inspired both by the netCDF multi-dimensional array model and pandas.
Particularly well-suited for multidimensional arrays (which are clumsy to deal with in pandas).
Offers ways to read and write netCDF files.

Ramses van Zon Numerical Computing with Python, Lecture 6: Data and I/O November 28, 2019 34 / 37

Pandas

Extremely popular for data science.

If your data fits in a labeled tabular format, use pandas!

Functionality centers around the DataFrame, which is a labeled table of rows and columns.

The DataFrame can be viewed as an efficient extension of the Python dictionary.

A dict is a key-value store.

A DataFrame is a a key-value-value-. . . store, where the keys are the labels of the individual rows.

The separate columns are also labeled.

The data type of the values in a column must all be the same (and are stored as numpy arrays).

Ramses van Zon Numerical Computing with Python, Lecture 6: Data and I/O November 28, 2019 35 / 37

Pandas example
>>> import pandas as pd
>>> name = ['Anna','William','Emma','John','James','Mary']
>>> gender = ['F', 'M', 'F', 'M', 'M', 'F']
>>> number = [2604, 9532, 2003, 9655, 5927, 7065]
>>> data = list(zip(name, gender, number))
>>> print(data)
[('Anna', 'F', 2604), ('William', 'M', 9532), ('Emma', 'F', 2003), ('John', 'M', 9655),
('James', 'M', 5927), ('Mary', 'F', 7065)]
>>> births = pd.DataFrame(data,columns=['Name','Gender','Number'])
>>> births.to_hdf('births1880.h5',key='births')
>>> print(births)

Name Gender Number
0 Anna F 2604
1 William M 9532
2 Emma F 2003
3 John M 9655
4 James M 5927
5 Mary F 7065

Ramses van Zon Numerical Computing with Python, Lecture 6: Data and I/O November 28, 2019 36 / 37

xarray
A newer packages for having labeled multi-dimensional arrays.

That means your “axes” of the multidimensional arrays could have labels.

xarray can read and write netcdf files
>>> import xarray as xr
>>> ds = xr.open_dataset("test.nc")
>>> print(ds)
<xarray.Dataset>
Dimensions: (x: 1000)
Dimensions without coordinates: x
Data variables:

a (x, x) float64 ...
Attributes:

history: This is a test
>>> ds['a'][10,20]
array(0.)
>>> float(ds['a'][10,20])

Read more at http://xarray.pydata.org/en/stable

Ramses van Zon Numerical Computing with Python, Lecture 6: Data and I/O November 28, 2019 37 / 37

http://xarray.pydata.org/en/stable

