Numerical Computing with Python, Lecture 5: PDEs

Ramses van Zon

November 26, 2019

Today we will discuss the following topics:

- Basic approaches to solving PDEs.
- How to discretize equations.
- How to implement boundary conditions.
- Implicit versus explicit approaches.

Partial Differential Equations

Partial differential equations (PDEs) are differential equations which contain derivatives of more than one variable, e.g., two spatial coordinates, or space and time coordinates.

Second order PDEs are of the general form:

$$
A \frac{\partial^{2} T}{\partial x^{2}}+B \frac{\partial^{2} T}{\partial x \partial y}+C \frac{\partial^{2} T}{\partial y^{2}}=f\left(x, y, T, \frac{\partial T}{\partial x}, \frac{\partial T}{\partial y}\right)
$$

Partial Differential Equations

Partial differential equations (PDEs) are differential equations which contain derivatives of more than one variable, e.g., two spatial coordinates, or space and time coordinates.

Second order PDEs are of the general form:

$$
A \frac{\partial^{2} T}{\partial x^{2}}+B \frac{\partial^{2} T}{\partial x \partial y}+C \frac{\partial^{2} T}{\partial y^{2}}=f\left(x, y, T, \frac{\partial T}{\partial x}, \frac{\partial T}{\partial y}\right)
$$

For different combinations of A, B and C, three classes of PDEs show up repeatedly in physical systems.

- If $B^{2}-4 A C<0$, the equation is called elliptic.
- If $B^{2}-4 A C=0$, the equation is called parabolic (diffusive).
- If $B^{2}-4 A C>0$, the equation is called hyperbolic (wavelike).

How do we solve these problems?

Let's looking at a parabolic equation, in particular, let us look at the heat equation.

$$
\frac{\partial T}{\partial t}=k \frac{\partial^{2} T}{\partial x^{2}}
$$

where \boldsymbol{T} is the temperature and k is the thermal diffusivity. Temperature varies along the spatial direction (x) and changes in time (t).

How do we solve these problems?

Let's looking at a parabolic equation, in particular, let us look at the heat equation.

$$
\frac{\partial T}{\partial t}=k \frac{\partial^{2} T}{\partial x^{2}}
$$

where \boldsymbol{T} is the temperature and k is the thermal diffusivity. Temperature varies along the spatial direction (x) and changes in time (t).

How do we solve this equation?

By discretizing in both space and time, and marching an initial condition forward in time.
"Be wise, discretize!" (Mark Kac)

Calculating derivatives

We need to calculate the second spatial derivatives. How best to do that?
We discretize the x domain,

$$
\begin{gathered}
\mathrm{O}-2 j-1 \quad j \quad j+1 j+2
\end{gathered}
$$

Calculating derivatives

We need to calculate the second spatial derivatives. How best to do that?
We discretize the x domain,

$$
j-2 j-1 \quad j \quad j+1 j+2
$$

and examine the Taylor expansion of the function T, centered around three different points:

Calculating derivatives

We need to calculate the second spatial derivatives. How best to do that?
We discretize the x domain,

$$
j-2 j-1 \quad j \quad j+1 j+2
$$

and examine the Taylor expansion of the function T, centered around three different points:

$$
\begin{aligned}
T\left(x_{j-1}\right) & =T\left(x_{j}\right)-\Delta x \frac{\partial T\left(x_{j}\right)}{\partial x}+\frac{(\Delta x)^{2}}{2} \frac{\partial^{2} T\left(x_{j}\right)}{\partial x^{2}}+\mathcal{O}\left(\Delta x^{3}\right) \\
T\left(x_{j}\right) & =T\left(x_{j}\right) \\
T\left(x_{j+1}\right) & =T\left(x_{j}\right)+\Delta x \frac{\partial T\left(x_{j}\right)}{\partial x}+\frac{(\Delta x)^{2}}{2} \frac{\partial^{2} T\left(x_{j}\right)}{\partial x^{2}}+\mathcal{O}\left(\Delta x^{3}\right)
\end{aligned}
$$

Where $\Delta x=x_{j}-x_{j-1}$.

Calculating derivatives, continued

Writing $T^{\prime}=\partial T / \partial x$ and $T^{\prime \prime}=\partial^{2} T / \partial x^{2}$, we get

$$
\left(\begin{array}{c}
T\left(x_{j-1}\right) \\
T\left(x_{j}\right) \\
T\left(x_{j+1}\right)
\end{array}\right)=\left(\begin{array}{ccc}
1 & -\Delta x & \Delta x^{2} \\
1 & 0 & 0 \\
1 & +\Delta x & \Delta x^{2}
\end{array}\right) \cdot\left(\begin{array}{c}
T\left(x_{j}\right) \\
T^{\prime}\left(x_{j}\right) \\
T^{\prime \prime}\left(x_{j}\right)
\end{array}\right)
$$

Calculating derivatives, continued

Writing $T^{\prime}=\partial T / \partial x$ and $T^{\prime \prime}=\partial^{2} T / \partial x^{2}$, we get

$$
\left(\begin{array}{c}
T\left(x_{j-1}\right) \\
T\left(x_{j}\right) \\
T\left(x_{j+1}\right)
\end{array}\right)=\left(\begin{array}{ccc}
1 & -\Delta x & \Delta x^{2} \\
1 & 0 & 0 \\
1 & +\Delta x & \Delta x^{2}
\end{array}\right) \cdot\left(\begin{array}{c}
T\left(x_{j}\right) \\
T^{\prime}\left(x_{j}\right) \\
T^{\prime \prime}\left(x_{j}\right)
\end{array}\right)
$$

To get the answer we invert the matrix (exactly):

Calculating derivatives, continued

Writing $T^{\prime}=\partial T / \partial x$ and $T^{\prime \prime}=\partial^{2} T / \partial x^{2}$, we get

$$
\left(\begin{array}{c}
T\left(x_{j-1}\right) \\
T\left(x_{j}\right) \\
T\left(x_{j+1}\right)
\end{array}\right)=\left(\begin{array}{ccc}
1 & -\Delta x & \Delta x^{2} \\
1 & 0 & 0 \\
1 & +\Delta x & \Delta x^{2}
\end{array}\right) \cdot\left(\begin{array}{c}
T\left(x_{j}\right) \\
T^{\prime}\left(x_{j}\right) \\
T^{\prime \prime}\left(x_{j}\right)
\end{array}\right)
$$

To get the answer we invert the matrix (exactly):

$$
\left(\begin{array}{c}
T\left(x_{j}\right) \\
T^{\prime}\left(x_{j}\right) \\
T^{\prime \prime}\left(x_{j}\right)
\end{array}\right)=\left(\begin{array}{ccc}
0 & 1 & 0 \\
\frac{-1}{2 \Delta x} & 0 & \frac{-1}{2 \Delta \Lambda^{x}} \\
\frac{1}{\Delta x^{2}} & \frac{-2}{\Delta x^{2}} & \frac{1}{\Delta x^{2}}
\end{array}\right) \cdot\left(\begin{array}{c}
T\left(x_{j-1}\right) \\
T\left(x_{j}\right) \\
T\left(x_{j+1}\right)
\end{array}\right)
$$

Calculating derivatives, continued

Writing $T^{\prime}=\partial T / \partial x$ and $T^{\prime \prime}=\partial^{2} T / \partial x^{2}$, we get

$$
\left(\begin{array}{c}
T\left(x_{j-1}\right) \\
T\left(x_{j}\right) \\
T\left(x_{j+1}\right)
\end{array}\right)=\left(\begin{array}{ccc}
1 & -\Delta x & \Delta x^{2} \\
1 & 0 & 0 \\
1 & +\Delta x & \Delta x^{2}
\end{array}\right) \cdot\left(\begin{array}{c}
T\left(x_{j}\right) \\
T^{\prime}\left(x_{j}\right) \\
T^{\prime \prime}\left(x_{j}\right)
\end{array}\right)
$$

To get the answer we invert the matrix (exactly):

$$
\left(\begin{array}{c}
T\left(x_{j}\right) \\
T^{\prime}\left(x_{j}\right) \\
T^{\prime \prime}\left(x_{j}\right)
\end{array}\right)=\left(\begin{array}{ccc}
0 & 1 & 0 \\
\frac{-1}{2 \Delta \hat{x}^{x}} & 0 & \frac{-1}{2 \operatorname{AD} x} \\
\frac{-2}{\Delta x^{2}} & \frac{-2}{\Delta x^{2}} & \frac{1}{\Delta x^{2}}
\end{array}\right) \cdot\left(\begin{array}{c}
T\left(x_{j-1}\right) \\
T\left(x_{j}\right) \\
T\left(x_{j+1}\right)
\end{array}\right)
$$

So we get the following for the derivatives in terms of grid values:

$$
T^{\prime}\left(x_{j}\right)=\frac{T\left(x_{j+1}\right)-T\left(x_{j-1}\right)}{2 \Delta x} \quad T^{\prime \prime}\left(x_{j}\right)=\frac{T\left(x_{j+1}\right)-2 T\left(x_{j}\right)+T\left(x_{j-1}\right)}{\Delta x^{2}}
$$

Discretized equation

$$
\frac{\partial T_{j}}{\partial t}=k\left[\frac{T_{j+1}-2 T_{j}+T_{j-1}}{\Delta x^{2}}\right]
$$

Note that by discretizing space, we have turned our PDE into a set of coupled ODEs!
If we write \boldsymbol{T}_{j} as a vector of values, we can rewrite our equation as a matrix operation:

$$
\frac{\partial T}{\partial t}=F \cdot T
$$

where \boldsymbol{F} is the matrix

$$
F=\left(\right)
$$

What about the boundaries?

The boundaries are a problem. Why? Well, consider the first point, $j=0$:

$$
\frac{\partial T_{0}}{\partial t}=k\left[\frac{T_{1}-2 T_{0}+T_{-1}}{\Delta x^{2}}\right]
$$

There is no $j=-1$ point!

What about the boundaries?

The boundaries are a problem. Why? Well, consider the first point, $j=\mathbf{0}$:

$$
\frac{\partial T_{0}}{\partial t}=k\left[\frac{T_{1}-2 T_{0}+T_{-1}}{\Delta x^{2}}\right]
$$

There is no $j=-1$ point!
The solution is not to use the above equation for the edge points. Use a different equation instead. These are known as 'boundary conditions'.

What about the boundaries?

The boundaries are a problem. Why? Well, consider the first point, $j=\mathbf{0}$:

$$
\frac{\partial T_{0}}{\partial t}=k\left[\frac{T_{1}-2 T_{0}+T_{-1}}{\Delta x^{2}}\right]
$$

There is no $j=-1$ point!
The solution is not to use the above equation for the edge points. Use a different equation instead. These are known as 'boundary conditions'.

How these conditions are implemented depends on the approach to solving the equation that is being used.

Example problem

Suppose:

- We have a metal rod of length 1.
- At the left boundary $(x=0)$, the temperature varies as $T(t, 0)=\sin (10 t)$.
- The right boundary $(x=1)$ is kept at a constant temperature of $T(t, 1)=0$.
- The thermal diffusivity is $k=0.2$.

We want to know how the temperature evolves in time and space.

Example problem

Suppose:

- We have a metal rod of length 1.
- At the left boundary $(x=0)$, the temperature varies as $T(t, 0)=\sin (10 t)$.
- The right boundary $(x=1)$ is kept at a constant temperature of $T(t, 1)=0$.
- The thermal diffusivity is $k=0.2$.

We want to know how the temperature evolves in time and space.

How should we solve this problem?

As mentioned two lectures ago, there are two basic classes of approaches:

- explicit methods
- implicit methods

Using the implicit method

As mentioned two lectures ago, explicit methods can be unstable. So we will solve our problem using an implicit method. We start by returning to our equation:

$$
\frac{\partial T}{\partial t}=F \cdot T
$$

Using backward Euler, we rewrite this approximately as

$$
\frac{T_{i+1}-T_{i}}{\Delta t}=F \cdot T_{i+1}
$$

where i is the index in time, i.e., $t=i \Delta t$.
After some rearranging, this gives:

$$
(1-\Delta t F) \cdot T_{i+1}=T_{i}
$$

where 1 is the identity matrix.

Implementing boundary conditions

The boundary conditions are implemented by modifying the operator \boldsymbol{F} in

$$
(1-\Delta t F) \cdot T_{i+1}=T_{i}
$$

The equation for the boundary condition $\left(T_{i+1, j=0}=\sin \left(10 t_{i+1}\right)\right)$ could be implemented by:

$$
\left(\begin{array}{ccccc}
\sin \left(10 t_{i}\right) / \sin \left(10 t_{i+1}\right) & 0 & 0 & 0 & \cdots \\
-\alpha & 1+2 \alpha & -\alpha & 0 & \cdots \\
0 & -\alpha & 1+2 \alpha & -\alpha & \cdots \\
& & \vdots & &
\end{array}\right) \cdot\left(\begin{array}{c}
T_{i+1,0} \\
T_{i+1,1} \\
T_{i+1,2} \\
\vdots
\end{array}\right)=\left(\begin{array}{c}
T_{i, 0} \\
T_{i, 1} \\
T_{i, 2} \\
\vdots
\end{array}\right)
$$

Where we have defined a new constant: $\alpha=\Delta t k / \Delta x^{2}$.
This approach may cause singularities; better is to replace the top-left element of the matrix with a 1 , and to modify $T_{i+1, j=0}$ after each step to the correct value.

Implementing the other boundary condition

Assume that there are 100 points in x.
The boundary condition equation at $x=1\left(T_{i+1, j=99}=0\right)$ is implemented similarly, but slightly simpler:

$$
\left(\begin{array}{ccccc}
& & \vdots & & \\
\ldots & -\alpha & 1+2 \alpha & -\alpha & 0 \\
\ldots & 0 & -\alpha & 1+2 \alpha & -\alpha \\
\ldots & 0 & 0 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{c}
\vdots \\
T_{i+1,97} \\
T_{i+1,98} \\
T_{i+1,99}
\end{array}\right)=\left(\begin{array}{c}
\vdots \\
T_{i, 97} \\
T_{i, 98} \\
T_{i, 99}
\end{array}\right)
$$

This works automatically if we set $T_{i, 99}=\mathbf{0}$ initially, but alternatively, we can set $T_{i+1,99}=0$ after each step.

The time stepping algorithm

So what is the actual process?

$$
(1-\Delta t F) \cdot T_{i+1}=T_{i}
$$

- This equation needs to be solved for \boldsymbol{T}_{i+1}, and is of the form $\boldsymbol{A} \cdot \boldsymbol{x}=\boldsymbol{b}$.
- Build the matrix operator $A=1-\Delta t F$.
- Modify the operator \boldsymbol{A} to deal with the boundary conditions.
- Initialize T
- Then loop:
- Copy the current value of T to a temporary variable b.
- Solve $A T=b$ (linear algebra!)
- Correct boundary values.
- And repeat until time is up.

Implementation

```
# heatimplicit.py
import numpy as np
import scipy.linalg as la
# build matrix
T = np.zeros(nx)
A = np.zeros([nx,nx])
for j in range(1,nx-1):
    A[j,j-1] = -alpha
    A[j,j] = 1 + 2*alpha
    A[j,j+1] = -alpha
A[0,0] = 1; A[nx-1,nx-1] = 1
# perform time steps
for i in range(1,nt):
    t = t1 + i*dt
    # implicit solve
    b = T.copy ()
    T = la.solve(A,b)
    # re-adjust boundary condition
    T[0] = np.sin(10*t)
```


Notes about the example

Some things to note:

- When solving $(1-\Delta t F) \cdot T=b$, do NOT invert the operator A.

This may seem to be the intuitive thing to do, and scipy.linalg can do it, but it is incorrect. There are better, faster, and more accurate algorithms for solving this problem.
www.johndcook.com/blog/2010/01/19/dont-invert-that-matrix

- Because we are using an implicit method, this solution will be numerically stable for arbitrary timestep size (this can be demonstrated mathematically).
- However, for accuracy of solution one must have $\alpha<1$.
- We've used the most general method to solve $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$. However, you will notice that our operator is banded. In such situations, there are special algorithms for solving $\boldsymbol{A x}=\boldsymbol{b}$, the one to use in Python is linalg.solve_banded.

Using the explicit method

As mentioned last lecture, explicit methods can be unstable. Let's see how it performs in this case. We start by returning to our equation:

$$
\frac{\partial T_{i}}{\partial t}=F \cdot T_{i}
$$

We rewrite this as

$$
\frac{T_{i+1}-T_{i}}{\Delta t}=F \cdot T_{i}
$$

which, after some rearranging, gives:

$$
T_{i+1}=(1+\Delta t F) \cdot T_{i}
$$

This is obviously much more direct: just matrix-vector multiplication.

Using the explicit method

As mentioned last lecture, explicit methods can be unstable. Let's see how it performs in this case. We start by returning to our equation:

$$
\frac{\partial T_{i}}{\partial t}=F \cdot T_{i}
$$

We rewrite this as

$$
\frac{T_{i+1}-T_{i}}{\Delta t}=F \cdot T_{i}
$$

which, after some rearranging, gives:

$$
T_{i+1}=(1+\Delta t F) \cdot T_{i}
$$

This is obviously much more direct: just matrix-vector multiplication.
Boundary conditions are handled similarly as for the explicit method

Explicit results

implementation:

```
# heatexplicit.py
...
# build matrix
# perform time steps
for i in range(1,nt):
    t = t1 + i*dt
    # explicit solve
    b = T.copy()
    T = A @ b
    # re-adjust boundary condition
    T[0] = np.sin(10*t)
    T[nx-1] = 0
```


Explicit results

implementation:

```
# heatexplicit.py
...
# build matrix
# perform time steps
for i in range(1,nt):
    t = t1 + i*dt
    # explicit solve
    b = T.copy()
    T = A @ b
    # re-adjust boundary condition
    T[0] = np.sin(10*t)
    T[nx-1] = 0
```

There's a problem here.

Explicit results

implementation:

```
# heatexplicit.py
...
# build matrix
# perform time steps
for i in range(1,nt):
    t = t1 + i*dt
    # explicit solve
    b = T.copy()
    T = A @ b
    # re-adjust boundary condition
    T[0] = np.sin(10*t)
    T[nx-1] = 0
```

There's a problem here.

Can we escape the instability?

Can we escape the instability?

Can we escape the instability?

Can we escape the instability?

So, yes we can, we just need to pick a better value of α, i.e., a smaller timestep.
But that slows down the time-to-solution substantially:

Can we escape the instability?

So, yes we can, we just need to pick a better value of α, i.e., a smaller timestep.
But that slows down the time-to-solution substantially:

Final notes on PDEs and linear algebra

- We only scratched the surface for PDEs. We've not discussed finite-volume vs. finite-element, or spectral methods. Nor have we looked at hyperbolic and elliptic equations.
- There is a lot more linear algebra in SciPy.

Decompositions, inverses, determinants, eigenvalues, special matrices docs.scipy.org/doc/scipy/reference/linalg.htm/

- SciPy's routines use low-level routines from BLAS and LAPACK, which often use highly optimized, threaded codes (MKL, ESSL, ...).
- Implicit is better (faster, more stable) than explicit.
- Never invert a matrix numerically.

