
Ordinary Differential Equations
Numerical Computing with Python

Alexey Fedoseev

November 12, 2019

Alexey Fedoseev Ordinary Differential Equations November 12, 2019 1 / 18

Differential equations

The idea behind differential equations is fairly simple:

A differential equation states how a rate of change (a “differential”) in one variable is related to
other variables.

An ordinary differential equation (ODE) is an equation that involves some ordinary derivatives
(as opposed to partial derivatives) of a function.

There is one differential equation that everybody probably knows, that is Newton’s Second Law
of Motion. If an object of mass m is moving with acceleration a and being acted on with force
F then Newton’s Second Law tells us

F = ma

Alexey Fedoseev Ordinary Differential Equations November 12, 2019 2 / 18

Differential equations
To see that this is in fact a differential equation we need to rewrite it. First, remember that we
can rewrite the acceleration, a, in one of two ways:

a = dv

dt
OR a = d2u

dt2
,

Where v is the velocity of the object and u is the position function of the object at any time t.
So, with all these things in mind Newton’s Second Law can now be written as a differential
equation in terms of either the velocity, v, or the position, u, of the object as follows:

m
dv

dt
= F (t, v)

m
d2u

dt2
= F (t, u, du

dt
)

Alexey Fedoseev Ordinary Differential Equations November 12, 2019 3 / 18

Initial-Value Problems (IVP)
First-order Ordinary Differential Equation (ODE)

y′(t) = f(x, y)

has infinite family of solution curves - the general solution.

Initial condition - given two real numbers x0 and y0, we seek a solution for x > x0 such
that

y(x0) = y0

The differential equation together with the initial condition is called an initial value
problem.

Systems of Differential Equations

dY
dx

= F(x,Y), Y(x0) = Y0,

Y = (y1, y2, . . . , yn)T ,F = (f1(x,Y), f2(x,Y), . . . , fn(x,Y))T

Alexey Fedoseev Ordinary Differential Equations November 12, 2019 4 / 18

Higher-Order ODEs
IVP for ODE of a higher order

y(n) = F (x, y, y′, y′′, . . . , y(n−1)),

y(x0) = y0, y
′(x0) = y1, y

′′(x0) = y2, . . . , y
(n−1)(x0) = yn−1

could be converted into a first-order IVP by introducing extra variables.

Denote z1(x) = y(x), z2(x) = y′(x), . . . , zn(x) = y(n−1)(x). The resulting first-order system is

z′1 = z2,

z′2 = z3,

· · ·
z′(n−1) = zn,

z′n = F (x, z1, z2, . . . , zn)

z1(x0) = y0,

z2(x0) = y1,

· · ·
zn(x0) = yn−1

Alexey Fedoseev Ordinary Differential Equations November 12, 2019 5 / 18

Numerical Methods for ODEs
Let a ≤ x ≤ b. Consider the following IVP

y′ = f(x, y), y(a) = y0,

Let xi = a+ ih, h = (b− a)/N, i = 0, . . . , N be uniformly spaced points. Denote yn ≈ y(xn)
as the numerical solution of IVP.

Forward Euler Method (explicit, global error is O(h))

yn+1 = yn + hf(xn, yn)

Backward Euler Method (implicit, global error is O(h))

yn+1 = yn + hf(xn+1, yn+1)

Alexey Fedoseev Ordinary Differential Equations November 12, 2019 6 / 18

Numerical Methods for ODEs

Trapezoidal Rule (implicit, global error is O(h2))

yn+1 = yn + h

2 (f(xn, yn) + f(xn+1, yn+1))

Heun’s Method (predictor-corrector, explicit, global error is O(h2))

ỹn+1 = yn + hf(xn, yn)

yn+1 = yn + h

2 (f(xn, yn) + f(xn+1, ỹn+1))

Alexey Fedoseev Ordinary Differential Equations November 12, 2019 7 / 18

Numerical Methods for ODEs
Runge-Kutta 4 (explicit, global error is O(h4))

yn+1 = yn + h

6 (k1 + 2k2 + 2k3 + k4)

k1 = f(xn, yn), k2 = f(xn + h

2 , yn + h

2k1),

k3 = f(xn + h

2 , yn + h

2k2), k4 = f(xn + h, yn + hk3),

Runge-Kutta method aims to achieve a higher accuracy by sacrificing the efficiency of Euler’s
method through re-evaluation f .

A numerical method is convergent if the numerical solution approaches the exact solution as
h→ 0.

A numerical method is stable if for two different initial conditions y0 and ỹ0 the computed
solutions are close in the sense that |yn − ỹn| < C|y0 − ỹ0|.

Alexey Fedoseev Ordinary Differential Equations November 12, 2019 8 / 18

Stiff ODEs

Some ODE terminology.

A stiff ODE is one which is hard to solve. Why?
I Because it requires a very small step size, h.
I Or because it is prone to numerical instabilities.

This usually happens when equation includes some terms that can lead to rapid variation in
the solution.

Not all methods are equally suited for stiff ODEs.

Implicit, versus explicit, methods tend to be better for stiff problems.

Alexey Fedoseev Ordinary Differential Equations November 12, 2019 9 / 18

Stiff ODE

y′(x) = −50y, y(0) = 1

0.0 0.2 0.4 0.6 0.8 1.0

1.0

0.6

0.2

0.2

0.6

1.0

Forward Euler
n = 26
n = 28
n = 30
exact solution

0.0 0.2 0.4 0.6 0.8 1.0
1.0

0.6

0.2

0.2

0.6

1.0
Runge Kutta 4

n = 26
n = 28
n = 30
exact solution

Alexey Fedoseev Ordinary Differential Equations November 12, 2019 10 / 18

Harmonic Oscillator

dx

dt
= y,

dy

dt
= −x, x(0) = 0, y(0) = 1

4 2 0 2 4

4

2

0

2

4

Forward Euler

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Runge Kutta 4

Alexey Fedoseev Ordinary Differential Equations November 12, 2019 11 / 18

Truncation Error

Local truncation error measures how well the method approximates the behaviour of a
solution of the ODE over one step. Euler method gives us an approximation

yn+1 = yn + hf(xn, yn)

Let y(x) be the exact solution. Using the Taylor series we get

y(xn + h) = y(xn) + hy′(xn) +O(h2)

From here we get
LocalError = y(xn + h)− yn = O(h2)

Alexey Fedoseev Ordinary Differential Equations November 12, 2019 12 / 18

Truncation Error

Global truncation error is the cumulative error of the local truncation errors committed in
each step.

GlobalError = N ·O(h2) = b− a
h

O(h2) = O((b− a)h2/h) = O(h)

It shows that the global truncation error is (approximately) proportional to h. For this reason,
the Euler method is said to be first order.

The RK4 method is a fourth-order method, meaning that the local truncation error is of the
order of O(h5), while the total accumulated error is of the order of O(h4).

Alexey Fedoseev Ordinary Differential Equations November 12, 2019 13 / 18

Numerical Libraries

There are many different approaches for numerical integration and solving ODEs.

Good schemes are implemented in packages such as scipy.integrate.odeint,
scipy.integrate.ode.

The odeint package uses an Adams integrator for non-stiff problems, and a backwards
differentiation method for stiff problem.

The ode package is a bit more flexible.

Alexey Fedoseev Ordinary Differential Equations November 12, 2019 14 / 18

Lotka-Volterra equations
Predator–prey equations in which two species interact, one as a predator and the other as prey.

import numpy as np
from scipy.integrate import odeint
import matplotlib.pyplot as plt
params (alpha, beta, gamma, delta)
params = (0.1, 0.015, 0.0225, 0.02)
def system(z, t, alpha, beta, gamma, delta):

x = z[0]; y = z[1]
dxdt = x*(alpha - beta*y)
dydt = -y*(gamma - delta*x)
return [dxdt, dydt]

t = np.linspace(0, 300, 1000)
sol = odeint(system, [1.0, 1.0], t, args=params)
plt.plot(sol[:,0], sol[:,1])
plt.show()

dx

dt
= x(α− βy)

dy

dt
= −y(γ − δx)

0 2 4 6 8
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

Alexey Fedoseev Ordinary Differential Equations November 12, 2019 15 / 18

Infectious disease spreading
Consider a population consisting of two groups;

the susceptibles (S), who can catch the
disease
the infectives (I), who have the disease
and can transmit it.

dS

dt
= −rSI

dI

dt
= rSI − aI

where r is the infection rate and a is the
recovery rate, and the initial conditions, S(0)
and I(0), are known.

Let’s apply this to real data:

An influenza epidemic, which hit a
British boarding school of 763 boys.

The data were taken from the British
Medical Journal (4 March 1978).

The epidemic lasted 14 days.

Let S(0) = 762 and I(0) = 1.

Let r = 0.00218 per day, a = 0.44 per
day.

Alexey Fedoseev Ordinary Differential Equations November 12, 2019 16 / 18

Infectious disease spreading
import numpy as np
from scipy.integrate import odeint
import matplotlib.pyplot as plt
r = 0.00218; a = 0.44
def system(z, t, r, a):

S = z[0]; I = z[1]
dSdt = -r * S * I; dIdt = r * S * I - a * I
return [dSdt, dIdt]

t = np.linspace(0, 14, 1000)
sol = odeint(system, [762, 1], t, args=(r, a))
plt.plot(t, sol[:,0], label='susceptibles', lw=3)
plt.plot(t, sol[:,1], label='infectives', lw=3)
plt.xlabel('Time in days', fontsize = 16)
plt.ylabel('Population', fontsize = 16)
plt.legend()
plt.show()

Alexey Fedoseev Ordinary Differential Equations November 12, 2019 17 / 18

Infectious disease spreading

0 2 4 6 8 10 12 14
Time in days

0

100

200

300

400

500

600

700

800

Po
pu

la
tio

n

susceptibles
infectives

Alexey Fedoseev Ordinary Differential Equations November 12, 2019 18 / 18

	Ordinary Differential Equations

