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Differential equations

The idea behind differential equations is fairly simple:

A differential equation states how a rate of change (a “differential”) in one variable is related to
other variables.

An ordinary differential equation (ODE) is an equation that involves some ordinary derivatives
(as opposed to partial derivatives) of a function.

There is one differential equation that everybody probably knows, that is Newton’s Second Law
of Motion. If an object of mass m is moving with acceleration a and being acted on with force
F then Newton’s Second Law tells us

F = ma
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Differential equations
To see that this is in fact a differential equation we need to rewrite it. First, remember that we
can rewrite the acceleration, a, in one of two ways:

a = dv

dt
OR a = d2u

dt2
,

Where v is the velocity of the object and u is the position function of the object at any time t.
So, with all these things in mind Newton’s Second Law can now be written as a differential
equation in terms of either the velocity, v, or the position, u, of the object as follows:

m
dv

dt
= F (t, v)

m
d2u

dt2
= F (t, u, du

dt
)
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Initial-Value Problems (IVP)
First-order Ordinary Differential Equation (ODE)

y′(t) = f(x, y)

has infinite family of solution curves - the general solution.

Initial condition - given two real numbers x0 and y0, we seek a solution for x > x0 such
that

y(x0) = y0

The differential equation together with the initial condition is called an initial value
problem.

Systems of Differential Equations

dY
dx

= F(x,Y), Y(x0) = Y0,

Y = (y1, y2, . . . , yn)T ,F = (f1(x,Y), f2(x,Y), . . . , fn(x,Y))T
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Higher-Order ODEs
IVP for ODE of a higher order

y(n) = F (x, y, y′, y′′, . . . , y(n−1)),

y(x0) = y0, y
′(x0) = y1, y

′′(x0) = y2, . . . , y
(n−1)(x0) = yn−1

could be converted into a first-order IVP by introducing extra variables.

Denote z1(x) = y(x), z2(x) = y′(x), . . . , zn(x) = y(n−1)(x). The resulting first-order system is

z′1 = z2,

z′2 = z3,

· · ·
z′(n−1) = zn,

z′n = F (x, z1, z2, . . . , zn)


z1(x0) = y0,

z2(x0) = y1,

· · ·
zn(x0) = yn−1
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Numerical Methods for ODEs
Let a ≤ x ≤ b. Consider the following IVP

y′ = f(x, y), y(a) = y0,

Let xi = a+ ih, h = (b− a)/N, i = 0, . . . , N be uniformly spaced points. Denote yn ≈ y(xn)
as the numerical solution of IVP.

Forward Euler Method (explicit, global error is O(h))

yn+1 = yn + hf(xn, yn)

Backward Euler Method (implicit, global error is O(h))

yn+1 = yn + hf(xn+1, yn+1)
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Numerical Methods for ODEs

Trapezoidal Rule (implicit, global error is O(h2))

yn+1 = yn + h

2 (f(xn, yn) + f(xn+1, yn+1))

Heun’s Method (predictor-corrector, explicit, global error is O(h2))

ỹn+1 = yn + hf(xn, yn)

yn+1 = yn + h

2 (f(xn, yn) + f(xn+1, ỹn+1))
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Numerical Methods for ODEs
Runge-Kutta 4 (explicit, global error is O(h4))

yn+1 = yn + h

6 (k1 + 2k2 + 2k3 + k4)

k1 = f(xn, yn), k2 = f(xn + h

2 , yn + h

2k1),

k3 = f(xn + h

2 , yn + h

2k2), k4 = f(xn + h, yn + hk3),

Runge-Kutta method aims to achieve a higher accuracy by sacrificing the efficiency of Euler’s
method through re-evaluation f .

A numerical method is convergent if the numerical solution approaches the exact solution as
h→ 0.

A numerical method is stable if for two different initial conditions y0 and ỹ0 the computed
solutions are close in the sense that |yn − ỹn| < C|y0 − ỹ0|.
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Stiff ODEs

Some ODE terminology.

A stiff ODE is one which is hard to solve. Why?
I Because it requires a very small step size, h.
I Or because it is prone to numerical instabilities.

This usually happens when equation includes some terms that can lead to rapid variation in
the solution.

Not all methods are equally suited for stiff ODEs.

Implicit, versus explicit, methods tend to be better for stiff problems.
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Stiff ODE

y′(x) = −50y, y(0) = 1
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Harmonic Oscillator

dx

dt
= y,

dy

dt
= −x, x(0) = 0, y(0) = 1
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Truncation Error

Local truncation error measures how well the method approximates the behaviour of a
solution of the ODE over one step. Euler method gives us an approximation

yn+1 = yn + hf(xn, yn)

Let y(x) be the exact solution. Using the Taylor series we get

y(xn + h) = y(xn) + hy′(xn) +O(h2)

From here we get
LocalError = y(xn + h)− yn = O(h2)
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Truncation Error

Global truncation error is the cumulative error of the local truncation errors committed in
each step.

GlobalError = N ·O(h2) = b− a
h

O(h2) = O((b− a)h2/h) = O(h)

It shows that the global truncation error is (approximately) proportional to h. For this reason,
the Euler method is said to be first order.

The RK4 method is a fourth-order method, meaning that the local truncation error is of the
order of O(h5), while the total accumulated error is of the order of O(h4).
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Numerical Libraries

There are many different approaches for numerical integration and solving ODEs.

Good schemes are implemented in packages such as scipy.integrate.odeint,
scipy.integrate.ode.

The odeint package uses an Adams integrator for non-stiff problems, and a backwards
differentiation method for stiff problem.

The ode package is a bit more flexible.
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Lotka-Volterra equations
Predator–prey equations in which two species interact, one as a predator and the other as prey.

import numpy as np
from scipy.integrate import odeint
import matplotlib.pyplot as plt
# params (alpha, beta, gamma, delta)
params = (0.1, 0.015, 0.0225, 0.02)
def system(z, t, alpha, beta, gamma, delta):

x = z[0]; y = z[1]
dxdt = x*(alpha - beta*y)
dydt = -y*(gamma - delta*x)
return [dxdt, dydt]

t = np.linspace(0, 300, 1000)
sol = odeint(system, [1.0, 1.0], t, args=params)
plt.plot(sol[:,0], sol[:,1])
plt.show()

dx

dt
= x(α− βy)

dy

dt
= −y(γ − δx)
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Infectious disease spreading
Consider a population consisting of two groups;

the susceptibles (S), who can catch the
disease
the infectives (I), who have the disease
and can transmit it.

dS

dt
= −rSI

dI

dt
= rSI − aI

where r is the infection rate and a is the
recovery rate, and the initial conditions, S(0)
and I(0), are known.

Let’s apply this to real data:

An influenza epidemic, which hit a
British boarding school of 763 boys.

The data were taken from the British
Medical Journal (4 March 1978).

The epidemic lasted 14 days.

Let S(0) = 762 and I(0) = 1.

Let r = 0.00218 per day, a = 0.44 per
day.
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Infectious disease spreading
import numpy as np
from scipy.integrate import odeint
import matplotlib.pyplot as plt
r = 0.00218; a = 0.44
def system(z, t, r, a):

S = z[0]; I = z[1]
dSdt = -r * S * I; dIdt = r * S * I - a * I
return [dSdt, dIdt]

t = np.linspace(0, 14, 1000)
sol = odeint(system, [762, 1], t, args=(r, a))
plt.plot(t, sol[:,0], label='susceptibles', lw=3)
plt.plot(t, sol[:,1], label='infectives', lw=3)
plt.xlabel('Time in days', fontsize = 16)
plt.ylabel('Population', fontsize = 16)
plt.legend()
plt.show()
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Infectious disease spreading
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