Numerical Computing w/Python, Lecture 2: NumPy and SciPy

Ramses van Zon

November 7, 2019

Python lists are not ideal for numerical arrays

For numerical work, the python-native lists aren't the ideal data type.
Lists can do funny things that you don't expect, if you're not careful.

- Lists are just a collection of items, of any type.
- If you do mathematical operations on a list, you won't get what you expect.
- These are not the ideal data type for scientific computing.
- Arrays are a much better choice, but are not a native Python data type.

```
>>> a = [1, 2, 3, 4]
```

>>> a = [1, 2, 3, 4]
>>> a
>>> a
[1, 2, 3, 4]
[1, 2, 3, 4]
>>>
>>>
>>> b = [3, 5, 5, 6]
>>> b = [3, 5, 5, 6]
>>> b
>>> b
[3, 5, 5, 6]
[3, 5, 5, 6]
>>>
>>>
>>> 2 * a
>>> 2 * a
[1, 2, 3, 4, 1, 2, 3, 4]
[1, 2, 3, 4, 1, 2, 3, 4]
>>>
>>>
>>> a + b
>>> a + b
[1, 2, 3, 4, 3, 5, 5, 6]
[1, 2, 3, 4, 3, 5, 5, 6]
>>>

```
>>>
```


Lists vs. Arrays

Lists: optimized for flexibility

- Can hold any type
- Can grow
- Are one-dimensional
- Do not have out-of-the-box element-wise operations

Arrays: optimized for speed

- Single type
- Fixed size
- Multi-dimensional
- Have optimized element-wise operations

Arrays are what we want to use: Numpy

Almost everything that you want to do starts with NumPy.

- Contains arrays of various types and forms: zeros, ones, linspace, etc.
- linspace takes 2 or 3 arguments, the default number of entries is 50 .

```
>>> import numpy
>>> numpy.zeros(5)
array([ 0., 0., 0., 0., 0.])
>>> numpy.ones(5, dtype = int)
array([ 1, 1, 1, 1, 1])
```

```
```

>>> numpy.zeros([2,2])

```
```

>>> numpy.zeros([2,2])
array([[0., 0.],
array([[0., 0.],
[0., 0.]])
[0., 0.]])
>>> numpy.arange(5)
>>> numpy.arange(5)
array([0, 1, 2, 3, 4])
array([0, 1, 2, 3, 4])
>>>
>>>
>>> numpy.linspace(1,5)
>>> numpy.linspace(1,5)
array([1., 1.08163265,
array([1., 1.08163265,
1.16326531, 1.24489796,
1.16326531, 1.24489796,
4.67346939, 4.75510204,
4.67346939, 4.75510204,
4.83673469, 4.91836735, 5.])
4.83673469, 4.91836735, 5.])
>>> numpy.linspace(1, 5, 6)
>>> numpy.linspace(1, 5, 6)
array([1., 1.8, 2.6, 3.4, 4.2, 5.])

```
array([ 1., 1.8, 2.6, 3.4, 4.2, 5.])
```

```
        .
```

```
        .
```


Specifying data types

```
>>> x = numpy.float32(7.4e-3)
>>> a = numpy.array([[1, 2, 3],[4,5,6]],dtype=numpy.float32)
>>> a
array([[ 1., 2., 3.],
    [4., 5., 6.]], dtype=float32)
>>>
>>> b = numpy.ndarray((2,3),dtype=numpy.float16)
>>> b
array([[-1.51875000e+01, 5.11169434e-02, nan],
    [ 0.00000000e+00, -3.12500000e+01, 4.35709953e-05]], dtype=float16)
```


Specifying data types

```
>>> x = numpy.float32(7.4e-3)
>>> a = numpy.array([[1, 2, 3],[4,5,6]],dtype=numpy.float32)
>>> a
array([[ 1., 2., 3.],
    [4., 5., 6.]], dtype=float32)
>>>
>>> b = numpy.ndarray((2,3),dtype=numpy.float16)
>>> b
array([[-1.51875000e+01, 5.11169434e-02, nan],
    [ 0.00000000e+00, -3.12500000e+01, 4.35709953e-05]], dtype=float16)
```

- Integers:
int8 int16 int32 int64 uint8 uint16 uint32 uint64 Number indicates number of bits.
- Floats of half, single and double precision: float16 float32 float64
- Complex numbers in single and double precision: complex64 complex128

Accessing array elements

Elements of arrays are accessed using square brackets.

- Like most languages, the first index is the row, the second is the column.
- Indexing starts at 0 .
- You cannot assign values outside the index range (unlike e.g. in R).
Note: import numpy as np renames the numpy module to the shorter $n p$.

```
>>> import numpy as np
```

>>> import numpy as np
>>> np.zeros([2, 3])
>>> np.zeros([2, 3])
array([[0., 0., 0.],
array([[0., 0., 0.],
[0., 0., 0.]])
[0., 0., 0.]])
>>> a = np.zeros([2,3])
>>> a = np.zeros([2,3])
>>>
>>>
>>> a[1,2] = 1
>>> a[1,2] = 1
>>> a[0,1] = 2
>>> a[0,1] = 2
>>> a
>>> a
array([[[0., 2., 0.],
array([[[0., 2., 0.],
[0., 0., 1.]])
[0., 0., 1.]])
>>>
>>>
>>> a[2,1] = 1
>>> a[2,1] = 1
Traceback (most recent call last):
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 1, in <module>
IndexError: index 2 is out of bounds for axis
IndexError: index 2 is out of bounds for axis
O with size 2
O with size 2
>>>

```
>>>
```


Slicing arrays

You can select a subset of an numpy array by using an index range instead of a single number between square brackets. This is called slicing.

- An index range looks like "a:b", e.g. "2:4". So a [2:4] selects those elements of an array a.
- Read " $2: 4$ " as "from the beginning of the element at index 2 , to the beginning of that at index 4".
- Or read it as: index 2 is the first you get, index 4 is the first you do not get.
- Negative indexing is supported.
- If a third index is specified, it refers to the step size (" $1: 10: 2$ ", for example).
- If no index is specifed, either "beginning" or "end" is assumed.

```
>>> a = np.array([1, 2, 3,4,5,6,7])
>>> print(a[2])
3
>>> print(a[2:4])
[3,4]
>>> print(a[::2])
[1,3,5,7]
```


Slicing arrays, continued

Elements in an array can also be selected using a boolean array. Boolean arrays can be created using a conditional expression.

```
>>>
>>> a = np.arange(5)
>>> a
array([0, 1, 2, 3, 4])
>>> a > 2
array([False, False, False, True, True], dtype=bool)
>>> a[a > 2]
array([3, 4])
>>> a[(a % 2) == 0]
array([0, 2, 4])
>>>
```

The "\%" symbol is the modulus operator.

Copying arrays

Copying array variables

```
>>> a = 10
>>> b = a
>>> a = 20
>>> a, b
(20, 10)
>>>
>>> a = np.array([[1,2,3],[2,3,4]])
>>> b = a
>>> a[1,0] = -10
>>> a
array([[1, 2, 3],
    [-10, 3, 4]])
>>>
>>> b
array([[1, 2, 3],
    [-10, 3, 4]])
```

Use caution when copying array variables. There's a 'sharing feature' here that is unexpected.

Copying array variables

```
>>> a = 10
>>> b = a
>>> a = 20
>>> a, b
(20, 10)
>>>
>>> a = np.array([[1,2,3],[2,3,4]])
>>> b = a
>>> a[1,0] = -10
>>> a
array([[1, 2, 3],
    [-10, 3, 4]])
>>>
>>> b
array([[1, 2, 3],
    [-10, 3, 4]])
```

Use caution when copying array variables. There's a 'sharing feature' here that is unexpected. To turn off this 'sharing feature', use copy ():

```
>>>
>>> b = a.copy()
>>> a[1,0] = 16
>>> a
array([[1, 2, 3],
    [16, 3, 4]])
>>> b
array([[1, 2, 3],
    [-10, 3, 4]])
>>>
```


Matrix arithmetic

Looping over arrays

- In Python, loops over arrays are performed over the first index.
- To go over all elements of a multidimensional array a without using nested loops, use a.ravel() or a.flat (or a.flatten() if you need a copy).

```
>>> a = np.array([1, 2,3])
>>> for i in a:
... print("element:", i)
element: 1
element: 2
element: 3
>>>
>>> a = np.array([[1,2],[3,4]])
>>> for i in a:
... print("element:", i)
element: [1 2]
element: [3 4]
>>>
>>> for i in a.ravel():
... print("element:", i)
element: 1
element: 2
element: 3
element: 4
>>>
```


Shape and reshape

- NumPy allows you to modify the shape of an array once it already exists.
- Though, of course, you can only change the shape to one which contains the same number of elements.
- Also, note that reshape creates a new view of the array data, and doesn't change the shape of the original array.

```
>>> a = np.arange(8)
>>> a.shape
(8,)
>>>
>>> a.reshape([2,4])
array([[0, 1, 2, 3],
                [4, 5, 6, 7]])
>>> a.reshape([2,4]).shape
(2, 4)
>>>
>>> a.reshape([2,3])
Traceback (most recent call last):
    File "<stdin>", line 1, in <module>
ValueError: cannot reshape array of
    size 8 into shape (2,3)
>>>
```


Vector-vector \& vector-scalar multiplication

1-D arrays are often called 'vectors'.

- When vectors are multiplied you get element-by-element multiplication.
- When vectors are multiplied by a scalar, you also get element-wise multiplication.

```
>>> a = np.arange(4)
>>> a
array([0, 1, 2, 3])
>>>
>>> b = np.arange(4.) + 3
>>> b
array([ 3., 4., 5., 6.])
>>>
>>> c = 2
>>> c
2
>>>
>>> a * b
array([ 0., 4., 10., 18.])
>>> a * c
array([0, 2, 4, 6])
>>> b * c
array([ 6., 8., 10., 12.])
```


Matrix-vector multiplication

Peculiar matrix-vector multiplication

A 2-D array is sometimes called a 'matrix'.

- Matrix-scalar multiplication gives element-wise multiplication.
- Matrix-vector multiplication DOES NOT give the standard result!

```
>>> a = np.array([[1, 2,3],[2,3,4]])
>>> b = np.array([1, 2, 3])
>>> a * b
array([[ 1, 4, 9],
    [ 2, 6, 12]])
```

Normal matrix-vector multiplication:

$$
\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right] \cdot\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]=\left[\begin{array}{l}
a_{11} \cdot b_{1}+a_{12} \cdot b_{2}+a_{13} \cdot b_{3} \\
a_{21} \cdot b_{1}+a_{22} \cdot b_{2}+a_{23} \cdot b_{3}
\end{array}\right]
$$

Python matrix-vector multiplication:

$$
\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right] \cdot\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]=\left[\begin{array}{lll}
a_{11} \cdot b_{1} & a_{12} \cdot b_{2} & a_{13} \cdot b_{3} \\
a_{21} \cdot b_{1} & a_{22} \cdot b_{2} & a_{23} \cdot b_{3}
\end{array}\right]
$$

Vector broadcasting

This peculiar multiplication is result of element-wise operations plus broadcasting.
Python will perform vector broadcasting if you perform a matrix-vector operation:

- Python will repeatedly apply the vector to the matrix.
- Python will not do this with vector-vector operations.
- The length of the vector must equal the last dimension of the matrix.
- By default it will do the application by row; use 'np.newaxis' to reshape the vector.

```
>>>
>>> a = np.zeros([2,3])
>>>
>>> a + np.arange(3)
array([[0, 1, 2],
        [0, 1, 2]])
>>>
>>> a + np.arange(2)
Traceback (most recent call last):
    File "<stdin>", line 1, in <module>
ValueError: operands could not be broadcast
    together with shapes (2,3) (2,)
>>>
>>> a + np.arange(2)[:,np.newaxis]
array([[0, 0, 0],
    [1, 1, 1]])
```

>>>

Broadcasting rules

Dimensions are stretched if they are "compatible".
Start with the trailing dimensions, and move to the left.
If the dimensions are equal, or one of them is 1 , or one is missing, they are compatible.

Matrix-matrix multiplication

Not surprisingly, matrix-matrix multiplication doesn't work as expected either, instead doing an element-wise multiplication like with vector-vector multiplication.

```
>>> a = np.array([[1,2,3],[2,3,4]])
>>> b = np.array([[1,2,3],[2,3,4]])
>>> a
array([[1, 2, 3],
    [2, 3, 4]])
>>> a * b
array([[ 1, 4, 9],
    [4, 9, 16]])
```

Normal matrix-matrix multiplication:

$$
\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right] \cdot\left[\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right]=\left[\begin{array}{ll}
a_{11} \cdot b_{11}+a_{12} \cdot b_{21} & a_{11} \cdot b_{12}+a_{12} \cdot b_{22} \\
a_{21} \cdot b_{11}+a_{22} \cdot b_{21} & a_{21} \cdot b_{12}+a_{22} \cdot b_{22}
\end{array}\right]
$$

Python matrix-vector multiplication:

$$
\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right] \cdot\left[\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right]=\left[\begin{array}{ll}
a_{11} \cdot b_{11} & a_{12} \cdot b_{12} \\
a_{21} \cdot b_{21} & a_{22} \cdot b_{22}
\end{array}\right]
$$

How then to perform matrix algebra?

Since Python 3.5 , the standard way is to use numpy arrays in conjuction with the @ product operator. Alternatively, you can use the dot function from SciPy.

```
```

>>> import scipy as sp

```
```

>>> import scipy as sp
>>> a = np.array([[1,2,3],[2,3,4]])
>>> a = np.array([[1,2,3],[2,3,4]])
>>> b = np.array([[1,2,3],[2,3,4]])
>>> b = np.array([[1,2,3],[2,3,4]])
>>> a
>>> a
array([[1, 2, 3],
array([[1, 2, 3],
[2, 3, 4]])

```
```

 [2, 3, 4]])
    ```
```

```
>>> a.T # or a.transpose()
array([[1, 2],
    [2, 3],
    [3, 4]])
>>> a.T @ b # or: sp.dot(a.T, b)
array([[ 5, 8, 11],
    [ 8, 13, 18],
    [11, 18, 25]])
>>> b @ a.T # or: sp.dot(b, a.T)
array([[14, 20],
        [20, 29]])
>>> c = np.arange(3) + 1
>>> a @ c # or: sp.dot(a,c)
array([14, 20])
>>>
```


Linalg Submodule of SciPy

The linalg submodule

The linalg submodule of SciPy contains useful functions for matrix algebra.

- Typical matrix functions: inv, det, norm.
- More advanced functions: eig, SVD, cholesky...
- Both NumPy and SciPy have a linalg module. Use SciPy, because it is compiled with optimized BLAS/LAPACK support.

```
>>> import numpy as np
>>> import scipy as sp
>>> import scipy.linalg as linalg
>>> a = np.array([[1,2,3], [3,4,5], [1,1,2]])
>>> linalg.det(a)
-2.0
>>> sp.dot(a, linalg.inv(a))
array([[1.00000000e+00, 1.11022302e-16, 0.00000000e+00],
            [4.99600361e-16, 1.00000000e+00, 0.00000000e+00],
    [0.00000000e+00, 0.00000000e+00, 1.00000000e+00]])
```

>>>

Solving systems of equations

The linalg submodule of scipy comes with an important function: solve.
linalg.solve is used to solve the system of equations $A x=b$.

```
>>> a = np.array([[1,2,3], [3,4,5], [1,1,2]])
>>> a
array([[ 1, 2, 3],
    [ 3, 4, 5],
    [ 1, 1, 2]])
>>> b = np.array([3, 4, 2])
>>> b
array([3, 4, 2])
>>>
>>> x = linalg.solve(a, b)
>>> x
array([-0.5, -0.5, 1.5])
>>>
```

Here

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
3 & 4 & 5 \\
1 & 1 & 2
\end{array}\right] \cdot\left[\begin{array}{l}
x[0] \\
x[1] \\
x[2]
\end{array}\right]=\left[\begin{array}{l}
3 \\
4 \\
2
\end{array}\right]
$$

is solved by

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
3 & 4 & 5 \\
1 & 1 & 2
\end{array}\right] \cdot\left[\begin{array}{c}
-0.5 \\
-0.5 \\
1.5
\end{array}\right]=\left[\begin{array}{l}
3 \\
4 \\
2
\end{array}\right]
$$

5

Statistics

Statistics

SciPy contains all of the statistical functions that you'll probably ever need.

- The scipy.stats module is based around the idea of a 'random variable' type.
- A whole variety of standard distributions are available:
- Continuous distributions: Normal, Maxwell, Cauchy, Chi-squared, Gumbel Left-scewed, Gilbrat, Nakagami, ...
- Discrete distributions: Poisson, Binomial, Geometric, Bernoulli, ...
- The random variables have all of the statistical properties of the distributions built into them already: cdf, pdf, mean, variance, moments, ...

Normal statistics

```
>>> import numpy as np, scipy as sp
>>> import matplotlib.pyplot as plt
>>> import scipy.stats as stats
>>> x = np.linspace(-5, 5, 100)
>>> plt.plot(x,stats.norm.pdf(x))
>>> plt.plot(x,stats.norm.pdf(x,loc=1))
>>> plt.plot(x,stats.norm.pdf(x,loc=-1,scale=2))
>>>
```

All continuous distributions take loc and scale as keyword parameters to adjust the location and scale of the distribution. In general the distribution of a random variable X is obtained from (X loc) / scale. The default values are loc $=0$ and scale $=1$.

Normal statistics, continued

```
>>>
>>> stats.norm.mean(loc = -1, scale = 2)
1.0
>> stats.norm.std(loc = -1, scale = 2)
2.0
>>> stats.norm.moment(3, loc = -1, scale = 2)
-13.0
>>> samples = stats.norm.rvs(size = 1000,
... loc = -1, scale = 2)
>>> plt.hist(samples, bins=41, density=True)
>>>
>>> plt.plot(x,
... stats.norm.pdf(x, loc = -1, scale = 2),
... 'c', linewidth = 2)
>>>
```


SciNet

Setting the seed

Sometimes you need consistency in your randomness:

- Pseudo-random numbers are generated from an initial 'seed'.
- This seed generates the first number, which is then used as the seed for the second number.
- If you need consistency in your random numbers (for debugging, for example), you can set the seed explicitly so that you get the same random numbers every time.
- Be careful using this for production!

```
>>> stats.norm.rvs()
```

>>> stats.norm.rvs()
1.74481176421648
1.74481176421648
>>> stats.norm.rvs()
>>> stats.norm.rvs()
-0.7612069008951028
-0.7612069008951028
>>>
>>>
>>> np.random.seed(1)
>>> np.random.seed(1)
>>> stats.norm.rvs()
>>> stats.norm.rvs()
1.6243453636632417
1.6243453636632417
>>>
>>>
>>> sp.random.seed(1)
>>> sp.random.seed(1)
>>> stats.norm.rvs()
>>> stats.norm.rvs()
1.6243453636632417
1.6243453636632417
>>>
>>>
>>> import random as rd
>>> import random as rd
>>> rd.seed(1)
>>> rd.seed(1)
>>> stats.norm.rvs() \# stats unaffected
>>> stats.norm.rvs() \# stats unaffected
-0.6117564136500754

```
-0.6117564136500754
```


Random versus numpy.random

You may notice that there are several random packages: random, numpy.random and scipy.random. What's the difference?

- scipy.random and numpy.random are the same.
- The random package is not connected to the others.
- The numpy.random package affects numpy and scipy routines; the random package does not.
- All use the same algorithm (Mersenne Twister).
- The random.seed () is thread safe, while numpy's and scipy's random.seed() are not.
- The numpy. random package contains more functionality.
- Unless you need your code to be thread-safe (rarely in python), use numpy.random.

Statistics, a discrete example: Poisson

```
>>>
>>> x = np.arange(10)
>>> plt.plot(x, stats.poisson.pmf(x, 4),'o-')
>>> plt.plot(x, stats.poisson.cdf(x, 4))
>>> stats.poisson.mean(4)
4.0
>>> stats.poisson.var(4)
4.0
>>>
```


Note that discrete distributions have Probability Mass Functions (PMF) instead of Probability Density Functions (PDF).

Polynomial fitting

```
>>>
>>> x = np.arange(50.)
>>>
>>> y = x + 50.0 * np.random.random(50)
>>>
>>> plt.plot(x, y, 'o')
>>>
>>> fit = np.polyfit(x, y, 1)
>>> fit
array([ 1.0073584, 20.64695036])
>>> plt.plot(x, np.polyval(fit, x))
>>>
```



```
>>> fit = np.polyfit(x, y, 2)
>>> fit
array([ -0.02520835, 2.24256777, 10.76527546])
>>> plt.plot(x, np.polyval(fit, x))
```


Further numerical functionality in SciPy

There is a lot functionality more in SciPy and its subpackages, e.g.:

- optimization
- (even more) linear algebra
- integration
- interpolation
- special functions
- fast fourier transforms
- signal and image processing
- solvers for ordinary differential equations.

6

Assignment

Assignment 1

(1) Write a script to find a rough approximation to the location of the minimum of the function

$$
y(x)=x-\frac{15 x}{1+x}
$$

by computing the values of the function for $N=10$ evenly spaced values of x between 0 and 10 , and determining the x value corresponding to the minimum y.

Next, the script should successively increase the number of evenly spaced x-values between 0 and 10 , taking $N=10^{2}, 10^{3}, 10^{4}, 10^{5}$ and 10^{6}.

The script should print the x value of the minimum and its accuracy for each N.
2 Find a better way to do this using SciPy. Check the accuracy.

