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Introduction to the Course
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About the course

Mini graduate-style course on numerical research computing

Using Python 3 as the programming language.

4 weeks with 2 lectures per week

Can be taken for credit by (astro)physics, chemistry, and possibly others, as mini/modular course.

There will be an assignment each week.
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Lectures and Office Hours

Lecture dates
Nov 5, 7, 12, 14, 26, 28, and Dec 3 and 5, 2019
1 pm - 2 pm, SciNet classroom
(suite 1140A of the MaRS building, 661 University Avenue, Toronto, ON M5G 1M1)
Lectures will be recorded and put online within a couple of days.

Office hours
Wednesdays 2 pm - 3 pm
SciNet Offices, suite 1140 of the MaRS building
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Course Topics

Numerics

NumPy and SciPy

Integration and ordinary differential equations

Visualization

Linear algebra and partial differential equations

Binary file input and output

Markov chain Monte Carlo

Machine Learning
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Details

Prerequisites:

You should be comfortable programming in Python (3).

Software that you’ll need:

Python with numpy, scipy, matplotlib, and sklearn.

Easiest to get (and preferred): anaconda

Instructors
I Ramses van Zon
I Alexey Fedoseev

Contact us at courses@scinet.utoronto.ca

Please fill out the sign-up sheet!
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Details - Assignments and Grading

Assignments

Programming assignments will given every week on Thursday.

These assignments will be due the following week. Late submissions are allowed upto one week later,
at a penalty per day of 5 points out of 100.

The assignments should be handed in online in the ‘dropbox’ on the course website:
https://courses.scinet.utoronto.ca/473

Grading scheme

The grading scheme will be based on the average of the four homework assignments.
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Installing Python
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Getting Python
With Python 3, we will use a number of packages such as numpy, scipy, matplotlib, and
sklearn.

The easiest way to get all of these is to install one of the Anaconda distributions:

Ramses van Zon, Alexey Fedoseev Numerical Computing with Python, Lecture 1: Numerics November 5, 2019 9 / 39

https://www.anaconda.com/download


Getting Python
With Python 3, we will use a number of packages such as numpy, scipy, matplotlib, and
sklearn.

The easiest way to get all of these is to install one of the Anaconda distributions:

Ramses van Zon, Alexey Fedoseev Numerical Computing with Python, Lecture 1: Numerics November 5, 2019 9 / 39

https://www.anaconda.com/download


Getting Python
With Python 3, we will use a number of packages such as numpy, scipy, matplotlib, and
sklearn.

The easiest way to get all of these is to install one of the Anaconda distributions:

Ramses van Zon, Alexey Fedoseev Numerical Computing with Python, Lecture 1: Numerics November 5, 2019 9 / 39

https://www.anaconda.com/download


Getting Python 3 on SciNet

You of course can also work on SciNet’s Niagara.

We’d suggest using the ‘intelpython3’ module.
$ ssh -Y USERNAME@niagara.scinet.utoronto.ca
Last login: Tue Nov 6 12:02:57 2018 from
....

$ module load intelpython3

$ python3 #(or ipython3, or ipython3 --pylab)
Python 3.6.3 | Intel Corporation| (default, Feb 12 2018, 06:37:09)
[GCC 4.8.2 20140120 (Red Hat 4.8.2-15)] on linux
Type "help", "copyright", "credits" or "license" for more information.
Intel(R) Distribution for Python is brought to you by Intel Corporation.
Please check out: https://software.intel.com/en-us/python-distribution
>>>

You can also use SciNet’s jupyterhub at https://jupyter.scinet.utoronto.ca
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Jupyter on SciNet
https://jupyter.scinet.utoronto.ca
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Python, IPython, Jupyter: Which one to use?

Totally up to you, as long as:

You use Python 3.

If your favorite (or your friends favorite) python environment fails, you are able to switch to plain
command-line python.

You are able to write plain python scripts that run regardless of the environment.

That means that opening a terminal and running the script with the command
python3 SCRIPTNAME must work.

This is important because you have to submit your homework as plain python scripts that you
have tested and that we can run. No jupyter notebooks, no ipython extensions for the assignments.
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Enough preliminaries, let’s get started. . .
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Research Computing

A.K.A.: Computational Science, Scientific Computing.

Using a computing device (computer) to figure out values of quantities of interest in the
scientific endevour.

One computes for a variety of reasons, such as

Large data processing/data mining
Investigating behaviour of models too complex to deal with on paper
Interpret experimental results using a theoretical model
Finding simpler models from more complex ones
Visualization
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Third Leg?

Research Computing is often called the third leg of science:

Won’t get into philosopical matters.

From a practical perspective:

Computation is used by experiment and theory.
Research Computing can learn from best practices in both theoretical and experimental science.
It is often closer to a well controlled experiment.
Requires some knowledge and skills unique to computing.
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Numerics
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Numerics

Numerical analysis will be one of the themes of this mini-course.

(Data analysis is the other.)

Today we’ll look at numbers:
I How they are represented and why.
I How computers store different types of numbers.
I The kind of errors that can creep into numerical calculations.
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How do we represent quantities?

We use numbers, of course.
In grade school we are taught that numbers
are organized in columns of digits. We learn
the names of these columns.
The numbers are understood as multiplying
the digit in the column by the number that
names the column.

1034 = (1× 1000) + (0× 100) + (3× 10) + (4× 1)
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Other ways to represent a quantity

Instead of using tens' andhundreds’, let’s
represent the columns by powers of what we
will call the ‘base’.
Our normal way of representing numbers is
‘base 10’, also called decimal.
Each column represents a power of ten, and
the coefficient can be one of 10 numerals
(0-9).

1034 = (1× 103) + (0× 102) + (3× 101) + (4× 100)
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You can choose any base you want

How do we represent the quantity 1034 if we change bases? What about base 7 (septenary)?

1034 = (1× 103) + (0× 102) + (3× 101) + (4× 100)
1034 = (3× 73) + (0× 72) + (0× 71) + (5× 70)

Note: In base 7 the numerals have the range 0-6.
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Who cares?
The reason we care is because computers do not use base 10 to store their data.

Computers use base 2 (binary). The numerals have the range 0-1.

1034 = (1× 210) + (0× 29) + (0× 28) + (0× 27)
+(0× 26) + (0× 25) + (0× 24) + (1× 23)
+(0× 22) + (1× 21) + (0× 20)
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Why do computers use binary numbers?

Why use binary?
Modern computers operate using circuits that
have one of two states: “on” or “off”.
This choice is related to the complexity and
cost of building binary versus ternary circuitry.
Binary numbers are like series of “switches”:
each digit is either “on” or “off”.
Each “switch” in the number is called a “bit”.
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Integers

All integers are exactly representable.
Different sizes of integer variables are
available, depending on your hardware, OS,
and programming language.
For most languages, a typical integer is 32
bits.
Negative numbers often represented using
“two’s complement”. (−x ≡ 232 − x)

Finite range: can go from -231 to 231 − 1
(-2,147,483,648 to 2,147,483,647).
Unsigned integers: 0...232 − 1.
All operations (+, -, *) between representable
integers are represented unless there is
overflow.

The CPU has dedicated circuitry to deal with integers as described above.
But Python integers have infinite range;
That’s convenient, but means integer arithmetic is done in software.
To get the faster, low-level integers back, we can use datatypes from numpy (next lecture).
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Floating point numbers
Analog of numbers in scientific notation.
Inclusion of an exponent means the decimal
point is “floating”.
One bit is dedicated to sign.

A typical single precision real = 32 bits = 4 bytes.

A typical double precision real = 64 bits = 8 bytes.
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Floats in Python

Floating point numbers
Based on the 64 bits floating point type.
You can specify the exponent by putting “e” in your number.
Information about floats on your system can be found in sys.float_info.

Complex numbers
Have a real and imaginary part, both of which are floats.
Use z.real and z.imag to access individual parts.

import sys
print(sys.float_info)
sys.float_info(max=1.7976931348623157e+308, max_exp=1024, max_10_exp=308, min=2.2250738585072014e-308,
min_exp=-1021, min_10_exp=-307, dig=15, mant_dig=53, epsilon=2.220446049250313e-16, radix=2, rounds=1)
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Special “numbers”

This format for storing floating point numbers comes from the IEEE 754 standard.

There’s room in the format for the storing of a few special numbers.

Signed infinities (+Inf, -Inf): result of overflow, or divide by zero.
Signed zeros: signed underflow, or divide by +/-Inf.
Not a Number (NaN): square root of a negative number, 0/0, Inf/Inf, etc.
The events which lead to these are usually errors, and can be made to cause exceptions.
Notice that there is no “NA” option. The pandas package uses NaN; there is no standard approach.

Ramses van Zon, Alexey Fedoseev Numerical Computing with Python, Lecture 1: Numerics November 5, 2019 26 / 39



Errors in floating point mathematics

There are errors inherent in using finite-length
floating point variables.

Except for numbers that fit exactly into a
base two representation, assigning a real
number to a floating point variable involves
truncation.
Think about how you represent 1/3. Is it 0.3?
0.33? 0.333?
You end up with an error of 1/2 ULP
(Unit in Last Place).

>>> a = 0.1
>>> print(a)
0.1
>>> print( '%.18f' % a )
0.100000000000000006

In base two, 0.1 is an infinitely repeating fraction:
0.0001100110011001100110011. . .
Single precision: 1 part in 2−24 ∼ 6e-8.
Double precision: 1 part in 2−53 ∼ 1e-16.
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Testing for equality

Never ever ever ever test for equality with floating
point numbers!

Because of rounding errors in floating point
numbers, you don’t know exactly what you’re
going to get.
Instead, test to see if the difference is below
some tolerance that is near epsilon.
Testing for equality with integers is okay,
however, because integers are exact.

>>> a = 0.1 * 0.1
>>> b = 0.01
>>> print(a == b)
False
>>> print(a)
0.010000000000000002
>>> print(b)
0.01
>>> print(abs(a - b) < 1e-15)
True
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Floating point mathematics

One must be very careful when doing floating
point mathematics.
In Python, try the examples on the right.
What went wrong?

>>> print(1.)
1.0
>>> print(1.e-18)
1e-18
>>> print( (1. - 1.) + 1.e-18 )
1e-18
>>> print( (1. + 1.e-18) - 1. )
0.0
>>> print( 1. + 1.e-18 )
1.0
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Machine epsilon

Let’s do some addition, to demonstrate what went wrong.
Problem: 1.0 + 0.001
Let’s work in base 10.
Let’s assume that we only have a mantissa
precision of 3, and exponent precision of 2.

So what happened?
Mantissa only has a precision of 3! The final
answer is beyond the range of the mantissa!
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Machine epsilon

Machine epsilon gives you the limits of the
precision of the machine.

Machine epsilon is defined to be the smallest
x such that 1 + x 6= 1.
(or sometimes, the largest x such that
1 + x = 1.)
Machine epsilon is named after the
mathematical term for
a small positive number.

>>> print(1.)
1.0
>>> print(1.e-18)
1e-18
>>>
>>> print( (1. - 1.) + 1.e-18 )
1e-18
>>> print( (1. + 1.e-18) - 1. )
0.0
>>> print( 1. + 1.e-18 )
1.0
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What’s your epsilon?

You can find your approximate machine epsilon by
repeatedly halving a number and testing it.
#file: myepsilon.py
def myepsilon():

# Initialize our epsilon.
eps = 1.0

# Is (1 + eps) > 1?
while (1. + eps) > 1.:
# If it is, divide and print it.
eps = eps / 2.
# Change the number of digits
# printed so we can see them
# all.
print('%1.8e %1.18f'%

(eps, (1. + eps)))

>>> import myepsilon
>>> myepsilon.myepsilon()
.
.
1.77635684e-15 1.000000000000001776
8.88178420e-16 1.000000000000000888
4.44089210e-16 1.000000000000000444
2.22044605e-16 1.000000000000000222
1.11022302e-16 1.000000000000000000
>>>
>>> import sys
>>> print(sys.float_info.epsilon)
>>> 2.2204460492503131e-16

The epsilon is about 1e-16 for my desktop, as
expected for double precision.
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The limits of precision: look out below!

Problems will occur when the result of a
calculation spans more orders of magnitude than
the inverse of machine epsilon.
Try the following:

For the range of numbers between 0 and 2,
repeatedly take square roots of the numbers,
then repeatedly square the numbers.
Plot the result, from 0..2.
What should you get? What do you get?
Loss of precision in early stages of a
calculation causes problems.

from numpy import sqrt
def sqrts(x):
#Make a copy of the argument.
y = x
#Repeatedly sqrt, then square.
for i in range(128):
y = sqrt(y)

for i in range(128):
y = y * y

return y

from numpy import linspace
from matplotlib.pyplot import plot,show
x = linspace(0., 2., 50)
y = precision.sqrts(x)
plot(x, y, 'o-')
show()
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Precision problem: uh oh
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Precision problem: what happened?

from numpy import sqrt
def sqrts(x):
y = x
for i in range(128):
y = sqrt(y)
print('%1i %1.16f'%(i,y))

for i in range(128):
y = y * y
print('%1i %1.16f'%(i,y))

return y

If the argument is below 1, sqrt
pushes it up to epsilon below 1.
If the argument is above 1, sqrt
pulls it down to exactly 1.

>>> sqrts(0.1)
0 0.3162277660168379
1 0.5623413251903491
.
.
126 0.9999999999999999
127 0.9999999999999999
0 0.9999999999999998
1 0.9999999999999996
2 0.9999999999999991
3 0.9999999999999982
.
.
126 0.0000000000000000
127 0.0000000000000000
0.0
>>>

>>> sqrts(1.9)
0 1.3784048752090221
1 1.1740548859440185
.
.
126 1.0000000000000000
127 1.0000000000000000
0 1.0000000000000000
1 1.0000000000000000
2 1.0000000000000000
3 1.0000000000000000
.
.
126 1.0000000000000000
127 1.0000000000000000
1.0
>>>
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Beware: catastrophic cancelation

Be very wary of subtracting very similar numbers.
Problem: subtract 1.22 from 1.23.
Assume that we only have a mantissa
precision of 3, and exponent precision of 2.
By performing this subtraction, we eliminate
most of the information, and end up with
‘catastrophic cancellation’.
We go from 3 significant digits to 1.
Dangerous in intermediate results.

The same problem can occur when dividing large
numbers.
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Overflow
Overflow occurs when the result of a calculation
exceeds the memory size of the variable.

8-bit integers have a range of -128 to 127.
When Python calculates a quantity, it
up-casts all of the variables to the ‘largest’
variable type in the calculation.

I int are converted to long ints
I ints are converted to floats
I single precision floats are converted to

double.
Always be sure to use variables that are big
enough for what you are doing.

>>> from numpy import int8, int16
>>> a = int8(10)
>>> print( a )
10
>>> print( a.dtype )
int8
>>> print( type(a) )
<class 'numpy.int8'>
>>> print( a * a )
100
>>> print( a * a * a )
__main__:1: RuntimeWarning: overflow encountered in
byte_scalars
-24
>>> print( int8(1000) )
-24
>>> print( a * a * int16(a) )
1000
>>> print( a * float(a) * int16(a) )
1000.0
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Underflow

An underflow error is the opposite of an overflow
error: you are attempting to make a number which
is smaller than the variable can hold.

32-bit floats integers have a range of -3.4e38
to +3.4e38
An overflow error will result if you attempt to
go beyond this range.
An underflow error results if you try to go too
small.

>>> from numpy import float32
>>>
>>> print(float32(-1e35))
-1e+35
>>> print(float32(-1e44))
-inf
>>>
>>> print(float32(1e-40))
9.9999461e-41
>>> print(float32(1e-44))
9.8090893e-45
>>> print(float32(1e-46))
0.0
>>>
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Summary: Things to remember

Integers are stored exactly.

Floating point numbers are, in general, NOT stored exactly.
Rounding error will cause the number to be slightly off.

DO NOT test floating point numbers for equality. Instead test (abs(a - b) < cutoff).

Know the approximate value of epsilon for the machine that you are using.

Know the limits of your precision: if your calculations span as many orders of magnitude as the
inverse of epsilon you’re going to lose precision.

Try not to subtract floating point numbers that are very close to one another.

Be aware of overflow and underflow: use variable sizes that are appropriate for your problem.
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