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Material for this session

All the material for the HPC Summer School can be found here:

scinet.courses/438

The slides for this class can be found here:

scinet.courses/447

and the Summer School website:
https:
//support.scinet.utoronto.ca/education/go.php/438/index.php
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An introduction to R
Our adventure in R will cover the following:

Getting R started.

Primitive types

Lists

Vectors

Matrices, Arrays

Data frames

Statistics

Functions

*pply: lapply, apply, tapply

Scripting

If you have questions, please ask.
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R history

R has been around for a while, and is well-developed:

Introduced in 1996 as an evolution of the S language.

R is designed for exploring and analysing data.

Home page: http://www.r-project.org.

Community packages are stored at CRAN - Comprehensive R Archive
Network.

A new full version of R is released each year. We’re currently on
release 3.6.0

M.Ponce (SciNet HPC @ UofT) R Basics – Ontario Summer School 2019 June 24th, 2019 4 / 82

http://www.r-project.org


About R
Some important things to know about R:

R is a scripting language, meaning an interpreter executes commands
one line at a time (not a compiled language).

R can be used interactively, with or without IDE (RStudio).

R has a large repository of community packages.

R is all about data analysis: it is not a general purpose language.
I Several important features (numerics, visualization) are baked into the

language, not add-ons.
I Not as useful outside of number crunching.

R is designed with interactive data exploration in mind.
I Lots of surprising things ”just work” interactively.
I But this design can make it a little difficult to debug large

non-interactive programs.

R is closer to functional in approach.
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Starting R

How you start the R interpreter depends upon your system:

Windows: several graphical R interfaces exist (RCommander, Rgui,
RStudio). Launch whichever one you have installed.

Mac: similar to Windows, but running from the command line is also
an option.

Linux: open a terminal. Type ”R”. Use ”q()” to quit.

web-interface: JuPyteR notebook.

Open up your R interface now. Raise your hand if you don’t think it’s
working. Please follow along by entering the commands on the slides, and
playing with the output.
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Starting R on the TEACH cluster
Alternatively, you can log into Graham/Cedar/Niagara and run R there.

myUSER@mycomp ~>
myUSER@mycomp ~> ssh USERNAME@teach.scinet.utoronto.ca -X

[USERNAME@gra-loginX ~]$
myUSER@mycomp ~> ssh scinetguestXXX@teach.scinet.utoronto.ca -X

[USERNAME@gra-loginX ~]$
[USERNAME@gra-loginX ~]$
[USERNAME@gra-loginX ~]$ module spider r

[USERNAME@gra-loginX ~]$ module load gcc/7.3.0 r/3.5.1

[USERNAME@gra-loginX ~]$
[USERNAME@gra-loginX ~]$ R

>

We won’t be using parallel R capabilities, so you should be able to just
work either on your own laptop, or on a login/development node for this
session.
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R data types

Once you start your session you
will get an interactive prompt:

Enter commands at the
prompt, the interpreter
interprets them.

The ”!” is the NOT operator.

”paste” converts the input to
strings, and then
concatenates them.

The ”class” function returns
names of the classes from
which the object inherits.

Like Python, R uses the #
symbol to start comments.

>

> a <- 1

> b <- 1.73

> d <- "hello"

> e <- FALSE

> f <- "world"

>

> a + b

[1] 2.73

> !e

[1] TRUE

> paste(d,f)

[1] "hello world"

> class(b)

[1] "numeric"

>

> # a comment

>
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R data types, continued

R and Python have similar primitive types:

integer

”numeric”: floating types (as with Python, double precision)

logicals

character strings

But there are some differences:

R: idiomatic assignment operator is ”<-”.

logical literals are shoutier (TRUE/FALSE, or T/F).

variables can have periods in their names.

The strength of R lies in its data structures. Note that, like Python, R is
case sensitive (”A” is not the same as ”a”).
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R lists

Lists are the most basic
”container” data type in R:

The ”list” function will
generate a list from the
inputs.

”str” stands for ”structure”.
It gives a description of the
argument.

In R, the ”start:finish”
notation returns a sequence
running from start to finish,
inclusive.

> l <- list(a, b, d, e, f, pi)

> str(l)

List of 6

$ : num 1

$ : num 1.73

$ : chr "hello"

$ : logi FALSE

$ : chr "world"

$ : num 3.14

>

> l[[6]]

[1] 3.141593

> l[1:2]

[[1]]

[1] 1

[[2]]

[1] 1.73

>

M.Ponce (SciNet HPC @ UofT) R Basics – Ontario Summer School 2019 June 24th, 2019 10 / 82



R lists, continued

As with Python lists, the values can be of various types - including lists.
Note:

Indexing individual items in a list is done with [[ ]].

Indexing starts at 1, as with most scientific computing languages.
(Indices, not offsets.)

Slicing is done with [start:finish], and the last item is included (unlike
Python).

Note that [[-1]] will return an error message.

What does slicing with a negative number do - eg, l[-1]? This is very
different behaviour than Python.
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R named lists

Named lists allow you to
access elements by name,
rather than by index.

If you don’t finish your line
in R, but hit enter, it will
display the ”+” symbol,
indicating that it’s waiting
for more input.

You can access pieces of a
named list with the ”$”.

The ”names” function
returns the names of a
named list, data frame, etc.

>

> named.list <- list(value = 5,

+ word = "text", number = 7.3)

> str(named.list)

List of 3
$ value : num 5

$ word : chr "text"

$ number: num 7.3

>

> named.list$value

[1] 5

> named.list[["number"]]

[1] 7.3

> names(named.list)

[1] "value" "word" "number"

>
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R named lists, pop quiz!
Pop quiz: add a new entry to your ”named.list” list:

call the new entry ”mybool”

give the entry a value of FALSE

>

> names(named.list)

[1] "value" "word" "number"

>

> named.list$mybool = F

>

> str(named.list)

List of 4
$ value : num 5

$ word : chr "text"

$ number: num 7.3

$ number: logi FALSE

>

>

> names(named.list)

[1] "value" "word" "number"

>

> named.list[’mybool’] = F

>

> str(named.list)

List of 4
$ value : num 5

$ word : chr "text"

$ number: num 7.3

$ number: logi FALSE

>
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R vectors

Unlike Python, vectors are built into the language:

Homogeneous (same type)

Compact

Not nested

Like numpy vectors

> a <- c(1,2,3)

> b <- c("Hello", "World", "From", "A", "Vector")

> str(b)

chr [1:5] "hello" "World" "From" "A" "Vector"

> d <- 1:17

> str(d)

int [1:17] 1 2 3 4 5 6 7 8 9 10 ...

>

The ”c” command combines values in to a vector or list.
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R vectors, continued

There are many ways to create vectors in R:

>

> 1:10

[1] 1 2 3 4 5 6 7 8 9 10

> seq(2, 20, 4)

[1] 2 6 10 14 18

> paste("A", 1:5, sep = "")

[1] "A1" "A2" "A3" "A4" "A5"

> rep(letters[1:5], 3)

[1] "a" "b" "c" "d" "a" "b" "c" "d" "a" "b" "c" "d"

> is.vector(1:10)

[1] TRUE

>

And others.
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Using sample to create vectors

The ”sample” function samples
from a vector:

By default, sample removes
the previously sampled
elements from the set.

As such, you can’t sample
more than the set size.

To keep sampled elements in
the set, use the ”replace =
TRUE” argument.

If you want consistent samples
(for testing and debugging
purposes), set the seed to the
same value before sampling.

>

> sample(1:10, 4)

[1] 10 5 4 7

> sample(1:10, 4)

[1] 2 6 10 3

> sample(1:10, 4, replace = TRUE)

[1] 7 10 3 7

>

> set.seed(2)

> sample(1:10, 4, replace = TRUE)

[1] 2 8 6 2

> set.seed(2)

> sample(1:10, 4, replace = TRUE)

[1] 2 8 6 2

>
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Diagnostic functions
R is loaded with functions for figuring out what things are:

The ”typeof” function returns the type or storage mode of the object.

To check to see if something is a vector, use ”is.vector”.

The ”summary” function returns a summary of the object’s
properties. It is often used in the context of summarizing the results
of model-fitting functions.

> typeof(l)

[1] "list"

> is.vector(l)

[1] TRUE

> summary(d)

Min. 1st Qu. Median Mean 3rd Qu. Max.

1 5 9 9 13 17

>

Note that lists are considered vectors in R.
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Appending to vectors

Unlike numpy arrays in Python,
you can add elements to the end
of existing vectors:

Use sparingly! It’s better to
fill the whole length you need
first, using seq() or rep(),
rather than set elements as
needed.

Increasing length of
vector/list one at a time is:

I slow
I at risk of causing memory

problems

>

> # probably bad, certainly slow

> a <- c(1,2,3)

> a <- c(a,4)

> a <- c(a,5)

> a

[1] 1 2 3 4 5

>

> # probably bad,

> # certainly funny-looking

> a[length(a) + 1] <- 6

> a

[1] 1 2 3 4 5 6

>

M.Ponce (SciNet HPC @ UofT) R Basics – Ontario Summer School 2019 June 24th, 2019 18 / 82



Appending to vectors, continued

It’s much better to allocate your vector once, and then set the elements as
you go.

>

> # good

> a <- rep(0,5)

> a[4] <- 4

> a[5] <- 5

> a

[1] 0 0 0 4 5

>

If you extend your vector one element at a time, the contents of the vector
must be copied each time the vector is extended. This is slow.
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R vectors behave intuitively
As with numpy vectors, most operations happen automatically on vectors:

> a <- 1:5 + 1

> a

[1] 2 3 4 5 6

> b <- rep(2.,5)

> a * b

[1] 4 6 8 10 12

> sin(a)

[1] 0.9092974 0.1411200 -0.7568025 -0.9589243 -0.2794155

>

> d <- sample(c(TRUE,FALSE), 5, replace = TRUE)

> d

[1] TRUE FALSE FALSE TRUE FALSE

> !d

[1] FALSE TRUE TRUE FALSE TRUE

> a[d]

[1] 2 5

>
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More slicing
You can slice with:

vectors of integers

ranges (which are really just vectors of integers)

vectors of booleans (which pull out the values corresponding to
TRUE, an in the last example on the last slide)

>

> a[2:4]

[1] 3 4 5

> a[c(1,2,4)]

[1] 2 3 5

> a[-c(1,2,3)]

[1] 5 6

> a[seq(1,5,2)]

[1] 2 4 6

>
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Boolean operators

The statement ”a < 4” returns
where this statement is TRUE.

The ”==” is the equivalence
test (”is this equal to this?”).
”!=” does the opposite.

The & symbol is the ”AND”
operator.

The | symbol is the ”OR”
operator.

The ”which” command will
give the indices of the TRUE
entries.

> a < 4

[1] TRUE TRUE FALSE FALSE FALSE

> a[a < 4]

[1] 2 3

>

> b <- seq(1, 60, 13)

> b

[1] 1 14 27 40 53

>

> b == 38

[1] FALSE FALSE FALSE FALSE FALSE

> (b > 5) & (b < 50)

[1] FALSE TRUE TRUE TRUE FALSE

> (b < 10) | (b > 30)

[1] TRUE FALSE FALSE TRUE TRUE

>

> which((b < 10) | (b > 30))

[1] 1 4 5
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Not Available (NA)
Let’s try extending the ”a” vector by another 3 items, and only set the last
one:

> a

[1] 2 3 4 5 6

>

> length(a)

[1] 5

>

> a[length(a) + 3] <- 9

>

> a

[1] 2 3 4 5 6 NA NA 9

>

NA (Not Available) is used to represent missing or invalid data. The right
thing to do with NAs will depend on the application, but we will often
need to deal with NAs specifically.
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NA, continued

We can use the ”is.na” function to pick out NAs:

>

> is.na(a)

[1] FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE

>

> a[!is.na(a)]

[1] 2 3 4 5 6 9

>

> a[is.na(a)] <- -1

>

> a

[1] 2 3 4 5 6 -1 -1 9

>

Recall that the ”!” symbol is the ”NOT” operator.
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NA, continued more

Most math operations on NAs will return NA; but most generally have
built-in optional ways of dealing with them.

>

> a[a == -1] <- NA

>

> a

[1] 2 3 4 5 6 NA NA 9

>

> sum(a)

[1] NA

>

> sum(a, na.rm = TRUE)

[1] 29

>
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Help!

But what if you don’t know how to use the function, or don’t know the
optional arguments? You can use the help function, which is also accessed
using ’?’:

>

> help(sum)

.

.

.

>

> ? sum
.
.
.

>

Press ’q’ to exit the help page (on a Linux system).
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Help, continued
Some authors of functions have even been kind enough to give you
examples of how to use their functions:

>

> example(sum)

sum> ## Pass a vector to sum, and it will add the elements together.

sum> sum(1:5)

[1] 15

sum> ## Pass several numbers to sum, and it also adds the elements.

sum> sum(1, 2, 3, 4, 5)

[1] 15
.
.
.

sum> ## ... unless we exclude missing values explicitly:

sum> sum(1:5, NA, na.rm = TRUE)

[1] 15

>
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Pop quiz!

Create a vector of 100 elements whose elements are randomly drawn from
a normal distribution with a mean of 200 and a standard deviation of 20.
The function that you are looking for is called ’rnorm’. Use ’help’ to figure
out how to use it.

>

> mynorm <- rnorm(100, 200, 20)

>

> length(mynorm)

[1] 100

>

> mean(mynorm)

[1] 199.5294

>

> sd(mynorm)

[1] 19.12821

>
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Matrices, arrays

Vectors are generalized into matrix and array types - matrices are 2D and
are created by specifying at least one of the two dimensions:

The ”matrix” function
returns a 1D vector by
default.

To make it 2D, specify
either ”nrow” or ”ncol”,
but make sure it divides
the number of elements
evenly.

The ”rnorm” function
draws from the normal
distribution.

> A <- matrix(rnorm(9), nrow = 3)

>

> class(A)

[1] "matrix"

> A
[,1] [,2] [,3]

[1,] -0.02574689 0.1676856 -1.2806814

[2,] 0.17226639 -0.7561610 -1.0730775

[3,] -0.35919061 0.2674792 -0.6362443

>
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Matrices, continued

As you might expect, you can use matrices to do matrix math:

The ”solve” function solves
the equation Ax = b, where
A is a matrix and x and b
are vectors.

If available, ”solve” will use
a LAPACK routine on your
machine to solve this system.
That means it’s fast.

What’s with the %*%
symbol?

>

> b <- 1:3

>

> A %*% b
[,1]

[1,] -3.532420

[2,] -4.559288

[3,] -1.732965

>

> solve(A,b)

[1] -8.943326 -3.229387 -1.023876

>
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R special operators
R contains a number of ”special
operators”:

%*% is matrix multiply.

%o% is outer product.

%x% is Kronecker product.

%% is the modulus.

%/% is integer division.

And there are others as well.

> A
[,1] [,2] [,3]

[1,] -0.02574689 0.1676856 -1.2806814

[2,] 0.17226639 -0.7561610 -1.0730775

[3,] -0.35919061 0.2674792 -0.6362443

> a <- 1:3; b <- 3:5

> a * b

[1] 3 8 15

> a %*% b
[,1]

[1,] 26

> a %o% b
[,1] [,2] [,3]

[1,] 3 4 5

[2,] 6 8 10

[3,] 9 12 15

> a %x% b

[1] 3 4 5 6 8 10 9 12 15

> 9 %% 4

[1] 1

> 9 / 4

[1] 2.25

> 9 %/% 4

[1] 2
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More matrix operations

A few more miscellaneous matrix
operations:

The ”dim” command can
be used to change the
dimensions of a matrix.

Note that R is column
major. Do you see how this
manifests itself in the way
the elements get arranged?

The ”t” command gives
the transpose of a matrix.

> a = sample(c(T,F), 6, replace = T)

> a

[1] FALSE TRUE TRUE TRUE FALSE FALSE

> dim(a) <- c(3,2)

> a
[,1] [,2]

[1,] FALSE TRUE

[2,] TRUE FALSE

[3,] TRUE FALSE

> dim(a) <- c(2,3)

> a
[,1] [,2] [,3]

[1,] FALSE TRUE FALSE

[2,] TRUE TRUE FALSE

> t(a)
[,1] [,2]

[1,] FALSE TRUE

[2,] TRUE TRUE

[3,] FALSE FALSE
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R is column major
A 1D array is linear in memory, but so is a 2D array.

> a <- 1:9

> dim(a) <- c(3,3)

> a
[,1] [,2] [,3]

[1,] 1 4 7

[2,] 2 5 8

[3,] 3 6 9

> a[2,3]

[1] 8

>

a HH
Hj

1 2 3 4 5 6 7 8 9

This is how the numbers are stored in memory. If you loop over the 2D
array, which index should you loop over (first or second)?
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Arrays

Arrays can have any rank (not
necessarily just 2D).

Arrays are just high-dimension
versions of matrices.

> B <- array(1:12, c(2, 3, 2))

> class(B)

[1] "array"

> B

, , 1

[,1] [,2] [,3]

[1,] 1 3 5

[2,] 2 4 6

, , 2

[,1] [,2] [,3]

[1,] 7 9 11

[2,] 8 10 12

> C <- array(1:12, c(2, 6))

> class(C)

[1] "matrix"

>
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Built-in datasets
R contains built-in datasets that can be used for practicing.

> data()

Data sets in package datasets:

AirPassengers Monthly Airline Passenger Numbers 1949-1960

BJsales Sales Data with Leading Indicator

BJsales.lead (BJsales) Sales Data with Leading Indicator

BOD Biochemical Oxygen Demand

CO2 Carbon Dioxide Uptake in Grass Plants

.

.

.

>

> str(faithful)

data.frame’: 272 obs. of 2 variables:

$ eruptions: num 3.6 1.8 3.33 2.28 4.53 ...

$ waiting : num 79 54 74 62 85 55 88 85 51 85 ...

>

Type ’q’ to get out of the ’data’ menu.
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Data frames

Data frames are a building block for data analysis in R; in Python, pandas
data frames are based on them.

A data frame is a list of vectors. Each vector (a column of the frame) has
the same length, but different columns may have different types.

Thus every row of the frame is a list.

> data <- trees

> class(data)

[1] "data.frame"

> str(data)

’data.frame’: 31 obs. of 3 variables:
$ Girth : num 8.3 8.6 8.8 10.5 10.7 10.8 11 11 11.1 11.2 ...

$ Height: num 70 65 63 72 81 83 66 75 80 75 ...

$ Volume: num 10.3 10.3 10.2 16.4 18.8 19.7 15.6 18.2 22.6 19.9 ...

>
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Slicing data frames

Accessing parts of the data frame makes a lot more sense when you
remember it’s just a list of vectors.

>

> names(data)

[1] "Girth" "Height" "Volume"

>

> data[1:3,"Girth"]

[1] 8.3 8.6 8.8

>

> data[2,]

Girth Height Volume

2 8.6 65 10.3

>

> data$Height[4:5]

[1] 72 81

>
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Updating data frames

Performance tip: While you can update individual items in a data frame
via slicing:

> data[1, "Girth"] <- 8.7

It turns out this is extremely slow and memory intensive, for boring
reasons. If you have do a number of such updates, try to minimize the
number of updates to the data frame.

It’s better to extract a column, update it, and then update the whole
column at once:

> Girth <- data$Girth

> Girth <- 2. * Girth + 1

> data$Girth <- Girth
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Getting external data
Getting data from online is as simple as putting in the URL:

> data = read.csv(”https://support.scinet.utoronto.ca/~mponce/courses/

datasets/Dental-2011-2012.csv”)

> str(data)
$ Quarter: Factor w/ 3 levels "Q1","Q2","Q3": 1 1 1 1 1 1 1 1 ...

.

.

.

$ Total : num 9317 14948 23136 18546 40536 ...

> colnames(data)
[1] "Quarter" "Year"

[3] "Data" "CCG Code"

[5] "AT CODE" "Region Code"

[7] "Patient type" "Band 1"

[9] "Band 2" "Band 3"

[11] "Urgent Occasional" "Free Arrest of Bleeding"

[13] "Free Bridge Repairs" "Free Denture Repair"

[15] "Free Prescription Issue" "Free Removal of sutures"

[17] "Total"

The original URL for this data is
http://www.hscic.gov.uk/catalogue/PUB07163/nhs-dent-stat-udas-eng-2011-2012-anx5.csv
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Getting external data, continued

We can do some initial exploration of the data by plotting it.

boxplot, shockingly, creates a boxplot.

The tilde symbol indicates that we are creating a ”formula”.

The boxplot uses this the determine what to plot against what.

>

> boxplot(data$Total ~ data$Patient Type)

>

> boxplot(data$Urgent Occasional ~ data$Patient Type)

>
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Excel files

You can also read Excel files
using R, though not out of box.

There are many packages out
there that will do this, but you’ll
need to download them
separately.

gdata

XLConnect

xlsx

readXL

>

> install.packages("xlsx")

>

> library(xlsx)

>

> data = read.xlsx(’datalist.xls’,

+ sheetName = ’Sheet1’)

>

> names(data)

[1] "Soc Sec Num" "Name"

"First.name"

[4] "Gender" "Title" "Salary"

"Category"

>
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R and statistics

Without a doubt, one of R’s strongest features is its statistical libraries.

Every distribution is there.

Everything is baked in.

If it’s not baked in, someone’s already written your function or
distribution for you. Go find it.

Many of the standard functions are written in R itself, so you can go
read the source code and determine exactly what has been done.

(The name of the project is ”The R Project for Statistical
Computing”.)

You could make a worse choice for statistical programming language.
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R and statistics, the normal distribution

We start with our old friend, the
normal distribution:

’dnorm(x)’ returns the value
of the normal distribution at
x.

’pnorm(x)’ returns the
cumulative distribution
function.

’qnorm(x)’ returns the
quantile function.

>

> x <- seq(-4, 4, 0.01)

>

> plot(x, dnorm(x), type = "l")

>

> plot(x, pnorm(x))

>

> qnorm(0.25)

[1] -0.6744898

>

> qnorm(c(0.025, 0.975))

[1] -1.959964 1.959964

>
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R and statistics, a t-test example

Let’s perform a Student’s t
test:

Consider the two
samples, given by ’A’
and ’B’.

Question: what is the
probability that these
two samples are drawn
from the same
distribution?

The answer: about 8%.

> A <- array(c(97, 98, 78, 80, 81, 84,

+ 85, 85, 86, 94, 100, 102, 103, 104))

> B <- array(c(76, 87, 89, 90, 94, 96,

+ 98, 99, 100, 106, 109, 112, 113, 105))

>

> t.test(A, B, var.equal = T)

Two Sample t-test

data: A and B

t = -1.8423, df = 26, p-value = 0.07686

alternative hypothesis: true difference

in means is not equal to 0

95 percent confidence interval:

-14.6589062 0.8017634

sample estimates:

mean of x mean of y

91.21429 98.14286

>
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Basic building blocks of Programming

All programming languages have some basic “building” blocks

I looping constructs

I conditionals to handle decision making

I the ability to group commands into functions or modules

è R has all these features available

Code Blocks

Normally, R treats each line as a statement and executes it
immediately

Using { and } can wrap multiple lines into a single statement

R will run a code block at the entry of a new line after the closing }
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Functions in R

R tends towards functional programming; functions aren’t normally called
for side effects.

Functions return whatever values are needed.

Typical upsides/downsides to functional programming:

Easy to read, understand, debug.

Makes parallelism somewhat easier.

Requires lots of temporary memory (copies being made).
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R functions

What do the following do?

> a <- 1:5

> doubleVector <- function(x) {x <- x * 2}
> doubleVector2 <- function(x) {x * 2}
> a

[1] 1 2 3 4 5

> doubleVector(a)

> a

[1] 1 2 3 4 5

> a <- doubleVector2(a)

> a

[1] 2 4 6 8 10

>

R passes by value, not by reference, unless the argument is not being
modified.
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R return statement

Did you notice the lack of
”return” statement in the
function definition?

R tends toward functional
programming.

The ”return” statement
tends to be unnecessary in
this context, as state
changes are discouraged.

However, you may include it
for clarity.

>

> doubleVector2 <- function(x)

+ {x * 2}
>

> doubleVector3 <- function(x) {
+ return(x * 2)

+ }
>

> doubleVector2(a)

[1] 2 4 6 8 10

> doubleVector3(a)

[1] 2 4 6 8 10

>
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R iterators

Iterators are a fundamental part
of Python, but are a recent
addition to R.

An iterator allows a
programmer to traverse a
list/array/container without
loading the entire container
into memory first.

If I need to loop over one
million elements, I don’t
want to load all of the
elements into memory unless
I really need to.

Use the ’iterators’ package.

>

> library(iterators)

>

> names <- c("Bob", "Mary",

+ "Jack", "Jane")

>

> str(names)

chr [1:4] "Bob" "Mary" "Jack" "Jane"

>

> inames <- iter(names)

> str(inames)

List of 4

$ state :<environment: 0x1a5496b8>

$ length : int 4

$ checkFunc:function (...)

$ recycle : logi FALSE

- attr(*, "class")= chr [1:2]

"containeriter" "iter"

>
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R iterators

Once you have your iterator
you can advance to the next
element using ”nextElem”.

In what can only be described
as a bizarre design decision,
iterators do not work with for
loops. Nor is there an easy
way to create your own
iterating functions.

You can, however, use iterators
with ”foreach”. We’ll discuss
that this afternoon.

>

> nextElem(inames)

[1] "Bob"

>

> nextElem(inames)

[1] "Mary"

>

> people <- data.frame(names = names,

+ ages = c(17, 23, 41, 19))

>

> ipeople <- iter(people, by = "row")

>

> nextElem(ipeople)

[1] "Bob" 17

>
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R loops

R has three types of loops:

The ”for” loop. Note that
the list or vector being
looped over can be of any
type.

The ”while” loop.

The ”repeat” loop (not
illustrated here). The repeat
loop requires the use of a
”break” statement; you may
as well use a while loop.

>

> for (i in list(’cow’, 1, F)) {
+ print(i) }
[1] "cow"

[1] 1

[1] FALSE

>

> i <- 1

> while(i < 4) {
+ print(i)

+ i <- i + 1 }
[1] 1

[1] 2

[1] 3

>
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Conditionals

R has the usual types of
conditionals:

The ”if”
conditional.

The ”switch”
conditional. This is
analogous to the
”case” conditional
seen in other
languages.

>

> for (i in 1:3) {
+ if (i < 2) {
+ print(i) }
}
[1] 1

>

> for (animal in c(’cow’, ’pig’, ’sheep’)) {
+ switch(animal,

+ cow = { print(’moo’) },
+ sheep = { print(’baaa’) },
+ pig = { print(’oink’) },
+ stop("Wrong type of animal.")

+ )

+ }
[1] "moo"

[1] "oink"

[1] "baaa"

>
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The ’apply’ family of functions

The apply family of functions make it very easy, and fast, to repeatedly
apply a function to a lot of individual elements.

Many parallel routines are parallel versions of these higher-level functions.

lapply: apply a function to each element of a list/vector.

sapply: simpify the lapply return list to a vector or array if possible.

apply: apply a function to rows, columns, or elements of an array.

tapply: apply a function to subsets of a list/vector.

mapply: apply a function to the ”transpose” of a list. Pass two lists of
length three; apply function to first items of lists, then second, then
third.
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lapply
The function ”lapply” repeatedly applies a function to each element of a
list or vector. Let’s say we wanted to show that as N grows larger, the
mean of N normally distributed random numbers tended to zero.

> mean.n.rnorm <- function(n) return(mean(rnorm(n)))

> ns <- c(1, 10, 100, 1000)

> lapply(ns, mean.n.rnorm)

[[1]]

[1] -0.2720619

[[2]]

[1] 0.1122716

[[3]]

[1] 0.1562597

[[4]]

[1] -0.0007317103

>
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lapply, continued

We could even do this in two steps, applying rnorm to the list of ns, and
then mean to the list of vectors:

> ns <- c(1, 10, 100, 1000)

> random.nums <- lapply(ns, rnorm)

> means <- lapply(random.nums, mean)

> means

[[1]]

[1] -1.143101

[[2]]

[1] 0.1152926

[[3]]

[1] -0.02110213

[[4]]

[1] 0.004479629
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sapply

And we can get that final result as a sometimes-more-convenient vector
rather than list with ”sapply”:

>

> ns <- c(1, 10, 100, 1000)

> random.nums <- lapply(ns, rnorm)

> means <- sapply(random.nums, mean)

> means

[1] -1.143100822 0.115292582 -0.021102134 0.004479629

> means * means

[1] 1.306679e+00 1.329238e-02 4.453001e-04 2.006707e-05

>
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sapply/vapply

Performance tip: if you know the size and type that sapply will return,
create such a vector/matrix and use vapply, passing it the example object
as the third parameter (everything else stays the same). This can be
substantially faster, and more memory-efficient for large outputs.
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apply

The ’apply’ function is used on matrices and arrays. In this case, it’s just
easier to demonstrate:

>

> A <- matrix(1:9, nrow = 3, ncol = 3)

> A
[,1] [,2] [,3]

[1,] 1 4 7

[2,] 2 5 8

[3,] 3 6 9

> apply(A, MARGIN = 1, max) # max of each row

[1] 7 8 9

> apply(A, MARGIN = 2, max) # max of each col

[1] 3 6 9

>
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apply, continued

apply applies a function to the rows (MARGIN = 1) or columns
(MARGIN = 2) of an array (also relevant: rowSums, colSums).

You can also apply it to each element by using MARGIN = 1:2.

Here we square each element of the array:

> A <- matrix(1:9, nrow = 3, ncol = 3)

> A
[,1] [,2] [,3]

[1,] 1 4 7

[2,] 2 5 8

[3,] 3 6 9

> apply(A, MARGIN = 1:2, function(x) {x**2}) # square of each item

[,1] [,2] [,3]

[1,] 1 16 49

[2,] 4 25 64

[3,] 9 36 81

>
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tapply

Finally, tapply is also a lot easier to just demonstrate than explain:

> data <- morley

>

> str(data)

’data.frame’: 100 obs. of 3 variables:
$ Expt : int 1 1 1 1 1 1 1 1 1 1 ...

$ Run : int 1 2 3 4 5 6 7 8 9 10 ...

$ Speed: int 850 740 900 1070 930 850 950 980 980 880 ...

>

> tapply(data$Speed, data$Expt, mean)

1 2 3 4 5

909.0 856.0 845.0 820.5 831.5

>

In the above, tapply takes the Speed values, splits them up into a list of
vectors by value of Expt, and then applies mean to each vector.
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tapply/split

Try playing with ’split’ to understand splitting:

>

> split(data$Speed, data$Expt)

$‘1‘

[1] 850 740 900 1070 930 850 950 980 980 880 1000 980 930 650 760 810 1000

[18] 1000 960 960

.

.

.

$‘5‘

[1] 890 840 780 810 760 810 790 810 820 850 870 870 810 740 810 940 950 800

[19] 810 870

>

M.Ponce (SciNet HPC @ UofT) R Basics – Ontario Summer School 2019 June 24th, 2019 61 / 82



tapply/split

Try playing with ’split’ to understand splitting:

>

> split(data$Speed, data$Expt)

$‘1‘

[1] 850 740 900 1070 930 850 950 980 980 880 1000 980 930 650 760 810 1000

[18] 1000 960 960

.

.

.

$‘5‘

[1] 890 840 780 810 760 810 790 810 820 850 870 870 810 740 810 940 950 800

[19] 810 870

>

M.Ponce (SciNet HPC @ UofT) R Basics – Ontario Summer School 2019 June 24th, 2019 61 / 82



Pop quiz!

Consider the ”DNase” dataset, which contains data obtained during the
development of an ELISA assay for the recombinant protein DNase.

>

> str(DNase)

Classes nfnGroupedData, nfGroupedData, groupedData and ’data.frame’: 176 obs.

of 3 variables:

$ Run : Ord.factor w/ 11 levels "10"<"11"<"9"<..: 4 4 4 4 4 4 4 4 4 4 ...

$ conc : num 0.0488 0.0488 0.1953 0.1953 0.3906 ...

$ density: num 0.017 0.018 0.121 0.124 0.206 0.215 0.377 0.374 ...

.

.

.

>

Using tapply, calculate the mean and standard deviation of the optical
density measurements for the given values of protien concentration.
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Pop quiz!, continued

Using tapply, calculate the mean and standard deviation of the optical
density measurements for the given values of protien concentration.

>

> tapply(DNase$density, DNase$conc, mean)

0.04882812 0.1953125 0.390625 0.78125 1.5625 3.125

0.05331818 0.15095455 0.23972727 0.40677273 0.66631818 1.03772727

6.25 12.5

1.42859091 1.76986364

>

> tapply(DNase$density, DNase$conc, sd)

0.04882812 0.1953125 0.390625 0.78125 1.5625 3.125

0.02756358 0.02429085 0.02628268 0.02755243 0.03057604 0.03789985

6.25 12.5

0.06917036 0.08462258

>
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Saving your results
Inevitably you will need to save the results of your analysis. Let’s take a
look at the humble ”.csv” file.

[USERNAME@gra-loginX myUSER]$ ls -sh1 airOT2010.*

151M airOT2010.RDS

154M airOT2010.Rdata

1.4G airOT2010.csv

[USERNAME@gra-loginX myUSER]$

[USERNAME@gra-loginX myUSER]$ Rscript timeexamples.R

[1] "Reading Rdata file"

user system elapsed

8.564 0.634 9.225

[1] "Reading RDS file"

user system elapsed

11.045 0.598 11.685

[1] "Reading CSV file"

user system elapsed

141.143 3.167 144.440

[USERNAME@gra-loginX myUSER]$
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A note on file formats

CSV (Comma Separated Value) – or any text-based format – is the worst
possible format for quantitative data. It manages the trifecta of being:

Slow to read.

Huge in size.

Inaccurate.

Converting floating point numbers back and forth between internal
representations and strings is slow and prone to truncation errors.

Use binary formats whenever possible. The ”.Rdata” format is a bit prone
to change; ”.RDS” is modestly better. Portable formats like HDF5 (for
data frames) or NetCDF4 (for matrices and arrays) are compact, accurate,
fast (though not as fast as .Rdata/.RDS), portable, and can be read by
tools other than R.
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Using ’save’ and ’load’

The simplest way to save and retrieve data:

You can save variables using the ’save’ function.

To load saved data, use ’load’.

Note that your loaded data will overwrite any existing variables of the
same name.

>

> save(label.names, days.of.week, file = "mydata.Rdata")

>

exit and come back

>

> load("mydata.Rdata")

> print(label.names)

[1] "1" "2" "3" "4" "5" "6" "7"

>
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Using sink

Sink allows you to redirect the
output of R to a file:

This is handy to save
development steps.

Use sink(’filename’) to
start the sink.

Use sink(NULL) to stop it.

You can use the ”split = T”
option to send the output to
both the file and the terminal.

Note that sink only saves the
output of the commands, not
the commands themselves.

> 2 + 5

[1] 7

> sink(’output2.txt’)

> print(’Hello’)

> print(’Do a bunch of stuff’)

> 2 + 5

> sink(NULL)

>

> 2 + 5

[1] 7

> quit()

myUSER@mycomp ~>
myUSER@mycomp ~> cat output2.txt

[1] "Hello"

[1] "Do a bunch of stuff"

[1] 7

myUSER@mycomp ~>
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Workspace management
You can also save the state of your R session:

You are working in a ”workspace”. To save your workspace for next
time, use save.image(). This will put your image in a file named
”.Rdata”.

To load a previous workspace, use ’load’.

Note that your loaded image will append to, and overwrite, you
current workspace.

R will ask if you want to save your workspace when you try to exit.

> # do a bunch of stuff

> save.image()

> # or alternatively

> save.image(file = ’myimage.Rdata’)

>

> load("myimage.Rdata")

>
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Installing R packages
R makes it crazy-easy to install packages which you don’t already have.

To load a non-default library, use the ’library’ function.

To install non-standard packages, use ’install.packages’.

> library(’fun’)

Error in library("fun") : there is no package called fun

>

> install.packages("fun")

Installing package into ’/home/s/scinet/myUSER/R’

(as ’lib’ is unspecified)

--- Please select a CRAN mirror for use in this session ---
.
.
.

** testing if installed package can be loaded

* DONE (fun)

>

> library(’fun’)

>
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Plotting in R

R has a tonne of plotting options.
Let’s start with ’plot’:

If one argument is specified, it
plots the argument against value
index. With two arguments it
takes the first as the ’x’ axis.

By default, every time ’plot’ is
run it writes over the previous
plot.

To add a line to an existing
plot, use ”lines”.

If you want customized axis
labels, they can add them after
you make the plot, or at plot
time.

>

> x <- 1:100 / 100.

>

> plot(sin(x * 4 * pi))

>

> plot(x, sin(x * 4 * pi))

>

> plot(x, sin(x * 4 * pi),

+ type = "o", col = "blue",

+ axes = F)

>

> lines(x, sin(x * 2 * pi),

+ col = ’red’, type = ’o’)

>

> title(xlab = "time [s]")

>
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Plotting in R, continued
The plotting parameters can be set before plotting using the ’par’
function. Some useful options include

par(new = TRUE). This will keep R from overwriting your previous
plot, which is the default behaviour.

par(family = ’HersheySans’), change the font family to a vector-drawn
font. Always use vector-drawn fonts for publication-quality plots.

par(font = 2), change the font format. 1 - default, 2 - bold, 3 - italic,
4 - bold italic.

par(ann = FALSE), do not annotate the plot. In this case you must
label your axes after the plotting function is called.

par(mfrow = c(2,2)), make a 2 x 2 plots. Allows you to put several
plots together.

Many other options.
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Plotting in R, continued more

Name it and you can plot it:

hist: plot a histogram.

pie: plot a pie chart.

Note that ’hist’ will bin
your data, but ’pie’ won’t.

The ’table’ function creates a
table, which gives counts of
entries.

scatterplots, 3D plots, box
plots, log plots, contour plots...

> data <- airquality

> hist(data$Ozone)

>

> bad.days <- data$Ozone > 20.0

> table(data$Month[bad.days])

5 6 7 8 9

11 6 22 23 17

> bad.months <- names(table(data$Month[bad.days]))

> bad.month.counts <- as.vector(table(data$Month[bad.days]))

> pie(bad.month.counts, label = bad.months)
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Saving your plots

Once you have your plot, you will eventually need to save it. The
commands for saving your files depends upon the type of file you want:

bmp(filename = ’myfile.bmp’).

jpeg(filename = ’myfile.jpeg’).

png(filename = ’myfile.jpeg’).

tiff(filename = ’myfile.tiff’).

pdf(file = ’myfile.pdf’).

The problem with these functions is that you need to invoke them before
you start making your plot. You then invoke ”dev.off()” to stop saving the
image.

Alternatively, you can create your image and then use one of the
dev.copy(...), dev.copy2pdf(...), etc. commands.
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R data analysis, an example

Let’s use an R package to
build a decision tree. Let’s
use the Iris dataset.

We first randomly split
the iris dataset, 70/30,
into training and test
datasets.

We then separate the
relevant values from
the dataset.

>

> str(iris)

’data.frame’: 150 obs. of 5 variables:
$Sepal.Length: num 5.1 4.9 4.7 4.6 5 ...

$Sepal.Width : num 3.5 3 3.2 3.1 3.6 ...

$Petal.Length: num 1.4 1.4 1.3 1.5 1.4 ...

$Petal.Width : num 0.2 0.2 0.2 0.2 0.2 ...

$Species : Factor w/ 3 levels ...

>

> ind <- sample(1:2, nrow(iris),

+ replace = T, prob = c(0.7, 0.3))

> trainData <- iris[ind == 1,]

> testData <- iris[ind == 2,]

>
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R analysis, an example, continued

Now that the data’s split
up, we’re ready to generate
the tree.

Load the ’party’ library.

Create our ’formula’.

Generate the decision
tree.

Check the result
against the training
data.

Pretty good fit!

Plot the result.

> library(party)

>

> myFormula <- Species ~ Sepal.Length +

+ Sepal.Width + Petal.Length + Petal.Width

>

> iris tree <- ctree(myFormula,

+ data = trainData)

>

> table(predict(iris tree),

+ trainData$Species)

setosa versicolor virginica

setosa 36 0 0

versicolor 0 35 3

virginica 0 1 28

>

> plot(iris tree)

>
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Our decision tree

Petal.Length
p < 0.001

1

≤ 1.9 > 1.9

Node 2 (n = 36)

setosa versicolor virginica

0

0.2

0.4

0.6

0.8

1

Petal.Width
p < 0.001

3

≤ 1.7 > 1.7

Petal.Length
p = 0.046

4

≤ 4.4 > 4.4

Node 5 (n = 22)

setosa versicolor virginica

0

0.2

0.4

0.6

0.8

1

Node 6 (n = 16)

setosa versicolor virginica

0

0.2

0.4

0.6

0.8

1

Node 7 (n = 29)

setosa versicolor virginica

0

0.2

0.4

0.6

0.8

1
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R analysis, an example, continued more

Ok, but how does the
decision tree do on the test
data?

Test the built tree with
the test data.

Print out the table of
results.

Not bad!

>

> testPred <- predict(iris tree,

+ newdata = testData)

>

> table(testPred, testData$Species)

setosa versicolor virginica

setosa 14 0 0

versicolor 0 14 2

virginica 0 0 17

>
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Using R scripts

Once you have a series of
commands which you will need to
run repeatedly you should save
them in a script.

A script is just a list of
commands that you want the
R interpreter to execute.

It’s as if you are running the
commands at the command
line yourself.

By convention R script files
have a ”.R” file extension.

# myscript.R

# Create the matrix.

A <- matrix(rnorm(9), nrow = 3,

ncol = 3)

# Create b.

b <- 1:3

# Solve.

x <- solve(A, b)

cat("the answer is", x, "\n")

By saving your commands in a
script, you’ll remember what you
did six months from now.

M.Ponce (SciNet HPC @ UofT) R Basics – Ontario Summer School 2019 June 24th, 2019 78 / 82



Running R scripts
Once you have a script, how do you run it? There are two command line
options for running your script:

R CMD BATCH myscript.R

Note that by default this will generate a file called ”myscript.Rout”,
which is what would have been seen on the screen had you run the
commands by hand.

Rscript myscript.R

This is a better option, as it runs as a proper script.

[USERNAME@gra-loginX ~]$
[USERNAME@gra-loginX ~]$ R CMD BATCH myscript.R

[USERNAME@gra-loginX ~]$
[USERNAME@gra-loginX ~]$ Rscript myscript.R

The answer is -1.820291 -0.9132152 0.3703467

[USERNAME@gra-loginX ~]$
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Command line arguments

Running a script usually involves
passing parameters to the script,
so that you don’t need to change
the script every time it’s run.

If you don’t put ”trailingOnly =

T” you’ll get the full Rscript
command as the first command
line argument.

# myscript2.R

args <- commandArgs(trailingOnly = TRUE)

cat("The command line arguments are", args, "\n")

[USERNAME@gra-loginX ~]$
[USERNAME@gra-loginX ~]$ Rscript myscript2.R a 3.2

The command line arguments are a 3.2

[USERNAME@gra-loginX ~]$
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Where am I?

R has functions for dealing with
where things get done. R refers to
this as your ’working directory’:

getwd(): get the working
directory.

setwd(’somedir’): set the
working directory to
”somedir”.

dir(): list the contents of
the working directory.

ls(): list the existing
variables (you won’t see
builtin variables, such as pi).

>

> getwd()

[1] "/home/myUSER/summer school"

>

> setwd(’..’)

>

> getwd()

[1] "/home/myUSER"

>

> dir()

summer school

>

> ls()

"days.of.week" "label.names"

>
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Enough to get started

There’s obviously a lot more to learn about using R.
Nonetheless, this is enough to get you started.
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