
2019 CBP Symposium
Introduction to Machine Learning with Python

Marcelo Ponce

May 3, 2019

Marcelo Ponce (SciNet HPC @ UofT) Intro to Machine Learning with Python CBP 2019 - May 3, 2019 1 / 83

Material for this workshop

The slides and code for this workshop can be found at this workshop’s website, which is here:

https://support.scinet.utoronto.ca/education/go.php/440/index.php

More infromation about SciNet’s courses is available at the SciNet education website:

courses.scinet.utoronto.ca

Marcelo Ponce (SciNet HPC @ UofT) Intro to Machine Learning with Python CBP 2019 - May 3, 2019 2 / 83

https://support.scinet.utoronto.ca/education/go.php/440/index.php
courses.scinet.utoronto.ca

Python for today’s workshop

A few notes about the code and examples for today’s class.

The code for today’s class will by in Python 3.

As you are hopefully aware, Python 2.7.X and Python 3.X are not completely compatible
with each other.

The differences are, on the whole, just here and there. You just sort of need to know
what has changed.

If you are using Python 2 there is a chance that some of today’s code will not work for
you.

You will need the usual machine learning packages: numpy, scipy, matplotlib, scikit-learn.

Slowly but surely the world is transitioning to Python 3.

Marcelo Ponce (SciNet HPC @ UofT) Intro to Machine Learning with Python CBP 2019 - May 3, 2019 3 / 83

Python plotting for today’s workshop
Note that some of the code in today’s slides will be assuming that we’re working in interactive
plotting mode. How do we set that up?

If you are using IPython from the command line, then invoke it with the --pylab flag.

myuser@mycomp ~> ipython --pylab

In [1]:

If you are using regular Python, you can turn on interactive plotting through matplotlib.

myuser@mycomp ~> python

>>> import matplotlib.pylab as plt

>>> plt.ion()

>>>

If you are using Anaconda or Spider, there are options in the pull-down menus to make
the prompt interactive.

My recommendation is that you use the jupyter-notebook interface jupyter.org

Marcelo Ponce (SciNet HPC @ UofT) Intro to Machine Learning with Python CBP 2019 - May 3, 2019 4 / 83

~
~
jupyter.org

Today’s Topics
Today we will visit the following topics:

Introduction to machine learning.

Regression.

Bias-variance tradeoff.

Resampling.

Classification algorithms, in general.

Decision trees.

kNN.

k-means.

Agglomerative clustering.

With material from L. Dursi and E. Spence. Ask questions!

Marcelo Ponce (SciNet HPC @ UofT) Intro to Machine Learning with Python CBP 2019 - May 3, 2019 5 / 83

What is machine learning?

What is machine learning?

Broadly speaking, machine learning is model fitting.

In some ways this is identical to data analysis, if your data analysis involves
I fitting curves to your data.
I determining parameters within an already-established model.

But it can differ from simple data analysis:
I if you don’t know what the correct model is.
I if you’re just using the model to make insights to the data, but aren’t looking for any

scientific insight based upon it.

This is particularly useful at the beginning of a research program, when performing exploratory
data analysis is the norm.

Marcelo Ponce (SciNet HPC @ UofT) Intro to Machine Learning with Python CBP 2019 - May 3, 2019 6 / 83

Supervised and unsupervised learning

When we’re working with data, we generally have two types of analyses:

Supervised: the data comes labelled with the right answer:
I curve fitting.
I for prediction-type analyses (decision trees, neural networks,...)

Unsupervised: we’re looking for patterns in the data:
I what groups of items in this dataset are similar? Dissimilar?
I Generally used for exploration, evaluation and sometimes prediction.

There is also semi-supervised, but we won’t be dealing with that.

Marcelo Ponce (SciNet HPC @ UofT) Intro to Machine Learning with Python CBP 2019 - May 3, 2019 7 / 83

Types of Data

Generally speaking, data comes in two broad classes:

Continuous: real numbers

Discrete:
I Binary: True/False.
I Categorical: category A, category B, ...
I Ordinal: discrete, but has an intrinsic order: S, M, L, XL, ...
I Numerical: numbers with a minimum step size (financial tick data).

Others are possible too, but we won’t be covering them.

Marcelo Ponce (SciNet HPC @ UofT) Intro to Machine Learning with Python CBP 2019 - May 3, 2019 8 / 83

Regression

Let’s begin reviewing our old friend, regression.

It’s familiar; a good place to start.

Data comes as a set of n observations, each of which has p ”features”.

We will assume continuous features (not always the case).

The goal is to learn the function y = f̂(x1, x2, ..., xp) for predicting new values.

Marcelo Ponce (SciNet HPC @ UofT) Intro to Machine Learning with Python CBP 2019 - May 3, 2019 9 / 83

Least Squares

One way to fit a functional form to some data is Ordinary Least Squares (OLS):

Fit some ŷ = f̂(x; θ) to some data (x, y) which minimizes the squared error.

This means we are assuming that the data is generated by some true function f

y = f(x) + ε

ε is some error which can’t be avoided.

We choose θ such that

θ̂ = argminθ
∑
i

(
yi − f̂(xi, θ)

)2

Marcelo Ponce (SciNet HPC @ UofT) Intro to Machine Learning with Python CBP 2019 - May 3, 2019 10 / 83

Generate some data, and fit

In [1]: import regression as reg

In [2]: import numpy as np

In [3]:

In [3]: n = 50

In [4]:

In [4]: x, y = reg.noisy data(n)

In [5]: x2 = np.linspace(-1, 1, 100)

In [6]:

In [6]: p = np.polyfit(x, y, 1)

In [7]: fit = np.poly1d(p)

In [8]:

In [8]: plt.plot(x, y, ’ko’)

In [9]: plt.plot(x2, fit(x2), ’g-’)

In [10]:

Example inspired by L. Dursi.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

0.75

0.50

0.25

0.00

0.25

0.50

0.75

y

Marcelo Ponce (SciNet HPC @ UofT) Intro to Machine Learning with Python CBP 2019 - May 3, 2019 11 / 83

Regression

We’ve got our data, and we’ve starting
the process of fitting it. What questions
should we be asking?

How well is this fit likely to perform
on new data?

How accurate is the fit at any given
point (x = 0)?

How robust is this fit? Will it vary
significantly given new data?

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

0.75

0.50

0.25

0.00

0.25

0.50

0.75

y

Marcelo Ponce (SciNet HPC @ UofT) Intro to Machine Learning with Python CBP 2019 - May 3, 2019 12 / 83

Repeat with degree 20

In [10]:

In [10]: p20 = np.polyfit(x, y, 20)

In [11]: fit20 = np.poly1d(p20)

In [12]:

In [12]: plt.plot(x, y, ’ko’)

In [13]: plt.plot(x2, fit20(x2), ’g-’)

In [14]:

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

y

Marcelo Ponce (SciNet HPC @ UofT) Intro to Machine Learning with Python CBP 2019 - May 3, 2019 13 / 83

Regression, with degree 20

We’ve obviously gotten much better
accuracy. Let’s ask the same questions
as before:

How well is this fit likely to perform
on new data?

How accurate is the fit at any given
point (x = 0)?

How robust is this fit? Will it vary
significantly given new data?

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

y

Marcelo Ponce (SciNet HPC @ UofT) Intro to Machine Learning with Python CBP 2019 - May 3, 2019 14 / 83

Total error

We can calculate the total error
associated with our fit:

E =
∑
i

(
yi − f̂(xi)

)2
which is just the sum of the squared
residuals of the fit.

If we plot this as a function of
polynomial order, we see that the
error does indeed go down. So,
shouldn’t we use the highest-order
polynomial possible?

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Polynomial Degree

0

2000

4000

6000

8000

In
-S

am
pl

e
Er

ro
r

Marcelo Ponce (SciNet HPC @ UofT) Intro to Machine Learning with Python CBP 2019 - May 3, 2019 15 / 83

Bias versus variance

Consider the expectation value of the squared error of our model (f̂). What should it look
like? Recall that y = f + ε.

E

[(
y − f̂

)2]
=

(
E[f]− E[f̂]

)2
+ E

[(
f̂ − E

[
f̂
])2]

+ σ2
ε

= Bias2 + Var + σ2
ε

Last term: noise intrinsic to the problem. We won’t address this here.

First term: squared bias of the model. Is the expectation value of the model, the
expected value of f?

Second term: variance of the model. How robust is our model to changes in the data?

The Mean Squared Error has contributions from Bias and Variance.

There is almost always a tradeoff between bias and variance.

Marcelo Ponce (SciNet HPC @ UofT) Intro to Machine Learning with Python CBP 2019 - May 3, 2019 16 / 83

Bias and variance in fitting

Because this is fake data we can
directly examine bias and variance in
our fits.

Generate a bunch of data sets,
each with different noise.

Generate fits to each data set,
using a given polynomial degree,

plot the fits and

generate a prediction for a given
point (x = 0.0, say), for each
fit.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

0.5

0.0

0.5

Degree1

0.3 0.2 0.1 0.0 0.1 0.2 0.3
0

50

100

150 Bias

Variance

Marcelo Ponce (SciNet HPC @ UofT) Intro to Machine Learning with Python CBP 2019 - May 3, 2019 17 / 83

Polynomial fit - linear

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

0.5

0.0

0.5

Degree1

0.3 0.2 0.1 0.0 0.1 0.2 0.3
0

50

100

150 Bias

Variance

Marcelo Ponce (SciNet HPC @ UofT) Intro to Machine Learning with Python CBP 2019 - May 3, 2019 18 / 83

Polynomial fit - fifth order

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

0.5

0.0

0.5

Degree5

0.3 0.2 0.1 0.0 0.1 0.2 0.3
0

50

100

150 Bias

Variance

Marcelo Ponce (SciNet HPC @ UofT) Intro to Machine Learning with Python CBP 2019 - May 3, 2019 19 / 83

Polynomial fit - ninth order

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

2

0

2
Degree9

0.3 0.2 0.1 0.0 0.1 0.2 0.3
0

50

100

150 Bias

Variance

Marcelo Ponce (SciNet HPC @ UofT) Intro to Machine Learning with Python CBP 2019 - May 3, 2019 20 / 83

Bias and variance, continued

Bias is a measure of how consistent the model is with the true behaviour.

In general, models which are too simple can’t capture all of the behaviour of the system.

As such, estimations based on simple models tend to have larger bias.

As the model becomes more complex, bias tends to go down, as the model can capture
the behaviour of the data.

Variance: how sensitive is the model to the particular data set?

This is related to the question: how general is the model? Is the model learning trends
which will generalize to new data? Or is it overfitting to the noise?

As the model complexity grows, the model tends to have higher variance.

Marcelo Ponce (SciNet HPC @ UofT) Intro to Machine Learning with Python CBP 2019 - May 3, 2019 21 / 83

Bias-variance tradeoff

If we compare the total error in the
computed model to the true model (not
usually available to us!), we can plot the
error vs the degree of the polynomial:

For small degrees, the dominant term
is the bias; simpler models can’t
capture the true behaviour of the
system.

For larger degrees, the dominant term
is the variance; more-complex models
are generalizing poorly, and
overfitting noise.

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Polynomial Degree

101

102

103

104

Fi
t E

rro
r

There’s a sweet spot where the two are
comparatively low.

Marcelo Ponce (SciNet HPC @ UofT) Intro to Machine Learning with Python CBP 2019 - May 3, 2019 22 / 83

That’s great, but...

This all very interesting, but what do we do in practice?

If I’m given a dataset, and I want to fit a polynomial to it, how do I choose the appropriate
degree? I obviously don’t know the true function in that case.

We’ll get to that in a moment. First, let’s go over some necessary first steps.

Marcelo Ponce (SciNet HPC @ UofT) Intro to Machine Learning with Python CBP 2019 - May 3, 2019 23 / 83

Step 1: plot the residuals via histogram

Always plot a histogram of your residuals.
Things to look for:

The mean should be zero. If your
residuals are not centered on zero
your model is missing important
information.

The distribution should be
symmetric. If it’s not, it’s biased
(there ’structure’ in the data which
has not been captured by the model).

Distribution should be a Gaussian (an
assumption made as part of the fit).

1.0 0.5 0.0 0.5 1.0

0.5

0.0

0.5

1.0
Degree 1

0.5 0.0 0.5
0.0

2.5

5.0

Marcelo Ponce (SciNet HPC @ UofT) Intro to Machine Learning with Python CBP 2019 - May 3, 2019 24 / 83

Step 2: plot the residuals, versus index

Always plot your residuals versus index, or
independent variable. Things to look for:

The residuals should scatter randomly
above and below zero.

If the residuals spend too much time
above or below zero then there’s
structure in the data that has not
been captured by the model.

1.0 0.5 0.0 0.5 1.0

0.5

0.0

0.5

Degree 3

1.0 0.5 0.0 0.5 1.0
0.5

0.0

0.5

Marcelo Ponce (SciNet HPC @ UofT) Intro to Machine Learning with Python CBP 2019 - May 3, 2019 25 / 83

Step 3: check R2

R2 = (explained variation) / (total
variation).

Explains how much of the variance in
the data can be explained by the model.

All other variation is caused by
shortcomings in the model, or noise.

A high R2 value is necessary, but not
sufficient, for the model to be
satisfactory.

An R2 can be calculated using the
r2 score function from sklearn.metrics
subpackage.

In [14]:

In [14]: n = 40

In [15]:

In [15]: x, y = reg.noise data(n)

In [16]:

In [16]: p = np.polyfit(x, y, 10)

In [17]:

In [17]: fit = np.poly1d(p)

In [18]:

In [18]: import sklearn.metrics as skm

In [19]:

In [19]: skm.r2 score(y, fit(x))

0.93859615700524612

In [20]:

Marcelo Ponce (SciNet HPC @ UofT) Intro to Machine Learning with Python CBP 2019 - May 3, 2019 26 / 83

Step 1: revisited

1.0 0.5 0.0 0.5 1.0

0.5

0.0

0.5

1.0
Degree 1

0.5 0.0 0.5
0.0

2.5

5.0

1.0 0.5 0.0 0.5 1.0

1

0

Degree 13

0.3 0.2 0.1 0.0 0.1
0.0
2.5
5.0
7.5

Marcelo Ponce (SciNet HPC @ UofT) Intro to Machine Learning with Python CBP 2019 - May 3, 2019 27 / 83

Step 2: revisited

1.0 0.5 0.0 0.5 1.0

0.5

0.0

0.5

Degree 3

1.0 0.5 0.0 0.5 1.0
0.5

0.0

0.5
1.0 0.5 0.0 0.5 1.0

1

0

Degree 13

1.0 0.5 0.0 0.5 1.0

0.2

0.0

Marcelo Ponce (SciNet HPC @ UofT) Intro to Machine Learning with Python CBP 2019 - May 3, 2019 28 / 83

Model training versus validation

Steps 1 - 3 are necessary, but don’t tell us which order of polynomial to use.

As we’ve discussed before, we can crank up the order of the polynomial and get a great fit to
the data (even perfect!). But this won’t do well on out-of-sample data.

We would can use out-of-sample testing of whatever model we generate to test the quality of
the order of the polynomial, to see how it does against new data. But we often don’t have any
new data.

The solution is to hold out some of the original data. Most of the data is used for training the
model, the rest is used for validating it. These data should be chosen randomly.

Marcelo Ponce (SciNet HPC @ UofT) Intro to Machine Learning with Python CBP 2019 - May 3, 2019 29 / 83

Model training versus validation, continued

Once the model is chosen, then you can train the selected model on the entire training +
validation data set.

But you will probably still want to end your paper with a sentence like ”the final model
achieved 80% accuracy...”. This can’t be done on the data the model was trained on (train +
validation); in this case, another chunk of data must be held out, for testing.

In the case of training-validation-testing, a common breakdown of the data sizes might be
50%-25%-25% of the initial set. If you don’t need a test data set, 2/3-1/3 is common.

Note that the data sets should be chosen randomly!

Marcelo Ponce (SciNet HPC @ UofT) Intro to Machine Learning with Python CBP 2019 - May 3, 2019 30 / 83

k-fold Cross Validation

There are some downsides to the approach we’ve taken for validation hold-out. What if most
outliers happen to be in the training set?

Ideally, we should do several partitions and average over the results. This is called k-fold Cross
Validation:

Partition the data set (randomly) into k sets.

For each set:
I Train on the remaining k − 1 sets.
I Validate on the held-out set.

Average the results.

Makes very efficient use of the data set, easily automated.

Marcelo Ponce (SciNet HPC @ UofT) Intro to Machine Learning with Python CBP 2019 - May 3, 2019 31 / 83

k-fold cross-validation, continued

How do we choose k?

if k is too large - the different training sets are very highly correlated (almost all of their
points are the same).

if k is too small - we don’t get very much advantage of averaging.

In practice, 10 is a very commonly-used value for k; but again, this depends on the size of
your data set.

Marcelo Ponce (SciNet HPC @ UofT) Intro to Machine Learning with Python CBP 2019 - May 3, 2019 32 / 83

k-fold cross-validation, regression example
The sklearn package has built-in
functionality to make
cross-validation easy.

The model selection
subpackage has a KFold
function. It returns the
indices of the training and
testing data.

By default KFold does not
shuffle the indices, you need
to tell it to do so.

crossvalidation.py

import numpy as np, sklearn.model selection as skms

def estimateError(x, y, d, kfolds = 10):

err = 0.0

kfold = skms.KFold(n splits = kfolds, shuffle = True)

for train, test in kfold.split(x):

test x = x[test]; test y = y[test]

train x = x[train]; train y = y[train]

p = numpy.polyfit(train x, train y, d)

fit = numpy.poly1d(p)

err = err + sum((test y - fit(test x))**2)

return np.sqrt(err)

Marcelo Ponce (SciNet HPC @ UofT) Intro to Machine Learning with Python CBP 2019 - May 3, 2019 33 / 83

k-fold cross-validation, regression example, continued

We run this function on 50 points
using 10-fold cross validation.

We calculated the error for each
degree; the minimum is chosen. In
practise, the simplest model that is
”close enough” to the minimum is
generally a good choice.

0 5 10 15 20
Degree

0

20

40

60

80

100

CV
 E

rro
r

1.0 0.5 0.0 0.5 1.0

0.75

0.50

0.25

0.00

0.25

0.50

0.75

Selected Degree 14

Marcelo Ponce (SciNet HPC @ UofT) Intro to Machine Learning with Python CBP 2019 - May 3, 2019 34 / 83

Cross-validation and bootstrapping

Cross-validation is closely related to a more fundamental method, bootstrapping.

Let’s say you want to find some statistic on some statistic of your data.

What is the standard deviation of the 5th quantile of your data?

What is the mean and standard deviation of an estimation error for a given model?

You’d like new sets of data that you could calculate your statistics on, and then look at the
distribution of those.

Marcelo Ponce (SciNet HPC @ UofT) Intro to Machine Learning with Python CBP 2019 - May 3, 2019 35 / 83

Non-parametric Bootstrapping

The key insight to the non-parametric bootstrap is that you already have an unbiased
description of the process that generated your data - the data itself.

The approach for the non-parametric bootstrap is:

Generate synthetic data sets from the original data set by resampling;

Calculate the statistic of interest on these synthetic data sets, and get the distribution of
that particular statistic.

Cross-validation is a particular case: CV takes k (sub)samples of the original data set, applied
a function (fit the data set to part, calculate error on the remainder), and calculates the mean.

Bootstrapping can be used far more generally: any time you need to estimate statistics on a
quantity whose statistics aren’t automatically calculated.

Marcelo Ponce (SciNet HPC @ UofT) Intro to Machine Learning with Python CBP 2019 - May 3, 2019 36 / 83

Non-parametric Bootstrapping, example

Suppose you want to get statistics on
the median of your data. How would
you get the uncertainty on the median?

Randomly sample from your data
to create a fake data set.

By default numpy.random.choice
sets ”replace = True”, so that you
are sampling from the full
population.

Do this many times.

Calculate statistics on the resulting
distribution.

In [20]: import sklearn.datasets as skd

In [21]: import numpy.random as npr

In [22]: dia = skd.load diabetes()

In [23]:

In [23]: bmi = dia[’data’][:,2]

In [24]:

In [24]: meds = [np.median(npr.choice(bmi, 200))

for i in range(1000)]

In [25]:

In [26]: np.mean(meds)

Out[26]: -0.0069275493192715136

In [27]:

In [27]: np.var(meds)

Out[27]: 1.3415090494694259e-05

In [28]:

Marcelo Ponce (SciNet HPC @ UofT) Intro to Machine Learning with Python CBP 2019 - May 3, 2019 37 / 83

Non-parametric Bootstrapping, example, continued

In [28]:

In [28]: plt.hist(meds)

In [29]:

In [29]: mean meds = np.mean(meds)

In [30]: std meds = np.sqrt(np.var(meds))

In [31]:

In [31]: plt.axvline(mean meds, lw = 3,

color = ’red’)

In [32]: plt.axvline(mean meds + std meds,

lw = 3, color = ’green’)

In [33]: plt.axvline(mean meds - std meds,

lw = 3, color = ’green’)

In [34]:

We now have an estimate of the uncertainty
on the median.

0.025 0.020 0.015 0.010 0.005 0.000 0.005 0.010
0

50

100

150

200

250

300

350

Marcelo Ponce (SciNet HPC @ UofT) Intro to Machine Learning with Python CBP 2019 - May 3, 2019 38 / 83

Notes on Bootstrapping

Bootstrapping strengths:

Allows you to get information on a statistic when the true distribution of the statistic is
unknown.

Bootstrapping weaknesses:

If the statistic of interest is at the edge of parameter space (minimum, maximum, for
example) the bootstrapped distribution does not converge to the true distribution.

If you have too few data points to begin with, bootstrapping will not magically make
things better. Your data must be a true representation of the population from which it is
drawn.

If your data’s probability distribution has a long tail, or infinite moments, bootstrapping
will fail, or give wildly inaccurate results. Examples include the Cauchy distribution, and
non-central Student t distribution with 2 degrees of freedom.

Marcelo Ponce (SciNet HPC @ UofT) Intro to Machine Learning with Python CBP 2019 - May 3, 2019 39 / 83

Parametric Bootstrapping

If you know the form of the distribution that describes your data, you can simulate new data
sets:

Fit the distribution to the data;

Generate synthetic data sets from the now-known distribution to your heart’s content;

Calculate the statistics on these synthetic data sets, and get their distribution.

This works perfectly well if you know a model that will correctly describe your data; and
indeed if you do know that, it would be madness *not* to make use of it in your analysis.

Marcelo Ponce (SciNet HPC @ UofT) Intro to Machine Learning with Python CBP 2019 - May 3, 2019 40 / 83

Jack-knifing

Another resampling technique is ’jack-knifing’.

This is a special case of non-parametric bootstrapping.

Generally used to estimate the bias and variance of a particular statistic.

In this use-case, the statistic of interest repeatedly recalculated while leaving out one or
more different data points. The distribution of the statistic is then analysed.

Less computationally intensive than bootstrapping, since random numbers are left out.

Not as common as bootstrapping.

We won’t do an example of this, but you need to be aware that it exists.

Marcelo Ponce (SciNet HPC @ UofT) Intro to Machine Learning with Python CBP 2019 - May 3, 2019 41 / 83

Classification

Classification is similar to regression, in a sense:

You fit a model to data with known answers (y = f(x1, x2, x3, ...)).

You use the model to make predictions about new data.

But what do you do if the labels (y) are discrete? How do you deal with that?

Data point y is either in category 1 or 2.

You don’t get points for putting y in category 1.5.

Classification algorithms are used to create models for separating data into known categories.

Marcelo Ponce (SciNet HPC @ UofT) Intro to Machine Learning with Python CBP 2019 - May 3, 2019 42 / 83

Classification problems

Classification problems are everywhere:

Bioinformatics - classifying proteins according to function.

Medical diagnosis.

Image processing:
I what objects exist in an image?
I hand-written text analysis.

Text categorization:
I Spam filtering
I Sentiment analysis: is this tweet positive or negative?

Language recognition.

Fraud detection.

Input variables can be continuous, discrete, or both.

Marcelo Ponce (SciNet HPC @ UofT) Intro to Machine Learning with Python CBP 2019 - May 3, 2019 43 / 83

Classification approaches

There are lots of classification approaches which one might use.

Decision trees: analyze the features of the data and make ’decisions’ about how to ’split’
the data into uniform groups.

Logistic regression: like linear regression, but now we fit a ”yes/no” function to the data.

Naive Bayes: a type of probabilistic analysis.

kNN: k Nearest Neighbours; use the k nearest neighbours to a data point to predict the
category of a new data point.

Support Vector Machines: essentially a linear model of the data, used for separate groups.

Neural networks: a weird algorithmic approach to using functions to categorize data.

There isn’t time to cover all of these. Today we’ll cover Decision Trees and kNN.

Marcelo Ponce (SciNet HPC @ UofT) Intro to Machine Learning with Python CBP 2019 - May 3, 2019 44 / 83

Decision Trees

A Decision Tree is a structure which classifies
an input based on a number of binary
decisions.

It splits the data set based on one of the p
”features” of the data.

”Features” are the independent variables
associated with the data (x1, x2, ..., xp).

sex = male

age >= 9.5

sibsp >= 2.5
660 / 796

19 / 20 24 / 27

339 / 466

died

died survived

survived

yes no

Marcelo Ponce (SciNet HPC @ UofT) Intro to Machine Learning with Python CBP 2019 - May 3, 2019 45 / 83

Decision Trees, continued

Data can be split based on discrete data
(”if category == A”) or continuous data
(”if height < 1.5m”)

The goal of developing a decision tree is to
determine when and where and how to split
the data, so as to maximize the ’purity’ of
the resulting sub-data set.

sex = male

age >= 9.5

sibsp >= 2.5
660 / 796

19 / 20 24 / 27

339 / 466

died

died survived

survived

yes no

Marcelo Ponce (SciNet HPC @ UofT) Intro to Machine Learning with Python CBP 2019 - May 3, 2019 46 / 83

Muppet data set
Consider this data set. The goal is to create a decision tree algorithm which classifies Muppet
characters as Sesame Street (SS) or not.

Name colour cloths eye brows ball nose SS

Kermit green False False False False

Grover blue False False True True

Bert yellow True True True True

Sam the Eagle blue False True False False

Oscar green False True False True

Miss Piggy tan True False False False

Given this data, how does your algorithm do on this data?

Name colour cloths eye brows ball nose SS

Gonzo blue True False False ??

Big Bird yellow False False False ??

Marcelo Ponce (SciNet HPC @ UofT) Intro to Machine Learning with Python CBP 2019 - May 3, 2019 47 / 83

Splitting algorithms

Consider the following two possible first splits:

Split based on ’ball nose’.
I ball nose == True: we get Grover, Bert (SS).
I ball nose == False: we get Kermit, Sam the Eagle, Miss Piggy (not SS), Oscar (SS).

Split based on ’cloths’.
I cloths == True: we get Bert (SS), Miss Piggy (not SS).
I cloths == False: we get Kermit, Sam the Eagle (not SS), Grover, Oscar (SS).

There’s a sense in which the ball nose split is clearly better. It leads to two groups, one of
which is totally Sesame Street, and the other which is mostly not.

The other choice gives you two groups which are just as heterogeneous as the original data.

Marcelo Ponce (SciNet HPC @ UofT) Intro to Machine Learning with Python CBP 2019 - May 3, 2019 48 / 83

Splitting algorithms, continued

Algorithms which split the data rank possible splits based on increasing ’purity’ of the two
subgroups it generates.

Consider the probability p that a member of one of the labels is in a given feature category.
Two common measures for the ’impurity’ of the generated groups are given by

Gini index:
∑
p(1− p)

Entropy: −
∑

[p ln p+ (1− p) ln (1− p)]

Where the sum is over all labels and possible
values in the given category. A perfect Gini index
is an impurity of 0, or a probability of 0 or 1.

Marcelo Ponce (SciNet HPC @ UofT) Intro to Machine Learning with Python CBP 2019 - May 3, 2019 49 / 83

Muppet data set, again
Probabilities ball nose no ball nose cloths no cloths

SS 2/3 1/3 1/3 2/3

non-SS 0/3 3/3 1/3 2/3

So the Gini indices (
∑
p(1− p)) for splitting on these features are

2
3

(
1− 2

3

)
+ 1

3

(
1− 1

3

)
+ 0

3

(
1− 0

3

)
+ 3

3

(
1− 3

3

)
= 4

9
Better!

1
3

(
1− 1

3

)
+ 2

3

(
1− 2

3

)
+ 1

3

(
1− 1

3

)
+ 2

3

(
1− 2

3

)
= 8

9
Worse!

Name colour cloths eye brows ball nose SS

Kermit green False False False False

Grover blue False False True True

Bert yellow True True True True

Sam the Eagle blue False True False False

Oscar green False True False True

Miss Piggy tan True False False False

Marcelo Ponce (SciNet HPC @ UofT) Intro to Machine Learning with Python CBP 2019 - May 3, 2019 50 / 83

Splitting algorithms, continued more

So how do these algorithms proceed?

While every data point is not in a pure sub-tree:
I For each feature which we haven’t yet split upon, for the data remaining in the sub-tree,

consider a split:
F If the feature is categorical, consider all values, split by value and measure the impurity of the

resulting subgroups.
F If the feature is continuous, use line optimization to choose the best point at which to split,

keeping track of the impurity at that point.

I Choose the split which maximizes the change in the impurity (smallest impurity value), and
split the data.

Marcelo Ponce (SciNet HPC @ UofT) Intro to Machine Learning with Python CBP 2019 - May 3, 2019 51 / 83

Decision tree example

Let’s use a Python package to build
a decision tree. We’ll use the wine
data set.

The data consists of 13
measurements of 178 wines, of
3 classes.

It’s one of the data sets which
comes with sklearn.datasets.

The data comes as an sklearn
’bunch’.

We first randomly split the data
set, 80/20, into training and
test data sets.

In [34]: import sklearn.datasets as skd

In [35]: import sklearn.model selection as skms

In [36]:

In [36]: data0 = skd.load wine()

In [37]: data = data0.data

In [38]: targets = data0.target

In [39]: features = data0.feature names

In [40]:

In [40]: train x, test x, train y, test y =

skms.train test split(data, targets, test size = 0.2)

In [41]:

In [41]: train x.shape

Out[41]: (142, 13)

In [42]: train y.shape

Out[42]: (142,)

In [43]:

Marcelo Ponce (SciNet HPC @ UofT) Intro to Machine Learning with Python CBP 2019 - May 3, 2019 52 / 83

Decision tree example, continued

Now that the data’s split up, we’re ready to
generate the tree.

Load the sklearn.tree and
sklearn.metrics modules.

Create the tree model.

Train the model.

Check the result against the training
data.

Pretty good fit!

Plot the result.

In [43]:

In [43]: import sklearn.tree as skt

In [44]: import sklearn.metrics as skm

In [45]:

In [45]: model = skt.DecisionTreeClassifier()

In [46]:

In [46]: model = model.fit(train x, train y)

In [47]: pred = model.predict(train x)

In [48]:

In [48]: skm.accuracy score(train y, pred)

Out[48]: 1.0

In [49]:

Marcelo Ponce (SciNet HPC @ UofT) Intro to Machine Learning with Python CBP 2019 - May 3, 2019 53 / 83

Decision tree example, continued more
It’s always good to plot your decision tree.

In [49]:

In [49]: import pydotplus

In [50]:

In [50]: dot data = skt.export graphviz(model, out file = None,

...: class names = [str(i) for i in unique(targets)],

...: feature names = features, impurity = False, filled = True,

...: label = ’none’)

In [51]:

In [51]: g = pydotplus.graph from dot data(dot data)

In [52]:

In [52]: g.write pdf("wine tree.pdf")

In [53]:

If this looks clunky, it’s because it is.

Marcelo Ponce (SciNet HPC @ UofT) Intro to Machine Learning with Python CBP 2019 - May 3, 2019 54 / 83

Our decision tree
color_intensity <= 3.915

0.655
142

[46, 59, 37]

od280/od315_of_diluted_wines <= 3.695
0.132

57
[3, 53, 1]

True

od280/od315_of_diluted_wines <= 2.475
0.56
85

[43, 6, 36]

False

od280/od315_of_diluted_wines <= 1.545
0.071

55
[1, 53, 1]

0.0
2

[2, 0, 0]

0.0
1

[0, 0, 1]

ash <= 3.07
0.036

54
[1, 53, 0]

0.0
53

[0, 53, 0]

0.0
1

[1, 0, 0]

hue <= 0.97
0.053

37
[0, 1, 36]

proline <= 697.5
0.187

48
[43, 5, 0]

0.0
36

[0, 0, 36]

0.0
1

[0, 1, 0]

0.0
5

[0, 5, 0]

0.0
43

[43, 0, 0]

Marcelo Ponce (SciNet HPC @ UofT) Intro to Machine Learning with Python CBP 2019 - May 3, 2019 55 / 83

Confusion matrix

How you determine the effectiveness of a classifier is different than a regression. You can
count the number incorrectly classified, and this useful, but it doesn’t give you much
information you can use to improve the result.

The ’Confusion Matrix’, tells you which misclassifications happened. Traditionally, ’true’
classifications are on the rows, and predictions are on the columns.

In [53]:

In [53]: skm.confusion matrix(train y, pred)

Out[53]:

array([[49, 0, 0],

[0, 54, 0],

[0, 0, 39]])

In [54]:

Marcelo Ponce (SciNet HPC @ UofT) Intro to Machine Learning with Python CBP 2019 - May 3, 2019 56 / 83

Decision tree example, continued even more

Ok, but how does the decision tree
do on the test data?

Test the built tree against the
test data.

Print out the table of results.

Not bad!

In [54]:

In [54]: test pred = model.predict(test x)

In [55]:

In [55]: skm.confusion matrix(test y, test pred)

Out[55]:

array([[10, 0, 0],

[2, 14, 1],

[0, 1, 8]])

In [56]:

In [56]: skm.accuracy score(test y, test pred)

Out[56]: 0.88888888888888884

In [57]:

Marcelo Ponce (SciNet HPC @ UofT) Intro to Machine Learning with Python CBP 2019 - May 3, 2019 57 / 83

Trees and over-fitting

As with polynomials and regression, we can easily produce overly-complex decision trees which
do great on the training data, but don’t generalize.

In fact, this is guaranteed to happen with decision trees, since given enough splits, it will
always perfectly classify the data.

How do we deal with this? The usual approach is to prune the tree at some level, where the
results are ”good enough”, and the model is not ”too complex”.

Marcelo Ponce (SciNet HPC @ UofT) Intro to Machine Learning with Python CBP 2019 - May 3, 2019 58 / 83

Random forests

You may have heard of ”random forests”. What are those?

Random forests fall under the category of ”ensemble methods”. This means an averaging
over several machine-learning models.

In this case, a random forest is an average over a collection of decision trees.

To do this,
I bootstrapping is applied to the data set in question, and decision trees are fit to each sample;
I however, during the training of the trees, at each split only a subset of possible features are

chosen as split candidates;
I predictions on out-of-sample data are then generated, and an average over all trees is made.

This results in a lowering of the variance, which is inherently large with decision trees.

If you end up using decision trees in your research, random forests are worth considering.

Marcelo Ponce (SciNet HPC @ UofT) Intro to Machine Learning with Python CBP 2019 - May 3, 2019 59 / 83

Nearest neighbours - kNN

Consider a more-geometric approach
to classification: given an input data
point, find the nearest point in the
training set, and choose that
classification for your input data
point.

This is a type of regression.

A generalization is to choose the k
Nearest Neighbours (kNN), and
choose the classification that the
majority of those k points has.

4 2 0 2 4

4

2

0

2

4

Two 2D Gaussians, centred on (-1,-1) (red), and
(1,1) (blue) with σ = 1.5, k = 1.

Marcelo Ponce (SciNet HPC @ UofT) Intro to Machine Learning with Python CBP 2019 - May 3, 2019 60 / 83

Nearest neighbours - kNN, continued
knndemo.py

import numpy as np

from scipy.stats import norm

import sklearn.neighbors as skn

num0 = 200; num = int(num0 / 2)

c1 = -1.0; c2 = 1.0; sig1 = 1.5

Generate Gaussian data.

x1 = norm.rvs(size = num, loc = c1, scale = sig)

y1 = norm.rvs(size = num, loc = c1, scale = sig)

x2 = norm.rvs(size = num, loc = c2, scale = sig)

y2 = norm.rvs(size = num, loc = c2, scale = sig)

Set up the data.

z1 = np.c [x1, y1]; z2 = np.c [x2, y2];

x = np.concatenate((z1, z2))

y = np.concatenate((np.zeros(num), np.ones(num)))

Set up the background grid.

xx, yy = np.meshgrid(np.arange(-5, 5, 0.01),

np.arange(-5, 5, 0.01))

Build the model, and train.

model = skn.KNeighborsClassifier(k)

model.fit(x, y)

Predict the values for the background.

z = model.predict(np.c [xx.ravel(), yy.ravel()])

Put the result into a colour plot.

z = z.reshape(xx.shape)

plt.pcolormesh(xx, yy, z)

Plot also the training points, and save.

plt.scatter(x[:, 0], x[:, 1], c = y)

plt.savefig(’knndemo k=’ + str(k) + ’.pdf’)

Marcelo Ponce (SciNet HPC @ UofT) Intro to Machine Learning with Python CBP 2019 - May 3, 2019 61 / 83

Bias-variance in kNN

There’s a bias-variance-like
tradeoff in kNN, as can be
seen by varying k on the same
data.

At low k, the variance is very
large. The model is trying to
fit to every single point.

At higher k, we average over a
large area, and we start to lose
features.

k=1 k=3

4 2 0 2 4

4

2

0

2

4

4 2 0 2 4

4

2

0

2

4

k=7 k=13

4 2 0 2 4

4

2

0

2

4

4 2 0 2 4

4

2

0

2

4

Marcelo Ponce (SciNet HPC @ UofT) Intro to Machine Learning with Python CBP 2019 - May 3, 2019 62 / 83

Bias-variance in kNN, continued

On the right we see 4
instances of the previous data
set. The model has been built
with k = 1 for all 4. It’s clear
that the decision boundary
varies widely from one run to
the next. 4 2 0 2 4

4

2

0

2

4

4 2 0 2 4

4

2

0

2

4

4 2 0 2 4

4

3

2

1

0

1

2

3

4

4 2 0 2 4

6

4

2

0

2

4

Marcelo Ponce (SciNet HPC @ UofT) Intro to Machine Learning with Python CBP 2019 - May 3, 2019 63 / 83

Scaling continuous features

In the iris data set, petal length varies over a much greater range than sepal width. If we just
use Euclidean distance for kNN, sepal width will provide very little information: all points are
close to each other in that dimension.

We want the information in all variables to contribute to the solution. To this end, we should
scale the variables to that they all get to play. A common technique is to centre the variables
by subtracting off their means, and then scaling them by their standard deviations.

x′ =
x− µ
σx

Many libraries will do this for you, for methods where it matters. But not all will; check the
documentation!

Marcelo Ponce (SciNet HPC @ UofT) Intro to Machine Learning with Python CBP 2019 - May 3, 2019 64 / 83

Cross-validation and kNN

But we are left with the same (or similar)
problem as the polynomial fitting: how do
we choose the value of k?

The sklearn package has built-in
functionality to perform cross-validation on
a kNN analysis.

Let’s try this on the Iris data set: 4
measurements of wild irises, of 3 species,
150 samples.

In [57]: import sklearn.datasets as skd

In [58]: import sklearn.preprocessing as skp

In [59]:

In [59]: iris = skd.load iris()

In [60]: x = skp.scale(iris.data)

In [61]: y = iris.target

In [62]:

In [62]: x.shape

Out[62]: (150, 4)

In [63]: iris.feature names

Out[63]:

[’sepal length (cm)’, ’sepal width (cm)’,

’petal length (cm)’, ’petal width (cm)’]

In [64]: iris.target names

Out[64]:

array([’setosa’, ’versicolor’, ’virginica’])

Marcelo Ponce (SciNet HPC @ UofT) Intro to Machine Learning with Python CBP 2019 - May 3, 2019 65 / 83

Cross-validation and kNN, continued

How do we use the sklearn
cross-validation?

Create a KNeighborsClassifier
object.

Use the cross val score function
to perform the crossvalidation
for you.

The function returns the scores
for each k fold.

Examine the scores to find the
best k value.

In [65]:

In [65]: import sklearn.neighbors as skn

In [66]: import sklearn.model selection as skms

In [67]:

In [67]: kvalues = range(1, 43, 2)

In [68]: scores = np.zeros(len(kvalues))

In [69]:

In [69]: for i, k in enumerate(kvalues):

...: model = skn.KNeighborsClassifier(k)

...: scores[i] = np.mean(skms.cross val score(model,

x, y, cv = 10))

In [70]:

In [70]: plt.plot(kvalues, scores, ’ko-’)

In [71]:

Marcelo Ponce (SciNet HPC @ UofT) Intro to Machine Learning with Python CBP 2019 - May 3, 2019 66 / 83

Cross-validation and kNN, continued more

0 5 10 15 20 25 30 35 40
k

0.89

0.90

0.91

0.92

0.93

0.94

0.95

0.96

Ac
cu

ra
cy

 [%
]

Marcelo Ponce (SciNet HPC @ UofT) Intro to Machine Learning with Python CBP 2019 - May 3, 2019 67 / 83

Cross-validation and kNN, continued even more

Unfortunately, cross val score does
not return the best model. You need
to recalculate that yourself.

As always, it’s a good idea to see
how well the algorithm works, and
make sure the errors are balanced.

In [71]:

In [71]: bestmodel = skn.KNeighborsClassifier(15)

In [72]:

In [72]: bestmodel = bestmodel.fit(x, y)

In [73]:

In [73]: pred = bestmodel.predict(x)

In [74]:

In [74]: skm.confusion matrix(y, pred)

array([[50, 0, 0],

[0, 48, 2],

[0, 3, 47]])

In [74]:

In [74]: skm.accuracy score(y, pred)

Out[74]: 0.96666666666666667

In [75]:

Marcelo Ponce (SciNet HPC @ UofT) Intro to Machine Learning with Python CBP 2019 - May 3, 2019 68 / 83

Classification summary

Things to remember about decision trees and kNN:

Decision tree strength: can sensibly deal with categorical data.

Decision tree strength: perform implicit feature selection.

Decision tree strength: easy to understand (and explain) the results.

Decision tree weakness: prone to over-fitting.

kNN strength: works in as many dimensions as you like.

kNN weakness: slow if there are too many data points.

kNN weakness: doesn’t handle categorical data (data must be numeric).

Note that there are other classification algorithms out there: logistic regression, naive Bayes,
support vector machines, etc.

Marcelo Ponce (SciNet HPC @ UofT) Intro to Machine Learning with Python CBP 2019 - May 3, 2019 69 / 83

Clustering

Let’s switch to a different sort of classification approach: classification without the labels.

This is what is known as a type ”unsupervised learning”.

It’s ”unsupervised” because there are no labels.”

This can show up in all sorts of applications:

Finding patterns in properties of galaxies.

Determine proteins with similar interaction types.

Market segmentation.

”Customers who buy X often buy...”.

There are two main clustering approaches you’ll run into: k-means and hierachical clustering.

Marcelo Ponce (SciNet HPC @ UofT) Intro to Machine Learning with Python CBP 2019 - May 3, 2019 70 / 83

Clustering, continued
The reason for using algorithms to find clusters in the data is because

It’s difficult to find clusters in high-dimensional data (since you can’t visualize it all at
once).

You might want to summarize a large number of observations in to fewer, similar clusters.

Obviously, we haven’t defined what we mean by ”similar” or ”cluster” yet.

A ”cluster” is a group of data points which are centered around some central, average
point.

The ”similarity” between points is determined by some measure of ”distance” between
them, in the p dimensional space in which they live.

In continuous spaces the distance can be Euclidean, or some other measure of distance
(L1 norm).

In ordinal spaces (bag-of-words counts, for example) you can use the ”cosine similarity”

cos θ = A·B
|A||B|

Marcelo Ponce (SciNet HPC @ UofT) Intro to Machine Learning with Python CBP 2019 - May 3, 2019 71 / 83

K-means clustering

K-means clustering is a geometric clustering algorithm which finds roughly-spherical blobs of
clusters amongst the data. The algorithm is straightforward. Starting with k initial cluster
centres:

Assign each data point to the nearest centre.

Recalculate the center of each cluster, based on its members.

Move the centres to the new locations.

Repeat until converged (the centres stop moving).

The value of k must be specified before starting.

Marcelo Ponce (SciNet HPC @ UofT) Intro to Machine Learning with Python CBP 2019 - May 3, 2019 72 / 83

K-means clustering, example

As you might expect, K-means is
built into sklearn.

It’s as easy to use as you might
hope.

Once the model is trained, you
can get the centers of the
clusters, and the predicted labels,
using the ”cluster centers ” and
”labels ” model entries.

In [75]: import sklearn.cluster as skc

In [76]:

In [76]: model = skc.KMeans(n clusters = 3)

In [77]: model = model.fit(x)

In [78]:

In [78]: plt.scatter(x[:,0], x[:,2], c = model.labels)

In [79]:

In [79]: for i in range(3):

...: plt.scatter(model.cluster centers [i][0],

...: model.cluster centers [i][2],

...: c = ’ForestGreen’)

In [80]:

Marcelo Ponce (SciNet HPC @ UofT) Intro to Machine Learning with Python CBP 2019 - May 3, 2019 73 / 83

K-means clusters, example, continued

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
sepal length (cm)

1

2

3

4

5

6

7

pe
ta

l l
en

gt
h

(c
m

)

Marcelo Ponce (SciNet HPC @ UofT) Intro to Machine Learning with Python CBP 2019 - May 3, 2019 74 / 83

K-means clustering, continued

K-means has both strengths and weaknesses.

You need to know what value of k to use.

Random initialization of the centres can go badly wrong.

For this to be robust, you need to repeat many times.

This is usually done automatically by sklearn’s KMeans, and the best result is returned.

k-means has a tendency to make equally-populated clusters, which can lead to incorrect
results.

For this to work consistently, we need a way to measure the quality of the model.

Marcelo Ponce (SciNet HPC @ UofT) Intro to Machine Learning with Python CBP 2019 - May 3, 2019 75 / 83

K-means clustering, quality measures

A few measures of error have been developed for K-means.

We’d like to minimize the within-cluster sum of squares.

WCSS =

k∑
i

∑
j∈Si

|xj − µj|2

We’d like to maximize the between-cluster sum of squares.

ICSS =

n∑
i

n∑
j

δ(Si, Sj) |xi − xj|2

These are output by standard k-means algorithms.

Marcelo Ponce (SciNet HPC @ UofT) Intro to Machine Learning with Python CBP 2019 - May 3, 2019 76 / 83

K-means and cross-validation

How do we pick k? You
guessed it!

Create a KMeans object.

Use the cross val score
function to perform the
crossvalidation for you.

The function returns the
scores for each k fold.

Examine the scores to
find the best k value.

In [80]:

In [80]: kvalues = range(1, 9)

In [81]: scores = np.zeros(len(kvalues))

In [82]:

In [82]: for k in kvalues:

...: model = skc.KMeans(n clusters = k)

...: scores[k - 1] = np.mean(skms.cross val score(model,

x, cv = 10))

In [83]:

In [83]: plt.plot(kvalues, scores, ’ko-’)

In [84]:

Unlike other algorithms, the accuracy of k-means does not
’turn over’, meaning start to get worse with increasing k.

Marcelo Ponce (SciNet HPC @ UofT) Intro to Machine Learning with Python CBP 2019 - May 3, 2019 77 / 83

K-means clusters, example, continued

1 2 3 4 5 6 7 8
k

80

70

60

50

40

30

20

10

0

Ne
ga

tiv
e

W
CS

S

Marcelo Ponce (SciNet HPC @ UofT) Intro to Machine Learning with Python CBP 2019 - May 3, 2019 78 / 83

Hierarchical clustering
K-means uses a geometric approach to clustering. Hierarchical clustering works point-by-point.

Agglomerative (bottom up) clustering:

All data points start in their own cluster.

At each iteration, the two ”best matching” are joined into the same cluster.

Repeat until there is only cluster left.

This builds a tree of connections. This tree then needs to be pruned to distinguish the
clusters. To do this we still need some sort of distance metric, and a linkage criteria, which
specifies the dissimilarity of the clusters.

k-means-like: what is the distance between the centres of the clusters which have been
built thus far?

single linkage: what is the minimum distance between any two points in two clusters.

mean linkage: what is the mean distance between all points in two clusters?

Marcelo Ponce (SciNet HPC @ UofT) Intro to Machine Learning with Python CBP 2019 - May 3, 2019 79 / 83

Agglomerative clustering, example

As you might expect,
agglomeration clustering is
built into sklearn.

Let’s use a different data set
to test this: swiss roll.

The connectivity of the points
is determined using the
kneighbors graph command.
This creates a graph between
the points, based on some
metric.

In [84]: import sklearn.datasets as skd

In [85]: x, y = skd.make swiss roll(1000, noise = 0.4)

In [86]: x.shape

Out[86]: (1000, 3)

In [87]:

In [87]: x = np.c [x[:, 0], x[:, 2]]

In [88]:

In [88]: x.shape

Out[88]: (1000, 2)

In [89]:

In [89]: model = skc.AgglomerativeClustering(n clusters = 3,

connectivity = skn.kneighbors graph(x, 30))

In [90]: model = model.fit(x)

In [91]:

In [91]: plt.scatter(x[:,0], x[:,1], c = model.labels)

In [92]:

Marcelo Ponce (SciNet HPC @ UofT) Intro to Machine Learning with Python CBP 2019 - May 3, 2019 80 / 83

K-Means versus Hierarchical clustering

K-means and hierarchical clustering
have very different behaviours.

K-means only cares about
distances ”as the crow flies”.

Hierarchical cares about
distances between individual
data points.

K-means requires the number of
clusters up front.

Hierarchical gives you an entire
tree. 10 5 0 5 10

10

5

0

5

10

15

Agglomerative

10 5 0 5 10

10

5

0

5

10

15

K-means

Marcelo Ponce (SciNet HPC @ UofT) Intro to Machine Learning with Python CBP 2019 - May 3, 2019 81 / 83

Scikit-learn clustering algorithms

http://scikit-learn.org/stable/auto_examples/cluster/plot_cluster_comparison.html

Marcelo Ponce (SciNet HPC @ UofT) Intro to Machine Learning with Python CBP 2019 - May 3, 2019 82 / 83

http://scikit-learn.org/stable/auto_examples/cluster/plot_cluster_comparison.html

Other machine-learning topics

Unfortunately, we can’t even come close to covering everything that we could. Topics which
you may want to explore:

Other classification algorithms: logistic regression, naive Bayes, neural networks, support
vector machines.

Ensembling methods (like random forests).

Dimensionality reduction.

Nonparametric regression: kernels, LOESS, LOWESS.

Variable selection: forward and backward selection, AIC, BIC, Lasso/Ridge regression.

And others. Be aware that your field may use methods not listed here.

Marcelo Ponce (SciNet HPC @ UofT) Intro to Machine Learning with Python CBP 2019 - May 3, 2019 83 / 83

	Machine learning
	Regression
	Questions to ask
	Total error
	Bias and variance
	Regression in practise
	Resampling

	Classification
	Classification approaches
	Decision Trees
	kNN

	Clustering
	K-means clustering
	K-means cross-validation
	Hierarchical clustering

