
Machine Learning with
Python (+ HPC)

Fei Mao
SOSCIP/SciNet

Audience Background

• Computer Science?
• Engineering?
• Natural Science?
• Social Science?
• Python Programming?

(Not) just another intro to ML course

Define a
ML

problem

Construct
and

Transform
Data

Training a
Model

Use the
Model

1. Machine Learning Workflow

2. Machine Learning with Python

(3. Machine Learning on HPC)

Problem Framing

• What is Machine Learning?
• In short, Training a "model" on existed data to "predict" unseen data

• What do people mean when they say: AI, Machine Learning and Deep
Learning?
• AI > ML > DL

Machine
Learning

AI

Deep
Learning

Types of ML Problems

• Classification
• Pick one of N labels

• Regression
• Predict numerical values

• Clustering
• Group similar examples

• Others: Structured output, Recommendation, Ranking, etc.

Types of approaches

• Supervised Learning
• model is provided with labeled training data

• Unsupervised Learning
• to identify meaningful patterns in the unlabeled data

• Reinforcement Learning
• no examples with labels, agent learn under the rule

Data Preparation and Feature Engineering

Define a
ML

problem

Construct
and

Transform
Data

Training a
Model

Use the
Model

Data

• Any type: characters, images, videos, … , combinations
• Examples:
• one example is a particular instance of data

• Features:
• measurable variables to represent the data
• e.g. properties of a example, image pixels, extracted higher level features

• Labels:
• the "thing" we're predicting
• for supervised machine learning

Collecting Data

• Size of a Data Set
• How big is enough?

• Iris flower data set: 150
• Heart Disease Data Set: 303
• MNIST handwritten digit database: 60,000
• ImageNet: 1,200,000
• Google Gmail SmartReply: 238,000,000
• Google Translate: trillions

• Quality of a Data Set:
• Label errors
• Features noisy/errors
• Missing values
• Duplicate examples

Splitting Data

• Training Data
• Testing Data
• For the final evaluation

• Validation Data
• Measuring the model during training and discovering overfitting

• Randomly pickup is not always good
• For small dataset, use cross-validation
• k-fold cross-validation

**Don't use Test/Val data to train the model

Validation Error

Training Error

Feature engineering

• Data Transformation
• Mandatory transformations

• Converting non-numeric features into numeric
• Resizing inputs to a fixed size
• …

• Optional quality transformations
• Normalized numeric features (most models perform better afterwards)
• Tokenization or lower-casing of text features
• …

Transforming Numeric Data

• Normalizing
• Why normalization?

• transform features to be on a similar scale
• improves the performance and training stability

• Linear Scaling:
• usually scale to 0 – 1
• good choice data is approximately uniformly distributed
• A good example is age, bad example is income

• Feature Clipping:
• data set contains extreme outliers
• caps all feature values above (or below) a certain value to fixed value

• Log Scaling
• computes the log of your values to compress a wide range to a narrow range
• help to improve linear model performance

• Z-Score
• mean = 0 and std = 1

Transforming Categorical Data

• Mapping categorical values
• e.g. map street names to numbers
• constraints:

• learning a single weight that applies to all streets
• street names may take multiple values

• One-hot encoding/multi-hot encoding
• A vector: set corresponding elements to 1, set all other elements to 0

Python Practice 1

• Login to "teach" cluster and cp the materials:
• ssh –Y teach.scinet.utoronto.ca
• cp -r /scinet/course/ss2019/2/5_machinelearning $SCRATCH/
• cd $SCRATCH/5_machinelearning

• Use Anaconda3
• module load anaconda3
• Default environment includes: numpy/scipy, scikit-learn, pandas, seaborn, etc

• Install additional packages:
• pip install --user <package_name>
• e.g. pip install --user xgboost

Python Practice 1

• Run python script:
• srun -n 1 python iris.py

• Interactive ipython:
• debugjob
• ipython

• If network connection is lost, please kill all previous interactive jobs
before asking for a new one:
• scancel -u <user_name>

Training and Inferencing models

Define a
ML

problem

Construct
and

Transform
Data

Training a
Model

Use the
Model

Training and Inferencing models

• Training the model:
• How to determine a good model?
• Loss function (cost function):

• loss is a number indicating how bad the model's prediction was on a single example
• popular loss function:

• Mean square error (MSE)

• !
"
∑ 𝑦 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑥 2

• Cross-entropy loss (log loss)
• −∑12!3 𝑦 𝑙𝑜𝑔(𝑃)

• Training is to find a model that minimizes loss
• Inferencing:
• select single or multi models

Training and Inferencing models

• Common Machine Learning Algorithms:
• kNN
• Dimensionality Reduction

• PCA, t-SNE, etc
• SVM
• NN
• Decision Tree, Random Forest, Gradient Boosting
• k-means clustering
• …
• …

Python Practice 2

• Full examples for Iris dataset: iris.py
• srun -n 1 python iris.py

• Heart Disease Dataset:
• https://www.kaggle.com/ronitf/heart-disease-uci
• go to kaggle.com and search "heart" to check dataset details
• train any model w/ or w/o feature engineering

https://www.kaggle.com/ronitf/heart-disease-uci

Machine Learning on HPC

• Pick up the right library:
• sklearn in Anaconda vs. sklearn in Intel Python
• TensorFlow w/ MKL-DNN vs. TensorFlow w/ Eigen

• Pick up the right hardware:
• CPU vs. GPU

• Distributed Training:
• Model Parallelism vs. Data Parallelism

• I/O:
• Remote Parallel Filesystem vs. Local SSD

