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Some details about the course
For getting credit for this 3-days course:

You need to attend 2 out of 3 sessions

For demonstrating that, please
I take the attendance test each day
I enter the corresponding attendance code for each day

Submit the assignment

Slides and all material, including attendance test, recordings, forum, etc is available in the
course website,
https://scinet.courses/583

3 sessions of 1.5 hs each

Acknowledgment

This course is based on material developed by Dr. Jonathan Dursi (SickKids) and
Dr. Erik Spence (SciNet).
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Topics to cover
We will discuss the following topics:

Memory management in R.

Out-of-core computation.

Profiling.

Compiling R code.

The ’parallel’ package.

mc-parallel/collect/apply.

foreach and doparallel.

Rdsm and pbdR.

The material in this class is not introductory, a working knowledge of R is assumed.
Please ask questions if you don’t understand something, including after the course is over:

courses@scinet.utoronto.ca

or use the forum in the course website.
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Getting set up on the cluster

Please perform the following steps to get yourself setup for today’s class, but use your own
username.

Your username most likely would be something like lcl uot2021ssXXXX

myuser@mycomp ~>
myuser@mycomp ~> ssh lcl uot2021ssXXXX@teach.scinet.utoronto.ca -X

scinetguestXXX@teach01 ~>

scinetguestXXX@teach01 ~> cd $SCRATCH

scinetguestXXX@teach01 > pwd

/scratch/t/tempacct/lcl uot2021ssXXXX

scinetguestXXX@teach01 >

scinetguestXXX@teach01 > cp -r /scinet/course/ss2020/9 hpcr/parallelR .

scinetguestXXX@teach01 >

This will copy the code and data you need to your $SCRATCH directory.
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Getting set up on the cluster, continued
scinetguestXXX@teach01 > debugjob

debugjob: Requesting 1 nodes with 1 tasks for 240 minutes and 0 seconds

SALLOC: Granted job allocation 89089

SALLOC: Waiting for resource configuration

SALLOC: Nodes teach36 are ready for job

scinetguestXXX@teach36 ~>

scinetguestXXX@teach36 ~> cd $SCRATCH/parallelR

scinetguestXXX@teach36 ~>
scinetguestXXX@teach36 parallelR> pwd

/scratch/t/tmpacct/lcl uot2021ssXXXX/parallelR

scinetguestXXX@teach36 parallelR>

scinetguestXXX@teach36 parallelR> ls

code data pbd setup

scinetguestXXX@teach36 parallelR> source setup

scinetguestXXX@teach36 parallelR>

scinetguestXXX@teach36 parallelR> R

>

It should only take a moment to get your compute node.
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High-performance R

Just a reminder:

R is an interpreted language. As such, there is an extra layer of infrastructure (the
interpreter) needed to make R run.

As a general rule, because of the extra layer of infrastructure, interpreted languages (R,
Python, Bash, Perl, ...) are not high-performance languages.

True high-performance languages are compiled, because they lack this extra layer of
infrastructure: C, C++, Fortran.

That being said, there are ways of making things not quite so bad. That is the goal of
this class.
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High Performance Computing (HPC)

Moore’s Law for processors

Exponentially growing datasets

Led to increasing compute time

Bottom line: use HPC/
Super-Computing Infrastructure

Basic Approach: Divide and conquer
– divide code into smaller chunks/
parallelize to run multiple functions
simultaneously

Then communicate and bam! You
have your output faster than before.

Basics

Split the problem into pieces

Execute the pieces in parallel

Combine the results back together

How does R do this?

Several packages make it easier!

For single node (no inter node
communication): Multicore and
doMC

For multi node (with internode
communication): foreach, parallel,
doMC, doSNOW
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Most computational problems can be grouped in

Memory-bound: memory is the limiting aspect in the computation, eg. datasets too large
to fit in memory

Computer-bound: the actual computation is the element that us being done most of the
time, your code spents most of its time using the CPU

Communication-bound: communication between different elements of the code, and in
particular among different “nodes” is the bottle neck

File-IO: too much reading/writting/accesing information from files

Dealing with some of these will require to rethink some aspects and implementations
(algorithms) in your code.
Others can be mitigated by using some useful packages.
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R and memory

One must be cognisant of how R manages memory:

R is ”pass by value” if the variables being passed are being modified. As such, R
frequently needs to make temporary copies of variables, and hitting the memory limit of
your machine can be a frequent problem.

Like many dynamic languages, R relies on ”garbage collection” to limit its memory usage.

In a running code, ”every so often” a garbage collection task runs and deletes variables
that won’t be used any more.

You can force the garbage collector to run at any given time by calling gc(), but this
almost never fixes anything significant.

How can GC know that you’re not going to use that big variable in the next line? The
garbage collector needs your help to be effective.
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Useful memory-management commands

gc(verbose = TRUE), or just gc(TRUE)
I Calling gc(TRUE ) alone probably won’t help anything, but it does give verbose output,

returning memory usage as a matrix.

ls()
I Lists all existing variables, as strings.

object.size(variablename)
I Pass it a variable, and it prints out its size.
I Pass it get(”variablename”) and it will also print its size.

rm(variablename)
I Deletes a variable you no longer need. Lets gc go to work.

Fun little one-liner which prints out all variables by size in bytes:

> sort(sapply(ls(), function(x) {object.size(get(x))}), decreasing = TRUE)
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object.size() and gc()
Let’s play with object.size() and gc():

> gc()

used (Mb) gc trigger (Mb) max used (Mb)

Ncells 183250 9.8 407500 21.8 350000 18.7

Vcells 377223 2.9 905753 7.0 864975 6.6

> old.mem <- gc()[, 1:2]

> x <- rep(0., (16 * 1024)**2)

> xsize <- object.size(x)

> xsize

2147483688 bytes

> print(xsize, units = "MB")

2048 Mb

> new.mem <- gc()[, 1:2]

> new.mem - old.mem
used (Mb)

Ncells 445 0

Vcells 268436139 2048
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object.size() and gc(), some more

Now let’s delete the object and see how system memory behaves:

> rm(x)

>

> final.mem <- gc()[, 1:2]

>

> final.mem - old.mem
used (Mb)

Ncells 451 0.1

Vcells 1781 0.0

>

Use ’rm’ in your scripts whenever you are done with a large variable.
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Memory-bound/Out-of-core computation

Some problems require doing fairly simple analysis on data that is too large to fit into memory

Min/mean/max.

Data cleaning.

Even linear fitting is pretty simple.

In this case, one processor may be enough; you just want a way to not run out of memory.

”Out of core” or ”external memory” computation leaves the data on disk, bringing into
memory only what is needed, or what fits, at any given time.

For some computations, this works out well (but note: disk access is always much slower than
memory access).
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Out-of-core computation

The ”bigmemory” package defines a
generalization of a matrix class,
big.matrix, which can be ”file-backed”.
That is, can exist primarily on disk, with
parts being brought into memory as
necessary.

This approach works when one’s data
access involves passing through the entire
data set once or a very small number of
times, either combining data or extracting
a subset.

The packages ”bigalgebra”, ”biganalytics”
and ”bigtabulate” are built on bigmemory.
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Ideal gas data set

In data/idealgas, we have a set of synthetic data files describing an ideal gas experiment -
setting temperature, amount of material, and volume, and measuring pressure.

Simple data sets:

> small.data <- read.csv("data/idealgas/ideal-gas-fixedT-small.csv")

> small.data[1:2,]

X pres vol n temp

1 1 99000 0.02036345 0.8 300

2 2 99250 0.02018306 0.8 300

Row name, pressure (Pa), volume (m3), N (moles), and temperature (K).

A larger data set consisting of 124M rows, 4.7 GB, is sitting in ideal-gas-fixedT-large.csv, and
we’d like to do some analysis of this data set. But the size is a problem.
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Creating a file-backed big matrix
We’ve already created a big.matrix file from this data set, using

> # DO *NOT* RUN THIS!

> library(bigmemory)

> data <- read.big.matrix("data/idealgas/ideal-gas-fixedT-large.csv",

+ header = FALSE, backingfile = "data/idealgas/ideal-gas-fixedT-large.bin",

+ descriptorfile = "ideal-gas-fixedT-large.desc")

>

This reads in the .csv file and outputs a binary equivalent (the ”backingfile”) and a descriptor
(in the ”descriptorfile”) which contains all of the information which describes the binary blob.

I’ve already created the descriptor file, ”ideal-gas-fixedT-large.desc”. since the conversion
takes 12 minutes for this data set . . .

Note: this converts the data into a matrix, which is a less flexible data type than a data frame;
homogeneous type. Here, we’ll use all numeric.
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Using a big.matrix

Let’s load the data set and see how memory behaves.

> library(bigmemory, quiet = TRUE)

>

> orig.gc <- gc()[, 1:2]

> data <- attach.big.matrix("data/idealgas/ideal-gas-fixedT-large.desc")

>

> new.gc <- gc()[, 1:2]

> new.gc - orig.gc

used (Mb)

Ncells 4975 0.6

Vcells 18256 0.1

>
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Using a big.matrix, continued
> data[1:2,]

pres vol n temp

[1,] 1 90000.0 0.01328657 0.5 280

[2,] 2 90012.5 0.01285503 0.5 280

>

> system.time(min.p <- min(data[,"pres"]))

user system elapsed

9.004 2.096 11.175

>

> gc()[, 1:2] - orig.gc

used (Mb)

Ncells 3077 0.2

Vcells 3484 0.1

> min.p

[1] 90000

>

That only took about 11 seconds to scan through 124M entries.
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Summary: bigmemory

If you just have a data file much larger than memory that you have to crunch and the amount
of actual computation is not a bottleneck, the ‘bigmemory‘ and related packages may be all
you need.

It works best if:

the data is of homogeneous type - e.g. all integer, all numeric, all string.

you just need to work on a subset of data at a time, or,

you just need to make one or two passes through the data to complete analysis.
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Profiling

To push your code to new heights of awesome, or to make it useful at all (depending on your
situation), you will need to profile your code. What is profiling?

Profiling is analyzing where the code is spending its time. Which parts of the code are
slowest?

Testing how long individual functions take can be performed with the ’microbenchmark’
package, or more crudely, ’system.time’.

To test the whole program we use ’Rprof’.

We’ll do some examples of each.
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Profiling individual functions
The ’system.time’ command uses the OS’s
’time’ command to determine how long
the code takes to run.

The ”microbenchmark” function is more
systematic. It takes an average over 100
calls of the function. Consequently, it can
take a while to run.

Note that the microbenchmark package
will need to be downloaded.

> f <- function() {
+ a <- 1

+ for (i in 1:1e6) {
+ a <- a + i

+ }
+ }
>

> system.time(f())

user system elapsed

0.433 0.004 0.437

>

> library(microbenchmark)

>

> microbenchmark(f())

Unit: milliseconds
expr min mean max

f() 427.0071 432.8328 482.3085

>
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Profiling whole programs
> addme <- function(a, b) return(a + b)

> test <- function() { a <- 1

+ for (i in 1:1e6) a <- addme(a, i)

+ }
>

> Rprof("Rprof.data")

> test()

> Rprof(NULL)

>

> s <- summaryRprof("Rprof.data")

> names(s)

[1] "by.self" "by.total" "sample.interval" "sample.time"

> s$by.total

total.time total.pct self.time self.pct

"test" 1.32 100.00 0.46 34.85

"addme" 0.82 62.12 0.76 57.58

"+" 0.06 4.55 0.06 4.55
":" 0.04 3.03 0.04 3.03
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Rprof
Some notes about the last slide:

Rprof samples the program every 20ms, by default, to see where the program is spending
its time.

Use ”Rprof(’filename’)” to store the Rprof results in a particular file.

Use ”Rprof(NULL) to turn off profiling.

You can read ’filename’ if you want. It’s easier to just use ”summaryRprof(’filename’)” to
analyse the results.

Results are given in data frames.

total.time and total.pct include all time spent within a function, including calls to other
functions.

self.time and self.pct indicate actually real time spent in each function (self.pct should
add up to 100%, give or take rounding).
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Compiled code

It is possible to interface your R code with compiled code. Why would you want to do that?

It’s fast! Compiled code is always faster than interpreted code.

If you can get the slowest parts of your code into a compiled language, you can leave the
rest in R.

R comes with the ability to byte-compile specific functions.

It’s also possible to write your own pure C++ or Fortran code to interface with R, but it’s
a pain.

It’s easier to use the Rcpp package, written by Dirk Eddelbuettel, Romain Francois, and
others.

This package allows you to easily interface with C++ code.
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Byte-compiled R code

We can byte-compile specific R functions
using the ”compiler” package.

The ”microbenchmark” function can be used
to benchmark the performance of functions.

Here we’re using the ”enableJIT” (Just In
Time compiler) function to turn off
automatic byte compiling. In general, you
should NOT do this. We’re only doing this
for the purposes of comparing speeds.

> library(compiler)

> library(microbenchmark)

> oldJIT <- enableJIT(0)

>

> f <- function(n) { x <- 1

+ for (i in 1:n) x <- 1 / (1 + x)

+ }
>

> lf <- cmpfun(f)

> n <- 1e5

>

> microbenchmark(f(n), lf(n))

Unit: milliseconds
expr min mean max

f(n) 15.88 17.40 32.17

lf(n) 2.35 2.38 2.54

>
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Byte-compiled R code, continued
Some notes about the last slide:

Byte compiling is not the same as actually compiling code, as is done with compiled
languages:

I Byte compiling creates a byte object, which is executed by a virtual machine.
I Compiled languages are compiled into machine code, which is directly used by the hardware.

Nonetheless, byte compiling can be significantly faster than running the code through the
R interpreter.

If you run a function multiple times, R will automatically byte-compile it for you. Better
to just byte-compile it in your utilities file.

Automatic byte compiling can be turned off using the ”enableJIT” function, though this
is not recommended.

The microbenchmark package is used for benchmarking. It runs the same code 100 times
by default, and gets statistics.
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Installing Rcpp

We’re going to be doing examples with Rcpp. But, if you’re using Windows...

Rcpp is not a default R package; you will need to download and install it.

Because Rcpp compiles code (that’s the point), you will need a compiler on your
computer.

If you’re using Linux or a Mac, you’re probably ok.

On Windows, you need to go here, and download ”Rtools”:

https://cran.r-project.org/bin/windows/Rtools

Note that Rtools is quite large, and will require some time to download.
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Using Rcpp

Once the function is defined, it will
automatically be compiled, this is
why it takes a moment for the
”cppFunction” command to finish.

Once compiled, Rcpp creates an R
function which links to the compiled
C++ code.

>

> library(Rcpp)

>

> cppFunction("int times(int x, int y) {
+ int product = x * y;

+ return product;

+ }")
>

> times(34, 4)

[1] 136

>

> 34 * 4

[1] 136

>
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Using Rcpp, continued

Some notes about his example.

Defining the functions ”inline”, as we have here, is difficult if the function is large and
complex. We will deal with this problem on the next slide.

Rcpp defines special C++ data types which are compatible with R data types:
I IntegerVector, NumericVector, LogicalVector, CharacterVector.
I IntegerMatrix, NumericMatrix, LogicalMatrix, CharacterMatrix.
I Lists, DataFrames.

These data types allow the ability to deal with missing values, using the is na() function.

Note that you should always test your code carefully when using multiple languages.
Sometimes surprises can creep in.
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Using Rcpp, predefined functions
Some notes:

Comments start with ”//” in C++.

The ”sourceCpp” command causes the
C++ code to be compiled.

”// [[Rcpp::export]]” must be placed
before each function you wish to export to
R.

If you get error messages about the ”R.h”
file, you may need to download the R
development packages for your machine.

// MyRcppCode.cpp

#include <Rcpp.h>

using namespace Rcpp;

// [[Rcpp::export]]

int times(int x, int y) {
// This function returns the

// product of the two input

// arguments.

int product = x * y;

return product;

}

> library(Rcpp)

> sourceCpp("code/MyRcppCode.cpp")

> times(10, 3)

[1] 30

>
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Using Rcpp, why bother?
// MyRcppCode2.cpp

#include <Rcpp.h>

using namespace Rcpp;

// [[Rcpp::export]]

double mysum(NumericVector x,

NumericVector y) {
// Returns the sum of the

// product of two vectors.

int n = x.size();

double answer = 0.0;

for(int i = 0; i < n; i++) {
answer += x[i] * y[i];

}
return answer;

}

>

> library(Rcpp)

>

> sourceCpp("code/MyRcppCode2.cpp")

>

> library(microbenchmark)

>

> x <- runif(1e6)

> y <- runif(1e6)

>

> microbenchmark(mysum(x, y), sum(x * y))

Unit: milliseconds
expr min mean max

mysum(x, y) 1.777204 1.832208 1.97020

sum(x * y) 4.974938 8.248512 44.27162

>
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Using Rcpp with vectors
// MyRcppCode3.cpp

#include <Rcpp.h>

using namespace Rcpp;

// [[Rcpp::export]]

NumericVector doubleAddy(

NumericVector x, double y) {
// Doubles the vector x

// and adds y.

int n = x.size();

NumericVector answer(n);

for(int i = 0; i < n; i++) {
answer[i] = 2 * x[i] + y;

}
return answer;

}

>

> library(Rcpp)

>

> sourceCpp("code/MyRcppCode3.cpp")

>

> doubleAddy(1:7, 3.4)

[1] 5.4 7.4 9.4 11.4 13.4 15.4 17.4

>
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Making your code awesome

Some tips:

Save your function profiling until you know that the function works correctly. Don’t
succumb to ”premature profiling”.

Do byte-compiling first. It’s easy and may be good enough.

Don’t be afraid of Rcpp. Once you know how to program in one language, you’re at least
80% of the way to programming in all languages.

Ask us for help, if speed becomes an issue for your productivity.
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Scalable data analysis in R

One turns to parallel computing to solve one of two problems:

My program is too slow. Perhaps using more processors will make things faster:
I Your program is compute bound.
I Tools to use: parallel/multicore, Rdsm.

My program crashes due to lack of memory. Perhaps splitting the problem up into smaller
pieces will allow it to run.

I Your program is memory bound.
I Tools to use: parallel/snow, pbdR.

Note what is not on this list:

My program constantly reads from, and write to, thousands of files, and these operations
are very slow.

These I/O-bound problems are not easily solved with parallelism (adding more processors or
nodes doesn’t usually help).
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Using multiple processors in R

The rest of this class we will cover using multiple processors and/or nodes to do large-scale
computations in R.

no-work parallelism: existing packages.

”parallel” package:
I ”multicore” (use all cores on a computer): non-windows.
I ”snow” (use all cores on a computer, or across a cluster).

”foreach” package: different interface to similar functionality.

”Rdsm”: shared-memory parallelism (on-node) with big.matrix.

”pbdR”: massive-scale computation with MPI + R.
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Existing parallelism

It’s important to realize that many fundamental routines as well as higher-level packages come
with some degree of scalability and parallelism ”baked in”.

Open another terminal to your node, and run ”top” while executing the following in R:

>

> n <- 4 * 1024

>

> A <- matrix( rnorm(n * n), ncol = n, nrow = n )

> B <- matrix( rnorm(n * n), ncol = n, nrow = n )

>

> C <- A %*% B

>
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Existing parallelism, continued

R can (and should) be built using high-performance threaded libraries for math in general, and
linear algebra in particular.

Here the single R process has launched several threads of execution – all of which are part of
the same process, and so can see the same memory.
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Packages that explicitly use parallelism

For a complete list, see

http://cran.r-project.org/web/views/HighPerformanceComputing.html

Biopara

BiocParallel for Bioconductor

bigrf - Random Forests

caret - cross-validation, bootstrap characterization of predictive models

GAMBoost - boosting glms

Plus packages that use linear algebra or other expensive math operations which can be implicitly
multithreaded.

When at all possible, don’t do the hard work yourself — look to see if a package already exists which
will do your analysis at scale.
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The parallel Package

Since R 2.14.0 (late 2011), the ”parallel”‘ package has been part of core R. It incorporates -
and mostly supersedes - two other packages:

”multicore”: for using all cores on a single processor. Not on Windows.

”snow”: for using any group of processors, possibly across a cluster.

Many packages which use parallelism use one of these two, so it is worth understanding.

Both create new processes (not threads) to run on different processors; but differ in important
ways.
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Multicore - forking

Multicore creates new processes by forking
— cloning – the original process.

That means the new processes start off
seeing a copy of exactly the same data as
the original. If a first process can read a
file, and it then forks two new processes -
each will see a copy of the file.

These are not shared memory; changes in
one process will not be reflected in others.

Windows doesn’t have fork(), so windows can’t
use these routines.
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Snow - Spawning

In contrast, Snow creates entirely new R
processes to run the jobs.

A downside is that you need to explicitly
copy over any needed data and functions.

But the upsides are that spawning a new
process can be done on a remote machine,
not just current machine. So you can, in
principle, use entire clusters.

In addition, the flipside of the downside: new
processes don’t have any unneeded data - less
total memory footprint.
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mcparallel/mccollect

The simplest use of the ”multicore” package is the pair of functions ”mcparallel” and
”mccollect”:

mcparallel() forks a task to run a given function; it then runs in the background.

mccollect() waits for and gets the result.

Let’s pick an example: reading the airlines data set, we want — for a particular month — to
know both the total number of planes in the data (by tail number) and the median elapsed
flight time. These are two independent calculations, and so can be done independently.

M.Ponce (SciNet HPC @ UofT) HPC R August 23-27, 2021 42 / 88



mcparallel/mccollect, continued
We start two tasks with mcparallel, and collect the answers with mccollect:

> library(parallel, quiet=TRUE)

> source("data/airline/read airline.R")

> jan2010 <- read.airline("data/airline/airOT201001.csv")

> unique.planes <- mcparallel( length( unique( sort(jan2010$TAIL NUM) )))

> median.elapsed <- mcparallel(median( jan2010$ACTUAL ELAPSED TIME,

+ na.rm = TRUE ))

> ans <- mccollect( list(unique.planes, median.elapsed) )

> ans

$’30113’

[1] 4555

$’31286’

[1] 110

We get a list of answers, with each element ”named” by the process ID that ran the job.
There are 4555 planes in the data set, with a mean flight time of 110 minutes.
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mcparallel/mccollect, continued more

Does this save any time? Let’s do some independent fits to the data. Let’s try to see what the
average in-flight speed is by fitting time in the air to distance flown; and let’s see how the
arrival delay correlates with the departure delay. (Do planes, on average, make up some time
in the air, or do delays compound?)

>

> system.time(fit1 <- lm(DISTANCE ~ AIR TIME, data=jan2010))

user system elapsed

1.071 0.009 0.976

> system.time(fit2 <- lm(ARR DELAY ~ DEP DELAY, data=jan2010))

user system elapsed

0.659 0.005 0.524

>

Total time: about 1.5 seconds.
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mcparallel/mccollect, continued even more

So the time to beat is about 1.5s:

> parfits <- function() {
+ pfit1 <- mcparallel(lm(DISTANCE ~ AIR TIME, data=jan2010))

+ pfit2 <- mcparallel(lm(ARR DELAY ~ DEP DELAY, data=jan2010))

+ mccollect( list(pfit1, pfit2) )

}
> system.time( parfits() )

user system elapsed

0.620 0.089 1.685

We don’t see a savings of time: 1.7s vs 1.5s. Clearly actually forking the processes and waiting
for them to rejoin itself takes some time.

This overhead means that we want to launch jobs that take a significant length of time to run
- much longer than the overhead (hundredths to tenths of seconds for fork().)
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Clustering

Typically we want to do more than an itemized list of independent tasks - we have a list of
similar tasks we want to perform.

‘mclapply‘ is the multicore equivalent of ‘lapply‘ - apply a function to a list, get a list back.

Let’s say we want to see what similarities there are between delays at O’Hare airport in Chicago
in 2010. Clustering methods attempt to uncover ”similar” rows in a data set by finding points
that are near each other in some p-dimensional space, where p is the number of columns.

k-Means is a particularly simple, randomized, method; it picks k cluster centre-points at
random, finds the rows closest to them, assigns them to the cluster, then moves the cluster
centres towards the centre of mass of their cluster, and repeats.

The quality of the result depends on the number of random trials.
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Clustering, continued
Let’s try that with our subset of data. Run this:

> load(’data/airline/ord.delays.Rdata’)

which does this:

> air2010 <- read.csv("data/airline/airOT20101.csv")

> delaycols <- c(18, 28, 40:44) # columns listing various delay measures

> ord.delays <- air2010[air2010$ORIGIN == "ORD", delaycols]

> rm(air2010)

> ord.delays <- ord.delays[ord.delays$ARR DELAY NEW > 0,]

> ord.delays <- ord.delays[complete.cases(ord.delays),]

> system.time(serial.res <- kmeans(ord.delays, centers = 2, nstart = 40))

user system elapsed

1.219 0.026 1.248

> serial.res$betweenss

[1] 236714813
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Clustering with lapply
Running 40 random trials is the same as running 10 random trials 4 times. Let’s try that
approach with ”lapply”:

> do.n.kmeans <- function(n) {kmeans(ord.delays, centers = 2, nstart = n) }
> system.time(list.res <- lapply(rep(10, 4), do.n.kmeans))

user system elapsed

1.845 0.002 1.848

> res <- sapply(list.res, function(x) return(x$tot.withinss))

> lapply.res <- list.res[[which.min(res)]]

> lapply.res$withinss

[1] 205574263 117857364

> lapply.res$betweenss

[1] 236714813

Get the same answer, but it took longer - bit of overhead from splitting it up and starting the
process four times. We could make the overhead less important by using more trials, which
would be better anyway.
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Clustering with mclapply

”mclapply” works the same way as lapply, but forking off the processes (as with ”mcparallel”)

> system.time(list.res <- mclapply(rep(10,4), do.n.kmeans, mc.cores = 4))

user system elapsed

1.858 0.205 2.064

>

> res <- sapply(list.res, function(x) x$tot.withinss)

>

> mclapply.res <- list.res[[which.min(res)]]

>

> mclapply.res$betweenss

[1] 236714813

>
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Clustering with mclapply, continued
Note what the output of top looks like when this is running:

There are four separate processes running - not one process using multiple CPUs via threads.
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Clustering with mclapply

Looks good! Let’s take a look at the list of results:

>

> res

[1] 323431626 323431626 323431626 323431626

>

What happened here?
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Parallel RNG
Depending on what you are doing, it may be very important to have different (or the same!)
random numbers generated in each process. Here, we definitely want them different - the
whole point is to generate different random realizations.

”parallel” has a good RNG suitable for parallel work based on the work of Pierre L’Ecuyer in
Montréal:

> RNGkind("L’Ecuyer-CMRG")

> mclapply( rep(1,4), rnorm, mc.cores = 3, mc.set.seed=TRUE)

[[1]]

[1] 1.113293

[[2]]

[1] 1.258494

[[3]]

[1] 0.7554586
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Load balancing
Suppose, instead of running multiple random trials to find the best, given a set of clusters, we
were unsure of how many clusters we wanted to run:

> do.kmeans.nclusters <- function(n) {
+ kmeans(ord.delays, centers = n, nstart = 10)}
> time.it <- function(n) { system.time( res <- do.kmeans.nclusters(n)) }
> lapply(1:4, time.it)

[[1]]
user system elapsed

0.238 0.000 0.238

[[2]]
user system elapsed

0.443 0.001 0.451

[[3]]
user system elapsed

0.954 0.000 0.955

[[4]]
user system elapsed

1.562 0.001 1.572
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Load balancing, continued

More clusters takes longer. If we were to mclapply these four tasks on 2 CPUs, the first CPU
would get the two short tasks, and the second CPU would get the second, longer tasks - bad
”load balance”.

Normally, we want to hand multiple tasks of work off to each processor and only hear back
when they’re completely done - minimal overhead. But that works best when all tasks have
similar lengths of time.

If you don’t know that this is true, you can do dynamic scheduling - give each processor one
task, and when they’re done they can ask for another task.

More overhead, but better distribution of work.
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Load balancing, continued more

>

> system.time(res <- mclapply(1:4, time.it, mc.cores = 2) )

user system elapsed

1.355 0.072 3.415

>

> system.time(res <- mclapply(1:4, time.it, mc.cores = 2,

+ mc.preschedule = FALSE))

user system elapsed

1.859 0.174 3.482

>
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Summary: parallel/multicore
The ‘mc*‘ routines in parallel work particularly well when:

You want to make full use of the processors on a single computer

Each task only reads from some big common data structure and produces modest-sized
results

Things to watch for:

Modifying the big common data structure:
I Won’t be seen by other processes,
I But will blow up the memory requirements

Won’t work on Windows (but what does?)

‘mc.cores‘ is a lie. It’s the number of tasks, not cores. On an 8-core machine, if you have
multithreaded libraries and launch something ‘mc.cores=8‘ you’ll end up with 64 threads
competing for 8 cores. Either make sure to turn off threading (‘export
OMP NUM THREADS=1‘), or use fewer tasks.
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Multiple computers with parallel/snow
The other half of parallel, routines that were in the still-active ‘snow‘ package, allow you to
again launch new R processes — by default, on the current computer, but also on any
computer you have access to. (SNOW stands for ”Simple Network of Workstations”, which
was the original use).

The recipe for doing computations with snow looks something like:

>

> library(parallel)

> cl <- makeCluster(nworkers,...)

> results1 <- clusterApply(cl, ...)

> results2 <- clusterApply(cl, ...)

> stopCluster(cl)

>

Other than the ‘makeCluster()‘/‘stopCluster()‘, it looks very much like multicore and
‘mclapply‘.
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Hello world with parallel
Let’s try starting up a ”cluster” (eg, a set of workers) and generating some random numbers
from each:

> library(parallel)

> cl <- makeCluster(4)

> clusterCall(cl, rnorm, 5)

[[1]]

[1] -0.19542059 -0.09533088 -0.21122094 -1.52002161 1.24074398

[[2]]

[1] 1.60195084 0.47906454 0.74859881 0.03488538 -0.49270944

[[3]]

[1] 0.3162637 -0.3729758 0.8680270 0.4741110 0.7736880

[[4]]

[1] -0.1799470 -0.7960984 -0.1628196 -0.9641411 1.8729729

> stopCluster(cl)
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Hello world with parallel, continued
‘clusterCall()‘ runs the same function (here, ‘rnorm‘, with argument ‘5‘) on all workers in the
cluster. A related helper function is ‘clusterEvalQ()‘ which is handier to use for some setup
tasks:

> cl <- makeCluster(4)

> clusterEvalQ(cl, {library(party); print("Hello World!")})
[[1]]

[1] "Hello World"

[[2]]

[1] "Hello World"

[[3]]

[1] "Hello World"

[[4]]

[1] "Hello World"
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Clustering on clusters
Emboldened by our success so far, let’s try re-doing our k-means calculations:

> load(’data/airline/ord.delays.Rdata’)

>

> do.n.kmeans <- function(n) {kmeans(ord.delays, centers = 2, nstart = n) }
>

> library(parallel)

> cl <- makeCluster(4)

>

> res <- clusterApply(cl, rep(5,4), do.n.kmeans)

Error in checkForRemoteErrors(val) :

4 nodes produced errors; first error: object ’ord.delays’ not found

>

> stopCluster(cl)

>

Ah! Failure.
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Clustering on clusters, continued

Recall that we aren’t forking here; we are creating processes from scratch. These processes,
new to this world, are not familiar with our ways, customs, or data sets. We actually have to
ship the data out to the workers:

> cl <- makeCluster(4)

> system.time(clusterExport(cl, "ord.delays"))

user system elapsed

0.193 0.039 0.607

>

> system.time(cares <- clusterApply(cl, rep(5,4), do.n.kmeans))

user system elapsed

1.049 0.045 25.650

> stopCluster(cl)

> system.time(mcres <- mclapply(rep(5,4), do.n.kmeans, mc.cores = 4))

user system elapsed

0.379 0.051 24.068
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Clustering on clusters, continued more

Note that the costs of shipping out data back and forth, and creating the processes from
scratch, is relatively costly - but this is the price we pay for being able to spawn the processes
anywhere (meaning off node).

(And if our computations take hours to run, we don’t really care about several-second delays.)

Note that with makeCluster we are still restricted to a single node.
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Running across machines

The default cluster is a sockets-based cluster; you can run on multiple machines by specifying
them to a different call to makeCluster:

> hosts <- c( rep("localhost",8), rep("teach36", 2) )

> cl <- makePSOCKcluster(names = hosts)

> clusterCall(cl, rnorm, 5)

[[1]]

[1] -0.02141595 0.55431769 -0.64238398 -2.18983521 0.50568289

.

.

.

[[10]]

[1] -1.434019700 -1.016475875 1.385483544 0.003703908 0.536871928

> stopCluster(cl)
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Cluster notes

There are too many variations on the makeCluster family of functions to go over today. Here
are a few more highlights:

There is an MPI-based cluster. This is similar to the PSOCK cluster, but startup and
communication can be much faster once you start going to large numbers (say >64) of
hosts.

clusterApplyLB: ”LB” stands for ”Load Balanced”. The default ‘clusterApply‘ sends off
one task to each worker, waits until they’re both done, then sends off another.
clusterApplyLB fires off tasks to each worker as needed (like ”mc.preschedule = FALSE”
for mclapply).

clusterSplit: use this function to split up a data set across your cluster.

parLapply: use this to chunk up the data, and send all the data to all the tasks at once.
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Summary: parallel

The ‘cluster‘ routines in ‘parallel‘ are good if you know you will eventually have to move to
using multiple computers (nodes in a cluster, or desktops in a lab) for a single computation.

Use ‘clusterExport‘ for functions and data that will be needed by everyone.

Communicating data is slow, but much faster than having every worker read the same
data from a file.

Use clusterApplyLB if the tasks vary greatly in runtime.

Use clusterApply if each task requires an enormous amount of data.

Use makePSOCKcluster for small clusters; consider makeMPIcluster for larger (but see
‘pbdR‘ section).
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foreach and doparallel

The ”master/slave” approach that ‘parallel‘ enables works extremely well for moderately sized
problems, and isn’t that difficult to use. It is all based on one form of R iteration, apply, which
is well understood.

However, going from serial to parallel requires some re-writing, and even going from one
method of parallelism to another (eg, ‘multicore‘-style to ‘snow‘-style) requires some
modification of code.

The ‘foreach‘ package is based on another style of iterating through data - a for loop - and is
designed so that one can go from serial to several forms of parallel relatively easily. There are
then a number of tools one can use in the library to improve performance.
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foreach - serial

The foreach operator looks similar to the
standard for loop, but returns a list of the
iterations:

The foreach function creates an object,
and the ‘%do%‘ operator operates on the
code (here just one statement, but it can
be multiple lines between braces, as with a
for loop) and the foreach object.

>

> for (i in 1:3) print(sqrt(i))

[1] 1

[1] 1.414214

[1] 1.732051

>

> library(foreach)

> foreach (i = 1:3) %do% sqrt(i)

[[1]]

[1] 1

[[2]]

[1] 1.414214

[[3]]

[1] 1.732051

>
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foreach + doParallel

Foreach works with a variety of backends
to distribute computation - ‘doParallel‘,
which allows snow- and multicore-style
parallelism, and ‘doMPI‘ (not covered
here).

Switching the previous loop to parallel just
requires registering a backend and using
‘%dopar%‘ rather than ‘%do%‘:

> library(doParallel)

>

> # use multicore-style forking

> registerDoParallel(3)

>

> foreach (i = 1:3) %dopar% sqrt(i)

[[1]]

[1] 1

[[2]]

[1] 1.414214

[[3]]

[1] 1.732051

> stopImplicitCluster()

>
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foreach + doParallel, continued
One can also use a PSOCK cluster:

>

> cl <- makePSOCKcluster(3)

> registerDoParallel(cl) # use the just-created PSOCK cluster

>

> foreach (i = 1:3) %dopar% sqrt(i)

[[1]]

[1] 1

[[2]]

[1] 1.414214

[[3]]

[1] 1.732051

> stopCluster(cl)

>
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Combining results

While returning a list is the default, ‘foreach‘ has a number of ways to combine the individual
results:

> foreach (i = 1:3, .combine = c) %do% sqrt(i)

[1] 1.000000 1.414214 1.732051

> foreach (i = 1:3, .combine = cbind) %do% sqrt(i)

result.1 result.2 result.3

[1,] 1 1.414214 1.732051

> foreach (i = 1:3, .combine = "+") %do% sqrt(i)

[1] 4.146264

> foreach (i = 1:3, .multicombine = TRUE, .combine = "sum") %do% sqrt(i)

[1] 4.146264

By default, foreach will combine each new item individually. If ”.multicombine = TRUE”, then
you are saying that you’re passing a function which will do the right thing even if foreach gives
it a whole wack of new results as a list or vector - e.g., a whole chunk at a time.
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Combining foreach objects
There’s one more operator: ‘%:%‘. This lets you nest foreach objects:

>

> foreach (i = 1:3, .combine = "c") %:%

+ foreach (j = 1:3, .combine = "c") %do% {
+ i * j

}
[1] 1 2 3 2 4 6 3 6 9

>

And you can also filter items, using ”when”:

>

> foreach (a = rnorm(25), .combine = "c") %:%

+ when (a >= 0) %do%

+ sqrt(a)

[1] 0.5265719 0.2187333 0.1730294 0.9077089 0.2466300 1.1946766 1.1086728

>
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foreach iterators

Another problem that one can quickly run into: we often create a large vector to loop over
(1:1000000 for example) which in general is the same size as the data set. For large data sets
this can mean big memory.

One can use the iterators package to get a loop variable without creating something the size of
the object. For instance, icount() is like the difference between Python 2.x range and xrange:

>

> library(iterators)

>

> foreach (i = icount(3), .combine = ’c’) %do% sqrt(i)

[1] 1.000000 1.414214 1.732051

>
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isplit
If we want each task to only work on a subset of the data, the ‘isplit‘ iterator will split the
data, and send off the partitioned data to workers:

> jan2010 <- read.csv(’data/airline/airOT201001.csv’)

>

> ans <- foreach (byAirline = isplit(jan2010$DISTANCE,

+ jan2010$UNIQUE CARRIER), .combine = cbind) %do% {
+ df <- data.frame(sum(byAirline$value));

+ colnames(df) <- byAirline$key;

+ return(df) }
>

> ans$UA

[1] 32036702

>

> ans$OH

[1] 5289850

>
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Summary: foreach

Foreach is a wrapper for the other parallel methods we’ve seen, so it inherits some of the
advantages and drawbacks of each.

Use ‘foreach‘ if:

your code already relies on for-style iteration; the transition is easy.

you don’t know if you want multicore vs. snow style ’parallel’ use: you can switch just by
registering a different backend!

You want to be able to incrementally improve the performance of your code.

Note that you can have portions of your analysis code use ‘foreach‘ with ’parallel’ and portions
using the backend with apply-style parallelism; it doesn’t have to be all one or the other.
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Advanced R: Rdsm, pbdR

We’ve looked at some of the standard scalable computing packages for R.

Now we’re going to look at two somewhat more advanced packages, that solve very different
problems.

Rdsm: Get the most (performance, memory) out of a single-computer computation by
using shared memory.

pbdR: Get the most (performance, scale) out of a cluster computation by ditching
master-slave, and using very large-scale distributed routines.
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Rdsm

While it’s generally true that processes
can’t peer into each other’s memory, there
is an exception.

Processes can explicitly make a window of
memory shared - visible to other processes.

This isn’t necessary for threads within a
process; but it is necessary for multiple
processes working on the same data.

The only works on-node; you can’t share
memory across a network.
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Rdsm, continued

Some notes about the motivation for Rdsm:

Rdsm allows you to share a matrix across processes on a node - for reading and for
writing.

Normally when we split a data structure up across tasks we make copies (PSOCK), or we
use read-only (multicore/fork).

If the output is also going to be large, we now have 2-3 copies of the data structure
floating around.

Rdsm allows (on-node) cluster tasks to collaboratively make a large output without
making copies.

Rdsm: R distributed shared memory
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Rdsm, continued more
Simple example - let’s create a shared
matrix, and have everyone fill it.

Create a PSOCK cluster

Create an Rdsm instance

Create a shared matrix

Create a barrier.

Make sure you’re somewhere in your
$SCRATCH directory.

>

> library(parallel)

> library(Rdsm)

>

> nrows <- 7

>

> # form a 3-process PSOCK cluster

> cl <- makePSOCKcluster(3)

>

> # initialize Rdsm

> init <- mgrinit(cl)

>

> # make a 7x7 shared matrix

> mgrmakevar(cl, "m", nrows, nrows)

>

> bar <- makebarr(cl)

>
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Rdsm, continued some more
Each process gets its own id, and each is assigned its own rows of the matrix.

> # at each thread, set id to Rdsm built-in ID variable for that thread

> clusterEvalQ(cl, myid <- myinfo$id)

[[1]]

[1] 1

[[2]]

[1] 2

[[3]]

[1] 3

> clusterExport(cl, c("nrows"))

>

> # The line below breaks up the data by rows.

> dmy <- clusterEvalQ(cl, myidxs <- getidxs(nrows))

> dmy <- clusterEvalQ(cl, m[myidxs,1:nrows] <- myid)

> dmy <- clusterEvalQ(cl, "barr()")

>

Each process fills its rows with its id.
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Rdsm, continued even more

Now, print the results.

>

> print(m[,])

[,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] 1 1 1 1 1 1 1

[2,] 1 1 1 1 1 1 1

[3,] 2 2 2 2 2 2 2

[4,] 2 2 2 2 2 2 2

[5,] 2 2 2 2 2 2 2

[6,] 3 3 3 3 3 3 3

[7,] 3 3 3 3 3 3 3

>

> stoprdsm(cl) # stops cluster

>
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Summary: Rdsm

Your takeaway for Rdsm:

Rdsm allows collaborative use of a single pool of memory.

It avoids performance and memory problems of making copies to send back and forth.

It works well when:
I Outputs are as large/larger than inputs. (Correlation matrix of stocks).
I Inputs are very large, and want to do transformation in-place (values to log-returns).

But remember that it will only work on a single node.
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pbdR : Programming with Big Data in R

The master-worker approach works well for
interactive work, is easy to load balance, and is
easy to understand.

But there’s a narrow range of number of
workers where master-worker works well. For a
small number of total processors (2-4), it hurts
to have one processor doing nothing except
some small amount of coordination.

For a large number of processors (hundreds or
more, depending on the size of each task), the
workers can overwhelm the master, with all the
workers waiting while the master catches up.

https://pbdr.org
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pbdR, continued
At scale, the idea of a single master isn’t helpful. It’s better to coordinate between peers.

Rather than a single master parcelling out work, the workers themselves decide which part of
the problem they should be working on, and combine their results cooperatively. This is more
efficient and can scale better, but there are downsides:

Dynamic load-balancing is substantially trickier (but doable).

Can’t really do this interactively; need to write a script.
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Departure hour histogram example
In ‘pbd/mpi-histogram.R‘ we have a script that does an hour-histogram calculation for eight
full years of airline data, sifting through 40 million flights, in about a minute:

We’ll use the jupyter hub, https://njupyter.scinet.utoronto.ca, for running this!
You will need to install the following packages float, pbdMPI.

scinetguestXXX@teach36 ~> cd $SCRATCH/parallelR/pbd
scinetguestXXX@teach36 pbd>

scinetguestXXX@teach36 pbd> time mpirun -np 8 Rscript mpi-histogram.R

COMM.RANK = 0
[1] 4081 118767 27633 7194 9141 194613 2235007

[8] 2902703 3003510 2649823 2373934 2473105 2757256 2772498

[15] 2362334 2485699 2503423 2794298 2626931 2282125 2074739

[22] 1386485 649392 344257

COMM.RANK = 0

[1] 41038948
real 1m15.357s

user 9m39.943s

sys 0m10.910s

scinetguestXXX@teach36 pbd>
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Departure hour histogram example, cont
scinetguestXXX@teach36 pbd> cat mpi-histogram.R

library(pbdMPI, quiet = TRUE)

.

.

.

# count.hours and get.hour definitions...

start.year <- 1990

init()

rank <- comm.rank()

my.year <- start.year + rank

myfile <- paste0("data/airline/airOT", as.character(my.year),".RDS")

data <- readRDS(myfile)

data <- data$DEP TIME

myhrs <- count.hours(data)

hrs <- allreduce( myhrs, op = "sum" )

comm.print( hrs )

comm.print( sum(hrs) )

finalize()
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Departure hour histogram example, cont
Let’s look at the first few lines:

myuser@mycomp ~> cat mpi-histogram.R

.

.

.

# count.hours and get.hour definitions...

start.year <- 1990

init()

rank <- comm.rank()

my.year <- start.year + rank

myfile <- paste0("data/airline/airOT", as.character(my.year),".RDS")

data <- readRDS(myfile)

data <- data$DEP TIME
.
.
.

Each task decides which year’s data to work on. First (zeroth) task works on 1990, next on
1991, etc. Every task has to call the ‘init()‘ routine when starting, and ‘finalize()‘ routine
when done.
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Departure hour histogram example, cont

.

.

.

myhrs <- count.hours(data)

hrs <- allreduce( myhrs, op = "sum" )

comm.print( hrs )

comm.print( sum(hrs) )

finalize()

myuser@mycomp ~>

Once the file is read, we use the count.hours routine to work on the entire vector.

Then an ‘allreduce‘ function sums each workers hours, and returns the sum to all processors.
We then print it out.

Rather than only the master running the main program and handing off bits to workers, every
task runs this identical program; the only difference is the value of ‘comm.rank()‘.
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Summary: pbdR
To remember for pbdR:

Allows data to be parallelized across a number of workers.

Coordination between the workers is automatic. No need to do the array-index
bookkeeping that is usually required.

Comes with alot of MPI-like functionality build in.

pbdR comes with a tonne of functionality, which we won’t be covering:

MPI-like reductions.

Parallel *apply functions.

Specialized data distributions, ddmatrix.

Built-in function that work on ddmatrices, lm, solve, chol.

If you think your data analysis might need to be parallelized in this manner, you should check
it out.
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