
Virtual Summer School:
profiling

Erik Spence

SciNet HPC Consortium

3 September 2021

Erik Spence (SciNet HPC Consortium) Profiling 3 September 2021 1 / 30

Material for this class

The slides and code for this class can be found here:

https://scinet.courses/584

All the material for the 2021 Virtual Summer School can be found here:

https://scinet.courses/573

Make sure that you confirm your attendance before the end of class.

Erik Spence (SciNet HPC Consortium) Profiling 3 September 2021 2 / 30

https://scinet.courses/584
https://scinet.courses/573

Details about this course

To get credit for this course:

You need to attend 2 out of 3 sessions.
I Each session is 1.5 hours,
I Sessions are 12:30 - 2:00pm, Monday, Wednesday, Friday, August 30 - September 3.
I To demonstrate attendance, you must take the attendance test each class.

You must submit the assignment.

Ask questions!

Erik Spence (SciNet HPC Consortium) Profiling 3 September 2021 3 / 30

Today’s class

The purpose of this second set of material is to introduce you to profiling. We will cover the
following topics:

Profiling in general,

time,

gprof,

valgrind.

Note that this class will be exclusively about compiled languages (C, C++, Fortran). We will
not be looking at profiling interpreted languages (Python, R).

Erik Spence (SciNet HPC Consortium) Profiling 3 September 2021 4 / 30

Profiling

What is profiling?

Profiling is measuring where
your program is spending its
resources.

Like debuggers for debugging,
profilers are evidence-based
methods for finding performance
problems.

You can’t improve what you
don’t measure.

Measure

Find bottlenecks Make improvements

Erik Spence (SciNet HPC Consortium) Profiling 3 September 2021 5 / 30

Profiling, continued

The strategy for performance profiling:

Where in the program is time being spent?

Focus on the ”expensive” parts of the code. Don’t waste time optimizing parts that don’t
matter.

Find the bottlenecks.

There are two main approaches to profiling:

Tracing versus sampling,

Instrumented versus instrumentation-free.

We will go over these, as well as whole-program profiling.

Erik Spence (SciNet HPC Consortium) Profiling 3 September 2021 6 / 30

Built-in utilities

Let’s begin by looking at some utilities provided by your computer’s operating system.

time

top, ps, htop, lotop,

vmstat, free,

lsof, iostat,

tcpdump, iptraf, iftop,

and others.

These are an easy place to get some crude performance numbers for your program.

Erik Spence (SciNet HPC Consortium) Profiling 3 September 2021 7 / 30

Timing the whole program

The simplest thing you can do is time the
whole program, using the ”time”
command.

Easy; can run on any command
(program).

For a serial program:
real = usr + sys

For parallel programs,
ideally user = nprocs × real

Can run on tests to identify
performance regressions.

ejspence@mycomp ~>
ejspence@mycomp ~> time ./myProgram

. . .

[your program output]

. . .

real 0m2.448s <-- Elapsed "walltime"

user 0m2.383s <-- Actual user time

sys 0m0.027s <-- System time: Disk, I/O, ...

ejspence@mycomp ~>

A large system time can sometimes indicate
opportunties for improvement.

Erik Spence (SciNet HPC Consortium) Profiling 3 September 2021 8 / 30

~
~
~

Watching a program run

You can use ”top” to watch your code run, but it’s not very efficient!

Erik Spence (SciNet HPC Consortium) Profiling 3 September 2021 9 / 30

Instrumenting regions of code
It’s more efficient to instrument your code.

This means putting measurement
tools directly into your source code.

Simple, but incredibly useful.

Can trivially see if changes make
things better or worse.

/* simple timer definitions */

void tick(struct timeval *t) {

gettimeofday(t, NULL);

}

/* returns time in seconds from now to time

described by t */

double tock(struct timeval *t) {

struct timeval now;

gettimeofday (&now , NULL);

return (double)(now.tv_sec - t->tv_sec) +

((double)(now.tv_usec - t->tv_usec)/1000000.);

}

#include <sys/time.h>

struct timeval init , calc , io;

double inittime , calctime , iotime;

/* ... */

tick(&init);

/* do initialization */

inittime = tock(&init);

tick(&calc);

/* do big computation */

calctime = tock(&calc);

tick(&io);

/* do IO */

iotime = tock(&io);

/* other timers ... */

printf("Timing summary :\n\tInit: %8.5f sec\n\tCalc:

%8.5f sec\n\tI/O : %8.5f sec\n",

inittime , calctime , iotime);

Erik Spence (SciNet HPC Consortium) Profiling 3 September 2021 10 / 30

Instrumenting regions of code, example
Simple example:
matrix-vector multiply:

Initializes data, does
multiplication, saves
the result.

We’ll examine where
it spends its time, and
try to speed it up.

It will give us options
for how to better
access the data, and
output the data.

/* initialize data */

tick(&init);

gettimeofday (&t, NULL);

seed = (unsigned int) t.tv_sec;

for (int i=0; i<size; i++) {

x[i] = (double)rand_r (&seed)/RAND_MAX

;

y[i] = 0.;

}

if (transpose) {

for (int i=0; i<sizel i++) {

for (int j=0; j<size; j++) {

a[i][j] = (double)(rand_r (&seed))

/RAND_MAX;

}

}

} else {

for (int j=0; j<size; j++) {

for (int i=0; i<size; i++) {

a[i][j] = (double)(rand_r (&seed))

/RAND_MAX;

}

}

}

inittime = tock(&init);

tick(&calc);

if (transpose) {

for (int i=0; i<size; i++) {

for (int j=0; j<size; j++) {

y[i] += a[i][j]*x[j];

}

}

} else {

for (int j=0; j<size; j++) {

for (int i=0; i<size; i++) {

y[i] += a[i][j]*x[j];

}

}

}

calctime = tock(&calc);

Erik Spence (SciNet HPC Consortium) Profiling 3 September 2021 11 / 30

Matrix-vector multiply

Instrumenting the code didn’t take very
long.

We can now get an overview of the
time spent easily, because we
instrumented our code (∼12 lines!).

As we can see, there’s a huge I/O (file
Input/Output) bottleneck.

ejspence@mycomp ~>
ejspence@mycomp ~> mvm --matsize=2500

. . .

Timing Summary:

Init: 0.00952 sec

Calc: 0.06638 sec

I/O : 5.07121 sec

ejspence@mycomp ~>

Erik Spence (SciNet HPC Consortium) Profiling 3 September 2021 12 / 30

~
~
~

Matrix-vector multiply: I/O

It’s not a huge surprise that
things are going slowly:

I/O is being done in
ASCII!

The code is looping
over the data,
converting to string,
writing to output.

There are ≈ 6.252.500
write operations!

// ASCII output

out = fopen("Mat -vec.asc","w");

fprintf(out ,"%d\n", size);

for (int i=0; i<size; i++)

fprintf(out , "%f ", x[i]);

fprintf(out ,"\n",out);

for (int i=0; i<size; i++)

fprintf(out , "%f ", y[i]);

fprintf(out ,"\n",out);

for (int i=0; i<size; i++) {

for (int j=0; j<size; j++) {

fprintf(out , "%f ", a[i][j]);

}

fprintf(out ,"\n",out);

}

fclose(out);

Let’s try a --binary option:

// BINARY output

out = fopen("Mat -vec.bin","wb");

fwrite (&size , sizeof(int),

1, out);

fwrite(x, sizeof(float),

size , out);

fwrite(y, sizeof(float),

size , out);

fwrite (&(a[0][0]) , sizeof(float),

size*size , out);

fclose(out);

Well, the code is shorter ...

Erik Spence (SciNet HPC Consortium) Profiling 3 September 2021 13 / 30

Matrix-vector multiply: I/O, continued

But not just shorter!

Much much (36×) faster!

The file is 4× smaller.

It’s still slow, but file I/O is
always going to be slower than a
calculation (ie. multiplication).

ejspence@mycomp ~>
ejspence@mycomp ~> mvm --matsize=2500

Timing Summary:

Init: 0.00952 sec

Calc: 0.06638 sec

I/O : 5.07121 sec

ejspence@mycomp ~>
ejspence@mycomp ~> mvm --matsize=2500 --binary

Timing Summary:

Init: 0.00976 sec

Calc: 0.06695 sec

I/O : 0.14218 sec

ejspence@mycomp ~>
ejspence@mycomp ~> du -h Mat-vec.*

89M Mat-vec.asc

20M Mat-vec.bin

ejspence@mycomp ~>

Erik Spence (SciNet HPC Consortium) Profiling 3 September 2021 14 / 30

~
~
~
~
~
~
~

Performance and File I/O

Lesson about performance and HPC: always always use BINARY formats for I/O!

There is no conversion (numbers to strings) needed (reduces CPU cycles).

The file sizes are usually smaller (reduces actual file IOPs).

There is no precision lost due to conversion.

There are even more advantages if you use a standard storage format (netCDF, or HDF5).

Don’t dump lots of small files; it wastes time. Instead, bundle things whenever possible.

Erik Spence (SciNet HPC Consortium) Profiling 3 September 2021 15 / 30

Sampling for profiling

Rather than instrumenting the code, a different approach is to sample the code while it’s
running.

This allows us to get finer-grained (more detailed) information about where time is being
spent.

We can’t instrument every single line of the code, especially for large codes.

Compilers have built-in tools for sampling execution paths.

How does sampling work?

As the program executes, every so often (∼100ms) a timer goes, off, and the current
location of execution is recorded.

This shows where time is being spent in the code.

Erik Spence (SciNet HPC Consortium) Profiling 3 September 2021 16 / 30

Sampling

Sampling is useful, but not perfect.

Advantages:
I Very low overhead,
I Easy to implement,
I No extra instrumentation.

Disadvantages:
I It doesn’t tell us why the code was

spending time where it does.
I Statistics: we have to run long

enough to have a good “sample
size”.

The gprof tool is a good sampling-based
code profiling tool.

Free, open-source.

Common on Unix-type systems.
Available on all SciNet systems.

Easy to script, put into batch jobs.

Low overhead.

As with graphical debuggers, there are
versions with GUIs as well.

The gprof tool is a quick-and-easy way to implement sampling in your code.

Erik Spence (SciNet HPC Consortium) Profiling 3 September 2021 17 / 30

gprof for sampling

Specific compilation
flags need to be invoked
to use gprof:

-pg turns on profiling,

-g activate debugging
symbols (optional,
but more info).

ejspence@mycomp ~>
ejspence@mycomp ~> gcc -O3 -pg -g mat-vec-mult.c --std=c++11

ejspence@mycomp ~> icc -O3 -pg -g mat-vec-mult.c -c++11

ejspence@mycomp ~>
ejspence@mycomp ~> ./mvm-profile --matsize=2500

. . .

[output]

ejspence@mycomp ~> ls

Makefile Mat-vec.asc gmon.out mat-vec-mult.c mvm-profile

ejspence@mycomp ~>

During execution nothing has to be actually done, at the end there is a new file named
”gmon.out” containing the information about the samples collected during runtime.

Erik Spence (SciNet HPC Consortium) Profiling 3 September 2021 18 / 30

~
~
~
~
~
~
~

gprof, examining the results
This gives the time used
by each function. This is
usually handy, but not
so useful in this toy
problem.

Adding --line gives
profiling by line. This
can make things easier
to read.

Monolithic code vs
Modular code... another
good reason in favour of
modularity!

$ gprof mvm -profile gmon.out

Flat profile:

Each sample counts as 0.01 seconds.

% cumulative self self total

time seconds seconds calls Ts/call Ts/call name

100.24 0.41 0.41 3 0.00 main

0.00 0.41 0.00 3 0.00 0.00 tick

0.00 0.41 0.00 3 0.00 0.00 tock

0.00 0.41 0.00 2 0.00 0.00 alloc1d

0.00 0.41 0.00 2 0.00 0.00 free1d

$ gprof --line mvm -profile gmon.out | more

Flat profile:

Each sample counts as 0.01 seconds.

% cumulative self self total

time seconds seconds calls Ts/call Ts/call name

68.46 0.28 0.28 main (mat -vec -mult.c:82 @ 401

14.67 0.34 0.06 main (mat -vec -mult.c:113 @ 40

7.33 0.37 0.03 main (mat -vec -mult.c:63 @ 401

4.89 0.39 0.02 main (mat -vec -mult.c:112 @ 40

4.89 0.41 0.02 main (mat -vec -mult.c:113 @ 40

0.00 0.41 0.00 3 0.00 0.00 tick (mat -vec -mult.c:159 @ 40

0.00 0.41 0.00 3 0.00 0.00 tock (mat -vec -mult.c:164 @ 40

0.00 0.41 0.00 2 0.00 0.00 alloc1d (mat -vec -mult.c:152 @

0.00 0.41 0.00 2 0.00 0.00 free1d (mat -vec -mult.c:171 @

Erik Spence (SciNet HPC Consortium) Profiling 3 September 2021 19 / 30

Analyzing the results

$ gprof --line mvm -profile gmon.out | more

Flat profile:

Each sample counts as 0.01 seconds.

% cumulative self self total

time seconds seconds calls Ts/call Ts/call name

68.46 0.28 0.28 main (mat -vec -mult.c:82 @ 401

14.67 0.34 0.06 main (mat -vec -mult.c:113 @ 40

7.33 0.37 0.03 main (mat -vec -mult.c:63 @ 401

4.89 0.39 0.02 main (mat -vec -mult.c:112 @ 40

4.89 0.41 0.02 main (mat -vec -mult.c:113 @ 40

So what do we see?

The code is spending most of the time deep
in loops:

1: multiplication ... line 82

2: I/O (ASCII output) ... line 113

80 for (int j=0; j<size; j++) {

81 for (int i=0; i<size; i++) {

82 y[i] += a[i][j]*x[j];

83 }

84 }

. . .

99 // ASCII output

100 out = fopen("Mat -vec.asc","w");

101 fprintf(out ,"%d\n", size);

102
103 for (int i=0; i<size; i++)

104 fprintf(out , "%f ", x[i]);

105 fprintf(out ,"\n",out);

106
107 for (int i=0; i<size; i++)

108 fprintf(out , "%f ", y[i])

;

109 fprintf(out ,"\n",out);

110
111 for (int i=0; i<size; i++) {

112 for (int j=0; j<size; j++) {

113 fprintf(out , "%f ", a[i][j]);

114 }

115 fprintf(out ,"\n",out);

116 }

117 fclose(out);

Erik Spence (SciNet HPC Consortium) Profiling 3 September 2021 20 / 30

Memory Profiling

Most profilers use time as a performance metric, but what about memory? That’s also a valid
way to judge the code’s performance.

There are many memory profilers available. In particular, our old friend Valgrind:

Massif: Memory Heap Profiler
I valgrind --tool=massif ./mycode

I ms print massif.out

Cachegrind: Cache Profiler
I valgrind --tool=cachegrind ./mycode

I Kcachegrind (gui frontend for cachegrind)

http://valgrind.org/

Erik Spence (SciNet HPC Consortium) Profiling 3 September 2021 21 / 30

http://valgrind.org/

Memory Profiling: Valgrind Massif

Example of output from ms print, showing heap memory usage.

--

n time(i) total(B) useful-heap(B) extra-heap(B) stacks(B)

--

11 17,558,376,865 108,721,536 108,079,702 641,834 0

12 18,730,053,265 108,746,848 108,104,510 642,338 0

13 19,748,755,982 108,742,200 108,099,974 642,226 0

14 21,351,204,796 108,745,520 108,103,214 642,306 0

15 22,575,905,502 108,742,200 108,099,974 642,226 0

16 24,344,627,331 108,742,200 108,099,974 642,226 0

17 25,780,057,465 108,742,200 108,099,974 642,226 0

18 27,215,452,841 108,742,200 108,099,974 642,226 0

99.41% (108,099,974B) (heap allocation functions) malloc/new/new[], --alloc-fns, etc.

->55.61% (60,466,176B) 0x873A8A: BlockMat::setup() (in navierstokes3Dthermallyperfect.5)

| ->55.61% (60,466,176B) 0x47A0F5: Hexa_NKS_Solver<State>::allocate() (NKS.h:192)

| ->55.61% (60,466,176B) 0x477796: int HexaSolver<State>(char*, int) (HexaSolver.h:150)

| ->55.61% (60,466,176B) 0x476A9F: main (NavierStokes3DThermallyPerfect.cc:226)

|

->10.07% (10,948,608B) 0x47A3B2: Hexa_NKS_Solver<State>::allocate() (NKS.h:186)

| ->10.07% (10,948,608B) 0x477796: int HexaSolver<State>(char*, int) (HexaSolver.h:150)

| ->10.07% (10,948,608B) 0x476A9F: main (NavierStokes3DThermallyPerfect.cc:226)

|

->09.15% (9,953,280B) 0x47A390: Hexa_NKS_Solver<Statee>::allocate() (NKS.h:186)

| ->09.15% (9,953,280B) 0x477796: int HexaSolver<State>(char*, int) (HexaSolver.h:150)

| ->09.15% (9,953,280B) 0x476A9F: main (NavierStokes3DThermallyPerfect.cc:226)

Erik Spence (SciNet HPC Consortium) Profiling 3 September 2021 22 / 30

Cache Thrashing I

An easy problem to fall into is known as
”cache thrashing”.

Memory bandwith is key to getting
good performance on modern systems.

Main Memory is big and slow.

The cache is small and fast.

The cache saves recent memory
accesses, one ”line” of data at a time.

Erik Spence (SciNet HPC Consortium) Profiling 3 September 2021 23 / 30

Cache Thrashing II

When accessing memory in order,

only one memory access to (slow)
main memory is needed for many data
points.

This is much faster than accessing
memory multiple times.

Erik Spence (SciNet HPC Consortium) Profiling 3 September 2021 24 / 30

Cache Thrashing III

When accessing memory out of order :

a single, or a few, pieces of data are
grabbed with each memory access,

things slow down significantly.

Each memory access is a new cache
line (cache miss). Accessing main
memory is slow.

You can see ∼ 10× slowdown in
performance.

Erik Spence (SciNet HPC Consortium) Profiling 3 September 2021 25 / 30

Cache Thrashing IV

Ok, so how do we keep from cache-thrashing?
You need to know how your programming
language stores memory.

In C, a row-major language, the
cache-friendly order is to make the last array
index the most-quickly varying.

The opposite is true of Fortran, a
column-major language.

You can see cache problems with valgrind +
visualizer

valgrind --tool=cachegrind

The KDE tool kcachegrind is available for
Windows, Linux and Mac OS X.

tick(&calc);

if (transpose) {

// GOOD! ie. cache-friendly...

for (int i=0; i<size; i++) {

for (int j=0; j<size; j++) {

y[i] += a[i][j]*x[j];

}

}

} else {

// BAD!

for (int j=0; j<size; j++) {

for (int i=0; i<size; i++) {

y[i] += a[i][j]*x[j];

}

}

}

calctime = tock(&calc);

Erik Spence (SciNet HPC Consortium) Profiling 3 September 2021 26 / 30

Cache Thrashing V

Checking our code once
again, we can see that once
cache thrashing is fixed,
and assuming I/O can’t be
further improved, ”Init” is
now the bottleneck...

ejspence@mycomp ~>
ejspence@mycomp ~> ./mvm --matsize=2500 --transpose --binary

Timing Summary:

Init: 0.00947 sec

Calc: 0.00811 sec

I/O : 0.14881 sec

ejspence@mycomp ~>

Erik Spence (SciNet HPC Consortium) Profiling 3 September 2021 27 / 30

~
~
~

Other Profiling Tools

There are many other profiling tools out
there.

Scalasca

Open SpeedShop

TAU Performance System

HPC Tool Kit

Arm MAP (Forge)

Xcode (OS X)

Nvidia Profiler (nvprof)

The Intel Parallel Studio XE has many
useful tools:

Intel VTune Amplifier XE
(performance)

Intel Inspector XE (memory)

Intel Advisor XE (vector/thread)

Intel Trace Analyzer and Collector
(MPI)

There’s a great variety of profiling tools available. The Intel Parallel Studio, and Arm Forge
are particularly good.

Erik Spence (SciNet HPC Consortium) Profiling 3 September 2021 28 / 30

Arm Forge MAP

The Map tool, which comes
with Arm Forge (DDT), is also
very powerful.

The Arm Forge suite is
made available through
the DDT module.

Performance reports are
generated using the ”perf
report ...” command.

This will generate .txt,
.html and .map files.

ejspence@teach01 ~>
ejspence@teach01 ~> module load gcc/7.3.0

ejspence@teach01 ~> module load openmpi/3.1.1

ejspence@teach01 ~> module load ddt/20.1.3

ejspence@teach01 ~>
ejspence@teach01 ~> perf report mpirun -np 4 ./mycode

ejspence@teach01 ~>

Map can also be used through the interactive
client-server setup which we saw last class.

Erik Spence (SciNet HPC Consortium) Profiling 3 September 2021 29 / 30

~
~
~
~
~
~
~

Profiling – Summary

A review of what we’ve discussed today:

There are two main approaches to profiling: tracing vs sampling.

Tracing:
I Put timers in the code in/around important sections, find out where time is being spent.
I If something important changes, you’ll know in what section.

Sampling:
I Sample the location of the program in the code at regular intervals.
I gprof is easy to use and excellent at finding where the time is spent.
I Know the ’expensive’ parts of your code and spend your programming time accordingly.

valgrind is good for all things memory; performance, cache, and usage.

Arm map is a great tool, if you have it available use it!

As with debugging, the usual advices applies: write less code (ie. use libraries), write
modular code, follow best-practices for file I/O, ...

Erik Spence (SciNet HPC Consortium) Profiling 3 September 2021 30 / 30

	This course
	Shared memory debugging
	Profiling Performance
	OS utilities
	Instrumentation
	Sampling
	gprof Sampler Profiler

	Memory Profiling
	valgrind

	Other Profiling Tools
	Arm

	Summary

