
Virtual Summer School:
Python and parallel debugging

Erik Spence

SciNet HPC Consortium

1 September 2021

Erik Spence (SciNet HPC Consortium) Python and parallel debugging 1 September 2021 1 / 30

Material for this class

The slides and code for this class can be found here:

https://scinet.courses/584

All the material for the 2021 Virtual Summer School can be found here:

https://scinet.courses/573

Make sure that you confirm your attendance before the end of class.

Erik Spence (SciNet HPC Consortium) Python and parallel debugging 1 September 2021 2 / 30

https://scinet.courses/584
https://scinet.courses/573

Details about this course

To get credit for this course:

You need to attend 2 out of 3 sessions.
I Each session is about 1.5 hours,
I Sessions are 12:30 - 2:00pm, Monday, Wednesday, Friday, August 30 - September 3.
I To demonstrate attendance, you must take the attendance test each class.

You must submit the assignment.

Ask questions!

Erik Spence (SciNet HPC Consortium) Python and parallel debugging 1 September 2021 3 / 30

Today’s class

The purpose of this second set of material is to introduce you to Python debugging and the
basics of debugging parallel code. We will cover the following topics:

the Python debugger, PDB,

debugging R code,

DDT,

Setting up DDT’s client-server mode,

(Parallel) Debugging with DDT,

Examples.

Ask questions!

Erik Spence (SciNet HPC Consortium) Python and parallel debugging 1 September 2021 4 / 30

Getting set up on SciNet

Be sure to use your username, not ejspence, when you attempt to log into SciNet.

ejspence@mycomp ~>
ejspence@mycomp ~> ssh -Y ejspence@teach.scinet.utoronto.ca

ejspence@teach01 ~>

ejspence@teach01 ~> cd $SCRATCH
ejspence@teach01 scinet/ejspence>

ejspence@teach01 scinet/ejspence> cp -r /scinet/course/ss2021/8 debug .

ejspence@teach01 scinet/ejspence>

ejspence@teach01 scinet/ejspence> cd 8 debug

ejspence@teach01 ejspence/8 debug>

These steps are only necessary if you want to follow along with the examples, or if you didn’t
do this for the first class.

Erik Spence (SciNet HPC Consortium) Python and parallel debugging 1 September 2021 5 / 30

~
~
~
~

Debugging Python code

If you need to debug Python code you CAN use GDB. GDB has python integration which can
be useful. However, Python also comes with its own debugger, PDB (Python DeBugger) built
right in. I find this to be a simpler debugging interface for Python code.

It has most of the commands that regular GDB has, though with a few modifications.

There are two ways to invoke it:
I from the command line,
I embedding it directly into the code.

It behaves very similarly to GDB,

but also allows you to run Python commands within the debugger, to assist with
debugging.

We will go over a Python version of our bugexample code to demonstrate its functionality.

Erik Spence (SciNet HPC Consortium) Python and parallel debugging 1 September 2021 6 / 30

Invoking PDB
The simplest way to invoke PDB is to use through the bash shell prompt:

ejspence@teach01 ejspence/8 debug> module load python

ejspence@teach01 ejspence/8 debug>

ejspence@teach01 ejspence/8 debug> cd bugexample/python

ejspence@teach01 bugexample/python> python bugexample.py 6 7

6

7

Sum of integers is 13

ejspence@teach01 bugexample/python>

ejspence@teach01 bugexample/python> python -m pdb bugexample.py

/scratch/s/scinet/ejspence/8 debug/bugexample/python/bugexample.py(2)<module>()

-> import argparse

(Pdb)

This will give you access to the interactive PDB prompt, and indicate what line you’re on, in
which file.

Erik Spence (SciNet HPC Consortium) Python and parallel debugging 1 September 2021 7 / 30

Invoking PDB, continued

The previous approach will only work if you’re running a script. If you’re working interactively
and you need to use PDB, add the following lines to your function:

def my func(arg1, arg2):

import pdb # Add this line

pdb.set trace() # and this line

to start PDB when the code is run.
.
.
.

When the function is now called the debugger will be launched.

Erik Spence (SciNet HPC Consortium) Python and parallel debugging 1 September 2021 8 / 30

Python debugging final notes
There are a few problems with PDB:

You can set the values of variables, but those variables CANNOT be a PDB command
(setting the variable ’s’ is not possible in this code, since ’s’ is a PDB command).

Several important commands, such as frame, are not available.

The list command stops working after the use of other commands, such as ’where’.

There appear to be problems with using PDB with functions defined at the interactive
Python prompt, rather than within a file.

These problems disappear if you use iPython, but you can’t exit PDB cleanly, whether the
function is defined interactively or in a file.

Nonetheless, if you’re working with code stored in files, PDB is a useful tool.

Also note that there are other Python debuggers out there, in particular pyCharm is popular.

Erik Spence (SciNet HPC Consortium) Python and parallel debugging 1 September 2021 9 / 30

PDB command summary

help h print description of command
run run from the start (+args)

r run until the current function returns
where w print a stack trace
list l list code lines
break b set breakpoint
down d move one level down in the stack trace
continue c continue
step s step into function
next n continue until next line

p print variable
down do go to called function
until unt continue until line/function
up up go to caller
quit q quit pdb

Erik Spence (SciNet HPC Consortium) Python and parallel debugging 1 September 2021 10 / 30

Debugging R code

The debugging capabilities of R are more limited than Python, but there are a few functions
which can be helpful:

traceback(): this function will print out the trace, which can be helpful if your code has
failed at a specific location.

browser(): launches an interactive environment inside the function where it is called. This
environment also contains the ’next’, ’step’, ’finish’, and ’continue’ commands we know
from gdb.

If you are using Rstudio, you can add breakpoints to your code.

Calling ’options(error = recover)’ before the failing function is called. If the failing
function is then called, a different interactive prompt is launched, which displays the
traceback.

There are many tutorials on debugging R code on the web. We won’t be going into detail in
this class.

Erik Spence (SciNet HPC Consortium) Python and parallel debugging 1 September 2021 11 / 30

Parallel debugging, shared memory

You can use GDB for shared-memory debugging. You can

track each thread’s execution and variables,

perform OpenMP serialization: omp set num threads(1),

step into an OpenMP block: break at the first line!

create a thread-specific breakpoint: b <line> thread <n>

Within Valgrind, you can use the ”helgrind” tool for finding race conditions.

ejspence@teach01 ~> module load valgrind

ejspence@teach01 ~> valgrind --tool=helgrind <exe> &> out

ejspence@teach01 ~> grep <source> out

where <source> is the name of the source file where you suspect race conditions (valgrind
reports a lot more).

Erik Spence (SciNet HPC Consortium) Python and parallel debugging 1 September 2021 12 / 30

~
~
~

DDT

If you run an MPI code then you need a parallel debugger which can handle MPI. While GDB
can debug threads, if you’re using MPI you should use DDT (”Distributed Debugging Tool”).

Powerful GUI-based commercial debugger by Arm (one of the few pieces of software that
SciNet purchases).

Supports C, C++ and Fortran.

Supports MPI, OpenMP, threads, CUDA and more.

Available on all SciNet clusters (Niagara, Mist, teach).

Of the General Purpose Compute Canada clusters, only available on Graham.

Part of the “Arm Forge” suite, which also includes a ’profiler’ called MAP.

Unlike GDB, DDT must be run through the GUI interface. This means it can be slow to run
directly if your internet connection is slow. Better to use the client-server mode.

Erik Spence (SciNet HPC Consortium) Python and parallel debugging 1 September 2021 13 / 30

DDT client-server mode
Fortunately, DDT supports a client-server mode, which allows you to run a DDT server on a
SciNet cluster, but only send a minimal amount of graphical information over the internet to
your local machine.

To download the DDT client go to this link:

https://developer.arm.com/tools-and-software/server-and-hpc/downloads/

arm-forge/older-versions-of-remote-client-for-arm-forge

Be sure to download version 20.1.3. We need to use this version because that is the version
installed on SciNet’s clusters. Install the correct version for your computer.

As a note, we can only all run this right now, during class, if there are few enough
students doing so. SciNet only possesses DDT licenses for 64 cores. Thus there are only
enough licenses for 15 students to participate if we each take 4 licenses.

Erik Spence (SciNet HPC Consortium) Python and parallel debugging 1 September 2021 14 / 30

https://developer.arm.com/tools-and-software/server-and-hpc/downloads/arm-forge/older-versions-of-remote-client-for-arm-forge
https://developer.arm.com/tools-and-software/server-and-hpc/downloads/arm-forge/older-versions-of-remote-client-for-arm-forge

Using 2FA with DDT

As an aside, if you use Two Factor Authentication (2FA) on Niagara or Mist you will need to
disable it to use DDT in client-server mode.

There are several ways this can be accomplished.

The easiest way is to move the seed file to a new name. The seed file is located at
/scinet/authenticator/$USER.

You can’t read the /scinet/authenticator directory. Make sure that you don’t forget what
name you rename your directory.

Be sure to put your directory back to your user name when you are finished.

This only works because 2FA is optional on Niagara. When it becomes mandatory a
different technique will be needed.

ejspence@teach01 ~> mv /scinet/authenticator/ejspence /scinet/authenticator/ejspence-old

Erik Spence (SciNet HPC Consortium) Python and parallel debugging 1 September 2021 15 / 30

~

Client-server DDT, the server

How to run DDT in client-server mode?

Log into the teach cluster.

Start a debug session, giving you control
over a set of teach-cluster compute nodes
or cores (here I request only 4 cores).

Note the node on which you are running
(teach02, for example).

Note also the location of the DDT setup
script. This script loads the needed
modules.

Again, we can all do this now if there are no
more than 15 students participating today.

ejspence@teach01 ~>
ejspence@teach01 ~> debugjob -n 4

SALLOC: Granted job allocation 89175

ejspence@teach02 ~>

ejspence@teach02 ~> cd $SCRATCH/8 debug

ejspence@teach02 ejspence/8 debug>

ejspence@teach02 ejspence/8 debug> ls

bugexample ddt remote setup.sh mpiexample

setup

ejspence@teach02 ejspence/8 debug>

ejspence@teach02 ejspence/8 debug> pwd

/scratch/s/scinet/ejspence/8 debug

ejspence@teach02 ejspence/8 debug>

The path to your setup script will, of
course, be different.

Erik Spence (SciNet HPC Consortium) Python and parallel debugging 1 September 2021 16 / 30

~
~
~
~

Client-server DDT, the server, continued

A few more steps on the server
side:

Source the setup script,
to load the modules.

This is only necessary to
find DDT’s installation
directory.

Find DDT’s installation
directory. We will need
this when we set up the
client.

ejspence@teach02 ejspence/8 debug>

ejspence@teach02 ejspence/8 debug> source setup

ejspence@teach02 ejspence/8 debug>

ejspence@teach02 ejspence/8 debug> echo $SCINET DDT ROOT

/scinet/teach/software/2018a/opt/base/ddt/20.1.3

ejspence@teach02 ejspence/8 debug>

Now we’re done on the server side. The client itself is
capable of launching the server.

Erik Spence (SciNet HPC Consortium) Python and parallel debugging 1 September 2021 17 / 30

Client-server DDT, the client

Now we need to build our
remote connection. On your
local machine:

Launch Arm-forge.

Select ”Remote Launch”,
”Configure...”

Erik Spence (SciNet HPC Consortium) Python and parallel debugging 1 September 2021 18 / 30

Client-server DDT, the client, continued
We need to create a DDT
connection session.

At this prompt, select ”Add”.

Erik Spence (SciNet HPC Consortium) Python and parallel debugging 1 September 2021 19 / 30

Client-server DDT, the client, continued more
Give the connection a
name, and fill in the
settings:

Host Name:
your connection
to the teach
login node, and
the node running
the debug job.

Remote Install
Dir: the path on
the teach cluster
to the DDT
installation.

Remote Script: the path to the setup script.

Erik Spence (SciNet HPC Consortium) Python and parallel debugging 1 September 2021 20 / 30

Client-server DDT, the client, continued even more
Now that our session has been
built, we’re ready to launch it.

At this prompt, select ”Close”.

Erik Spence (SciNet HPC Consortium) Python and parallel debugging 1 September 2021 21 / 30

Client-server DDT, the client, continued even morer

Now that the session (”DDT
Test”) is available, select it.

Once the connection is
established, click on ”RUN”.

Erik Spence (SciNet HPC Consortium) Python and parallel debugging 1 September 2021 22 / 30

Running DDT

Now click on ”Run”, which brings us
to the window on the right.

From here you can specify all the
details of the run:

executable (note that this must
be on the server side),

arguments,

number of MPI processes,

number of OpenMP threads,

and many other things.

When all the details have been
specified, click on ”Run”.

Erik Spence (SciNet HPC Consortium) Python and parallel debugging 1 September 2021 23 / 30

Our previous example
Let us examine our previous example using DDT. If you haven’t already compiled this code,
please do so.

The example code reads integers from the command line and sums them.

The code is written in C.

When doing the below commands, make sure you’ve logged into the teach cluster, and have
copied the class code into your SCRATCH directory (see the previous slide).

ejspence@teach02 ejspence/8 debug>

ejspence@teach02 ejspence/8 debug> source setup

ejspence@teach02 ejspence/8 debug>

ejspence@teach02 ejspence/8 debug> cd bugexample/c

ejspence@teach02 bugexample/c>

ejspence@teach02 bugexample/c> make bugexample

ejspence@teach02 bugexample/c>

Erik Spence (SciNet HPC Consortium) Python and parallel debugging 1 September 2021 24 / 30

Other features of DDT

Of course, DDT comes packed with all manner of features.

Some of the user-modified parameters and windows are saved by right-clicking and
selecting a save option in the corresponding window (Groups; Evaluations)

DDT can load and save sessions.

Find and Find in Files in the Search menu.

Goto line in Search menu (or Ctrl-G)

Synchronize processes in group: Right-click, “Run to here”.

View multiple source codes simultaneously: Right-click, “Split”

Right-click power!

If there’s a feature you’re after it’s likely already there.

Erik Spence (SciNet HPC Consortium) Python and parallel debugging 1 September 2021 25 / 30

Other features of DDT, continued

DDT also supports several memory-debugging features.

Select ”memory debug” in the ’Run’ window,

DDT will stop on any error (before crash or corruption),

You can then check the pointer (right click in evaluate),

You can also view overall memory stats,

This allows you to do both regular code and memory debugging, in parallel, simultaneously.

Erik Spence (SciNet HPC Consortium) Python and parallel debugging 1 September 2021 26 / 30

DDT, MPI debugging

With an MPI code you will have multiple simultaneously-running processes.

Your code is running on different cores!

Where should you run the debugger?

Where do you send the debugger output?

How do you debug the inter-process communciation?

Much is going on at same time.

A good approach:

Write your code so it can run in serial: perfect that first.

Deal with communication, synchronization and deadlock on smaller number of MPI
processes/threads.

Only then try full size.

Erik Spence (SciNet HPC Consortium) Python and parallel debugging 1 September 2021 27 / 30

DDT MPI example

Let’s do an MPI-debugging example using DDT.

ejspence@teach02 bugexample/c>

ejspence@teach02 bugexample/c> cd ../../mpiexample

ejspence@teach02 8 debug/mpiexample>

ejspence@teach02 8 debug/mpiexample> make

ejspence@teach02 8 debug/mpiexample>

Once the code is compiled we can run it through our local DDT client.

Erik Spence (SciNet HPC Consortium) Python and parallel debugging 1 September 2021 28 / 30

Detecting deadlock with DDT

If there are MPI messages which
aren’t being delivered, you can
see them in the Message Queue:

Tools → Message Queues.

This produces both a
graphical view and a table of
active communications.

This helps to find deadlocks
and other communication
problems.

Erik Spence (SciNet HPC Consortium) Python and parallel debugging 1 September 2021 29 / 30

Useful references

Some debugging resources:

PDB: https://docs.python.org/3/library/pdb.html

N Matloff and PJ Salzman

The Art of Debugging with GDB, DDD and Eclipse

GDB: http://sources.redhat.com/gdb

DDT: http://www.allinea.com/knowledge-center/tutorials

SciNet Wiki: https://docs.scinet.utoronto.ca/index.php/Performance_And_
Debugging_Tools:_Niagara

Erik Spence (SciNet HPC Consortium) Python and parallel debugging 1 September 2021 30 / 30

https://docs.python.org/3/library/pdb.html
http://sources.redhat.com/gdb
http://www.allinea.com/knowledge-center/tutorials
https://docs.scinet.utoronto.ca/index.php/Performance_And_Debugging_Tools:_Niagara
https://docs.scinet.utoronto.ca/index.php/Performance_And_Debugging_Tools:_Niagara

	This course
	Debugging Python
	Invoking PDB
	Command summary

	Debugging R
	Shared memory debugging
	DDT
	Client-server mode
	Running DDT
	Our previous example
	DDT MPI example

