
Virtual Summer School:
debugging

Erik Spence

SciNet HPC Consortium

30 August 2021

Erik Spence (SciNet HPC Consortium) Debugging 30 August 2021 1 / 39

Material for this class

The slides and code for this class can be found here:

https://scinet.courses/584

All the material for the 2021 Virtual Summer School can be found here:

https://scinet.courses/573

Make sure that you confirm your attentance before the end of class.

Erik Spence (SciNet HPC Consortium) Debugging 30 August 2021 2 / 39

https://scinet.courses/584
https://scinet.courses/573

Details about this course

To get credit for this course:

You need to attend 2 out of 3 sessions.
I Each session is about 1.5 hours,
I Sessions are 12:30 - 2:00pm, Monday, Wednesday, Friday, August 30 - September 3.
I To demonstrate attendance, you must take the attendance test each class.

You must submit the assignment.

This course is based on material developed by Bruno Mundim, and other SciNet analysts.

Ask questions!

Erik Spence (SciNet HPC Consortium) Debugging 30 August 2021 3 / 39

Today’s class

The purpose of this class is to introduce you to the basics of debugging high-performance
code. We will cover the following topics:

Debugging Basics

Debugging with the command line: GDB

Memory debugging with the command line: Valgrind

Note that this class will be exclusively about compiled languages (C, C++, Fortran). We will
not be looking at debugging interpreted languages (Python, R) today.

Erik Spence (SciNet HPC Consortium) Debugging 30 August 2021 4 / 39

Debugging basics

Help, my program doesn’t work!

↓
a miracle occurs

↓
My program works brilliantly!

ejspence@mycomp ~> gcc -O3 answer.c

ejspence@mycomp ~> ./a.out

Segmentation fault

ejspence@mycomp ~> gcc -O3 answer.c

ejspence@mycomp ~> ./a.out

42

Unfortunately, miracles are not yet supported by SciNet.

Debugging: the methodical process of finding and fixing flaws in software.

Erik Spence (SciNet HPC Consortium) Debugging 30 August 2021 5 / 39

~
~
~
~

Common types of errors

There are two broad modes of failure.

Compile-time errors (errors which occur during compilation):
I Syntax errors: easy to fix,
I Library issues (linking, missing libraries, missing objects),
I Compiler warnings (always switch this on, and fix or understand them!),

Runtime errors (errors which occur when the code is run):
I floating point exceptions,
I segmentation faults,
I code is aborted,
I incorrect output (NaNs),

Debugging generally focusses on runtime errors. Just because your code compiles does not
mean it is correct!

Erik Spence (SciNet HPC Consortium) Debugging 30 August 2021 6 / 39

How to avoid debugging

Of course, you’re better off not needing to debug at all. Some tips:

Write better code.
I Write simple, clear, straightforward code.
I Use sensible variable and function names.
I Comment your code!
I Write modular code (no global variables or 10,000-line functions).
I Write testing routines for your functions.
I Avoid ’cute’ tricks (no obfuscated C code winners).

Use version control so you can ’roll back’ your code when things go wrong.

Be systematic! Take note of your assumptions.

Don’t write code, use existing libraries whenever possible.

Bugs will still creep in, but using good coding best-practices will keep the bugs to a minimum,
and make them easier to find!

Erik Spence (SciNet HPC Consortium) Debugging 30 August 2021 7 / 39

Debugging workflow

Ok, so you’ve written and compiled your code, but it crashes when it runs. What to do?

As soon as you are convinced there is a real problem, create the simplest example in
which the crash consistently occurs.

Be methodical: model, hypothesis, experiment, conclusion.

Try a smaller problem size, turning off compilation flags, etc., until you have a simple,
fast repeatable example of the bug.

Try to narrow it down to a particular module/function/class.
For fortran, switch on bounds checking (-fbounds-check.)

Now that you’ve narrowed down the problem you’re ready to start debugging.

Erik Spence (SciNet HPC Consortium) Debugging 30 August 2021 8 / 39

Ways to debug

There are several approaches to debugging.

Preemptive:
I Turn on compiler warnings (for gcc, use the -Wall flag). These are not just there to annoy

you, they give useful information. Fix the causes of the warnings, or at least understand
them!

I Check your assumptions (e.g. use assert command).

If your code is crashing, inspect the exit code and read the error messages!

Use a debugger. This a program specially designed for finding bugs in programs.

Add print statements. ←Bad!

Adding print statements is not the correct way to debug a code.

Erik Spence (SciNet HPC Consortium) Debugging 30 August 2021 9 / 39

What’s wrong with print statements?
Strategy:

Constant cycle:
1 strategically add print statements,
2 compile,
3 run,
4 analyze output, bug not found?

Remove the extra code after the bug is fixed,

Repeat for each bug.

Problems with this approach:

Time consuming,

Error prone,

Changes memory, timing. . .

At the best of times this is inefficient. There’s a better way!

Erik Spence (SciNet HPC Consortium) Debugging 30 August 2021 10 / 39

Symbolic debuggers
Debuggers (also called symbolic debuggers), are programs which have been specifically
designed to find bugs in programs. These programs are used for

code crash inspection,

examination of the function call stack,

stepping through the code,

variable checking and setting.

Some debuggers have a graphical user interface. Should I use a graphical debugger or not?
That depends on where you’re working:

On your local work station: graphical is convenient,

Remotely, over an internet (SciNet): can be slow, unless the debugger supports a
client-server mode.

In any case, graphical and text-based debuggers use the same concepts.

Erik Spence (SciNet HPC Consortium) Debugging 30 August 2021 11 / 39

Symbolic debuggers, continued
So, how do we go about using a debugger?

The first step is to prepare the executable.
I Recompile the code with the required compilation flags. This adds symbols into the

executable which the debugger uses to understand what is going on. The most commonly
used debugging flag is -g.

I Optional: switch off code optimization -O0.

Launch the code using the debugger.

The specific debugger compilation flags depend upon the compiler being used.

ejspence@mycomp ~> gcc/g++/gfortran -g [-gstabs]

ejspence@mycomp ~> icc/icpc/ifort -g [-debug parallel]

ejspence@mycomp ~> nvcc -g -G

The next step is to launch the code using the debugger.

Erik Spence (SciNet HPC Consortium) Debugging 30 August 2021 12 / 39

~
~
~

What is GDB?

We will use GDB, a commonly used debugger (GNU DeBugger).

Free, Open Source, GNU license, symbolic debugger.

Available on most Unix-like systems. Available on SciNet’s Teach cluster and Mist as a
module, built into Niagara.

Works with many languages (C, C++, Fortran, Ada, Go, Julia, Python).

Has been around for a long time, but is still being actively developed.

Text based, which means it’s easy to use in a terminal.

But it also has a ’-tui’ (Text User Interface) option.

GDB is a excellent tool for debugging. We will run some examples on SciNet’s Teach cluster,
but you can also install GDB on your local machine and use it there.

Erik Spence (SciNet HPC Consortium) Debugging 30 August 2021 13 / 39

Installing GDB

If you want to install GDB on your local machine, you have a few options.

The official download website is found here:
https://www.gnu.org/software/gdb/download. However, this only leads to the
source code.

On a Mac, use brew or fink.

On a Windows 10 machine,
I use the Windows subsystem for Linux (Ubuntu). Use apt-get to install.
I some other method? Good luck!

On Linux, use apt-get, yum or your favourite package manager to install GDB.

Download the code from the class web site so you can run the examples on your local machine.
Note that we will also use the ”Valgrind” code, so it’s worth your time to install both.

Erik Spence (SciNet HPC Consortium) Debugging 30 August 2021 14 / 39

https://www.gnu.org/software/gdb/download

Getting set up on SciNet

Be sure to use your username, not ejspence, when you attempt to log into SciNet.

ejspence@mycomp ~> ssh -X ejspence@teach.scinet.utoronto.ca

ejspence@teach01 ~>

ejspence@teach01 ~> cd $SCRATCH
ejspence@teach01 scinet/ejspence>

ejspence@teach01 scinet/ejspence> cp -r /scinet/course/ss2021/8 debug .

ejspence@teach01 scinet/ejspence>

ejspence@teach01 scinet/ejspence> cd 8 debug

ejspence@teach01 ejspence/8 debug>

These steps are only necessary if you want to follow along with the examples on the teach
cluster. If you’re following along on your local machine you should download today’s code
from the class web site.

Do NOT try to copy-and-paste code out of PDFs!

Erik Spence (SciNet HPC Consortium) Debugging 30 August 2021 15 / 39

~
~
~

GDB example

Let’s examine the features of GDB by doing an example.

The example code reads integers from the command line and sums them.

The example is written in C.

When doing the below commands, make sure you’ve logged into the teach cluster, and have
copied the class code into your SCRATCH directory (see the previous slide).

ejspence@teach01 ejspence/8 debug>

ejspence@teach01 ejspence/8 debug> source setup

ejspence@teach01 ejspence/8 debug>

ejspence@teach01 ejspence/8 debug> cd bugexample/c

ejspence@teach01 bugexample/c>

ejspence@teach01 bugexample/c> make bugexample

ejspence@teach01 bugexample/c>

Erik Spence (SciNet HPC Consortium) Debugging 30 August 2021 16 / 39

GDB example, continued

What happened?

The program crashed with a
”Segmentation fault”.

This usually means that it attempted
to access an illegal memory location.

The ”unlimit -c 1024” controls the
maximum core file size that will be
produced.

The ”core file” contains the
in-memory state of the program at the
time that it crashed (a ”core dump”).

The core file is named ”core” or
”core.XXXX”.

ejspence@teach01 bugexample/c>

ejspence@teach01 bugexample/c> ./bugexample

Give some integers as command-line arguments

ejspence@teach01 bugexample/c>

ejspence@teach01 bugexample/c> ./bugexample 1 3 5

Segmentation fault

ejspence@teach01 bugexample/c>

ejspence@teach01 bugexample/c> ulimit -c 1024

ejspence@teach01 bugexample/c>

ejspence@teach01 bugexample/c> ./bugexample 1 3 5

Segmentation fault (core dumped)

ejspence@teach01 ~>

GDB can use the core file to diagnose the
program.

Erik Spence (SciNet HPC Consortium) Debugging 30 August 2021 17 / 39

~

GDB example, inspecting the core file

GDB will inspect the core file to try to figure out what went wrong.

Core = file containing state of program after a crash.

I GDB reads the file by using the command gdb <executable> <corefile>
I It will show you where the program crashed.

No core file?

I You can start GDB using gdb <executable>
I Type run (with any needed arguments) to start the program.
I GDB will show you where the program crashed if it does.

Related GDB commands:
I run: run the executable from the start.
I list: list code lines (where current execution is, or range).

Once GDB has been started it will create an interactive prompt which allows further
commands to be entered.

Erik Spence (SciNet HPC Consortium) Debugging 30 August 2021 18 / 39

GDB example, inspecting the core file, continued

The code failed at line 30 of
the intlisttools.c file.

When running GDB, the
program’s ”location” is the
beginning of the next line of
code to be run by the
program. GDB’s current
location is line 30.

If you ever want to get out of
the GDB prompt, type ”quit”,
or Ctrl-D.

ejspence@teach01 bugexample/c>

ejspence@teach01 bugexample/c> gdb ./bugexample core.2387

GNU gdb (GDB) 7.6

Copyright (C) 2013 Free Software Foundation, Inc.

...

Reading symbols from bugexample/bugexample...done.

[New LWP 3817]

warning: Can’t read pathname for load map: Input/output

error.

Core was generated by ‘./bugexample 1 3 5’.

Program terminated with signal 11, Segmentation fault.

#0 0x4007d5 in sum integers (n=3, a=0x4)

at intlisttools.c:30

30 s += a[i];

(gdb)

Erik Spence (SciNet HPC Consortium) Debugging 30 August 2021 19 / 39

Symbolic debuggers, an aside

Those of you who have never used a symbolic debugger before, take note:

Notice that we are now inside the program while it is running!

True, the program has been paused for the moment, but we can restart it when we want.

Since we are inside the program, we can poke around, examine variables, check
assumptions, etc.

We can directly examine what the program thinks is going on.

No print statements, or recompiling, are needed!

Using a debugger is the correct way to debug a compiled code.

Erik Spence (SciNet HPC Consortium) Debugging 30 August 2021 20 / 39

GDB example, inspecting the core file, continued more

We can use GDB’s ”list” command
to print out the code around its
current location.

The line numbers of the file are
listed on the left.

Note that if you hit ’Enter’ at the
GDB prompt without a command
GDB will repeat the last command
entered.

(gdb)

(gdb) list

25 /* Compute the sum of the array of integers */

26 int sum integers(int n, int* a)

27 {
28 int i, s;

29 for (i=0; i<n; i++)

30 s += a[i];

31 return s;

32 }
(gdb)

If list has already been run once, the ’list’ command
will continue to list code starting at the end of the
last list output.

Erik Spence (SciNet HPC Consortium) Debugging 30 August 2021 21 / 39

GDB example, the function call stack
When running the program from within GDB, you can interupt the program mid-execution:

Press Crtl-C while program is running in GDB,

GDB will show you where the program was.

You can also get access to the ”stack trace”:

From what functions was this line reached?

What were the arguments of those function calls?

More GDB commands:

frame f print the current line
backtrace ba print the function call stack
continue c continue execution
down do go to called function
up up go to calling function

Erik Spence (SciNet HPC Consortium) Debugging 30 August 2021 22 / 39

GDB example, the function call stack, continued

(gdb)

(gdb) frame

#0 0x00000000004007ac in sum integers (n=3, a=0x4) at intlisttools.c:30

30 s += a[i];

(gdb)

(gdb) backtrace

#0 0x4007d5 in sum integers (n=3,a=0x4) at intlisttools.c:30

#1 0x40082a in process (argc=4,argv=0x7fff0b89ce58) at process.c:11

#2 0x4006d3 in main (argc=4,argv=0x7fff0b89ce58) at bugexample.c:12

(gdb)

You can use the ”frame” command to remind yourself of where you are in the code.

Erik Spence (SciNet HPC Consortium) Debugging 30 August 2021 23 / 39

GDB example, variables

GDB allows you to inspect the program’s variables.

Can print the value of a variable,

Can keep track of variable (print at prompt),

Can stop the program when variable changes,

Can change a variable (”what if . . . ”).

More GDB commands:

print variable p print the variable’s value
display variable disp print the variable’s value at every prompt
set variable set var change the variable’s value
watch wa stop if the variable’s value changes

Erik Spence (SciNet HPC Consortium) Debugging 30 August 2021 24 / 39

GDB example, variables, continued
(gdb)

(gdb) list 25, 32

25 /* Compute the sum of the array of integers */

26 int sum integers(int n, int* a)

27 {
28 int i, s;

29 for (i=0; i<n; i++)

30 s += a[i];

31 return s;

32 }
(gdb) print i

$1 = 0

(gdb) print a[0]

Cannot access memory at address 0x4

(gdb) print a

$2 = (int *) 0x4

(gdb)

Erik Spence (SciNet HPC Consortium) Debugging 30 August 2021 25 / 39

GDB example, variables, continued more

(gdb)

(gdb) up

#1 0x000000000040082a in process (argc=4, argv=0x7fff0b89ce58) at process.c:11

11 int s = sum integers(n, arg);

(gdb) print arg

$3 = (int *) 0x4

(gdb) list

7 void process(int argc, char** argv)

8 {
9 int* arg = read integer arguments(argc, argv);

10 int n = argc-1;

11 int s = sum integers(n, arg);

12 print integers(n, arg);

13 printf("Sum of integers is: %d\n", s);

14 }

Erik Spence (SciNet HPC Consortium) Debugging 30 August 2021 26 / 39

GDB example, automatic interruption
GDB allows you to insert ”breakpoints” into the code:

break [file:]<line>|<function>

each breakpoint gets a number

when run, GDB automatically stops the program there

you can also add conditions, temporarily remote breaks, etc.

More GDB commands:

delete d unset a breakpoint
condition cond break if a condition is met
disable dis disable a breakpoint
enable en enable a breakpoint
info breakpoints inf b list all breakpoints
tbreak tb temporary breakpoint

Erik Spence (SciNet HPC Consortium) Debugging 30 August 2021 27 / 39

GDB example, automatic interruption, continued
Here we set a breakpoint at
the read integer arguments
function.

We then rerun the program
with arguments ”1 3 5”.
The program then run until
it either crashes, or hits the
breakpoint.

(gdb) list 7, 14

7 void process(int argc, char** argv)

8 {
9 int* arg = read integer arguments(argc, argv);

10 int n = argc-1;

11 int s = sum integers(n, arg);

12 print integers(n, arg);

13 printf("Sum of integers is: %d\n", s);

14 }
(gdb) break read integer arguments

Breakpoint 1 at 0x4006ec: file intlisttools.c, line 8.

(gdb) run 1 3 5

Starting program: bugexample/c/bugexample 1 3 5

Breakpoint 1, read integer arguments (n=4, a=0x7fffffffc9b8)

at intlisttools.c:8

8 int* result = malloc(sizeof(int)*(n-1));

(gdb)

Erik Spence (SciNet HPC Consortium) Debugging 30 August 2021 28 / 39

GDB example, stepping through the code

You can also use GDB to step through the code, stopping after every step:

You can step line-by-line.

You can choose to step into or over functions.

You can show surrounding lines or use the -tui flag.

More GDB commands:

list l list part of code
next n continue until next line
step s step into function
finish fin continue until the function’s end
until unt continue until line/function

Erik Spence (SciNet HPC Consortium) Debugging 30 August 2021 29 / 39

GDB example, stepping through the code, continued

Here we list lines 6-14 of
the current file.

Recall that the ”display”
command displays the value
of a variable after every
command.

The ”next” command
continues executing the
code until the next line.
Notice how the new value
of the ”result” variable is
displayed.

(gdb)

(gdb) list 6, 14

6 int* read integer arguments(int n, char** a)

7 {
8 int* result = malloc(sizeof(int)*(n-1));

9 int i;

10 /* convert every argument, but skip ’0’, because it

11 is just the executable name */

12 for (i=1;i<n;i++)

13 result[i] = atoi(a[i]);

14 }
(gdb) display result

1: result = (int *) 0x0

(gdb) next

12 for (i=1;i<n;i++)

1: result = (int *) 0x601010

(gdb)

Erik Spence (SciNet HPC Consortium) Debugging 30 August 2021 30 / 39

GDB example, continued more

Recall that ”until” runs
the program until a
specific line or function
is encountered. In this
case we run until line 14.

We then run ”finish” to
run until the end of the
function.

(gdb)

(gdb) until 14

read integer arguments (n=4,a=0x7fffffffc9b8) at intlisttools.c:14

14 }
1: result = (int *) 0x601010

(gdb) finish

Run till exit from #0 read integer arguments (n=4,

a=0x7fffffffc9b8) at intlisttools.c:14

0x000000000040080c in process (argc=4, argv=0x7fffffffc9b8)

at process.c:9

9 int* arg = read integer arguments(argc, argv);

Value returned is $4 = (int *) 0x4

(gdb)

Notice that the result variable equal to 0x601010 while the value returned is 0x4. Clearly
something is not correct.

Erik Spence (SciNet HPC Consortium) Debugging 30 August 2021 31 / 39

GDB example, continued even more
Why is the result variable equal to 0x601010 while the value returned is 0x4?

(gdb)

(gdb) list read integer arguments,+7

7 {
8 int* result = malloc(sizeof(int)*(n-1));

9 int i;

10 /* convert every argument, but skip ’0’, because it

11 is just the executable name */

12 for (i=1;i<n;i++)

13 result[i] = atoi(a[i]);

14 }
(gdb)

Aargh! Forgot the return statement!

Feeling like an idiot is a common side-effect of debugging.

Erik Spence (SciNet HPC Consortium) Debugging 30 August 2021 32 / 39

GDB example, summary

This example demonstrated the basics of what you can do with GDB.

We used the core file to get GDB started.

We stepped into the code.

We printed out the values of variables.

We printed out the stack trace.

We printed out blocks of code.

We popped out of a function.

We created a breakpoint.

We stepped through the code.

Use a debugger!

Erik Spence (SciNet HPC Consortium) Debugging 30 August 2021 33 / 39

GDB command summary
help h print description of command
run r run from the start (+args)
backtrace/where ba function call stack
list l list code lines
break b set breakpoint
delete d delete breakpoint
continue c continue
step s step into function
next n continue until next line
print p print variable
finish fin continue until function end
set variable set var change variable
down do go to called function
until unt continue until line/function
up up go to caller
watch wa stop if variable changes
quit q quit gdb

Erik Spence (SciNet HPC Consortium) Debugging 30 August 2021 34 / 39

Memory Checking: Valgrind

Sometimes you suspect (or know!) that your code has issues with memory.

Memory errors do not always give Segmentation Faults (”segfaults”).

You commonly have to go way out of bounds to get a segfault.

If you accidentally write into another variable it can very hard to find the problem.

Valgrind is a debugging program which intercepts each memory call and checks them for
correctness.

Valgrind is free, open-source.

It finds illegal memory accesses, uninitialized values, memory leaks, and other memory-use
problems.

Warning: the output of Valgrind can be quite verbose, an, if you use external libraries you
can sometimes get false positives.

Valgrind is an excellent debugger if you have memory problems.

Erik Spence (SciNet HPC Consortium) Debugging 30 August 2021 35 / 39

Valgrind example
ejspence@teach01 bugexample/c> valgrind ./bugexample 1 3 5

==909== Memcheck, a memory error detector

==909== Copyright (C) 2002-2013, and GNU GPL’d, by Julian Seward et al.

==909== Using Valgrind-3.9.0 and LibVEX; rerun with -h for copyright info

==909== Command: ./bugexample 1 3 5

==909==

==909== Invalid write of size 4

==909== at 0x400741: read integer arguments (intlisttools.c:13)

==909== by 0x40080B: process (process.c:9)

==909== by 0x4006D2: main (bugexample.c:12)

==909== Address 0x51c304c is 0 bytes after a block of size 12 alloc’d

==909== at 0x4C2636D: malloc (vg replace malloc.c:291)

==909== by 0x4006FF: read integer arguments (intlisttools.c:8)

==909== by 0x40080B: process (process.c:9)

==909== by 0x4006D2: main (bugexample.c:12)

==909==

==909== Invalid read of size 4

...

Erik Spence (SciNet HPC Consortium) Debugging 30 August 2021 36 / 39

Valgrind example (continued)

==909== HEAP SUMMARY:

==909== in use at exit: 12 bytes in 1 blocks

==909== total heap usage: 1 allocs, 0 frees, 12 bytes allocated

==909==

==909== LEAK SUMMARY:

==909== definitely lost: 12 bytes in 1 blocks

==909== indirectly lost: 0 bytes in 0 blocks

==909== possibly lost: 0 bytes in 0 blocks

==909== still reachable: 0 bytes in 0 blocks

==909== suppressed: 0 bytes in 0 blocks

==909== Rerun with --leak-check=full to see details of leaked memory

==909==

==909== For counts of detected and suppressed errors, rerun with: -v

==909== ERROR SUMMARY: 2 errors from 2 contexts (suppressed: 6 from 6)

Segmentation fault

ejspence@teach01 bugexample/c>

Erik Spence (SciNet HPC Consortium) Debugging 30 August 2021 37 / 39

Valgrind recommendations

Note that Valgrind gives a report on the code, rather than allowing you to actively explore it,
like GDB. Some tips if you find yourself using Valgrind:

Using Valgrind on mature codes often shows lots of errors. Now, some may not be an
issue (e.g. dead code or false positives from libraries), but it’s hard to know.

So: start using Valgrind early in development.

Program modularly, and create small unit tests, on which you can comfortably use
Valgrind.

Apart from this basic Valgrind usage, there are other tools availble with Valgrind to deal
cache performance, to get more detailed memory leak information, to detect race
conditions, etc.

We won’t be spending more time on Valgrind today, but be aware it is an excellent
memory-debugging tool.

Erik Spence (SciNet HPC Consortium) Debugging 30 August 2021 38 / 39

Useful references

There are many many useful tutorials on using GDB and Valgrind; a quick internet search will
reveal many. Here are some basic references.

N Matloff and PJ Salzman

The Art of Debugging with GDB, DDD and Eclipse

GDB: https://www.gnu.org/software/gdb

Valgrind: https://www.valgrind.org

SciNet Wiki: https://docs.scinet.utoronto.ca/index.php/Performance_And_
Debugging_Tools:_Niagara

Erik Spence (SciNet HPC Consortium) Debugging 30 August 2021 39 / 39

https://www.gnu.org/software/gdb
https://www.valgrind.org
https://docs.scinet.utoronto.ca/index.php/Performance_And_Debugging_Tools:_Niagara
https://docs.scinet.utoronto.ca/index.php/Performance_And_Debugging_Tools:_Niagara

	This course
	Debugging
	Types of errors
	Writing good code
	Print statements
	Symbolic debuggers

	GDB
	Installing
	Core files
	Function stack
	Examining variables
	Breakpoints
	Stepping through the code
	Command summary

	Valgrind

