
Parallel Programming on Multicore Computers with OpenMP
Virtual Summer Training Program

Alexey Fedoseev

August 16 - 20, 2021

Alexey Fedoseev Parallel Programming with OpenMP August 16 - 20, 2021 1 / 52

Concurrency vs Parallelism

Figure 1: Concurrent, non-parallel execution

Figure 2: Concurrent, parallel execution

Alexey Fedoseev Parallel Programming with OpenMP August 16 - 20, 2021 2 / 52

Shared Memory Computer

Alexey Fedoseev Parallel Programming with OpenMP August 16 - 20, 2021 3 / 52

Shared Memory Computer

Symmetric Multiprocessor (SMP)
A shared address space where each processor has equal memory access time and OS treats all
processors equally, reserving none for special purposes.

Non-Uniform Memory Access (NUMA)
A shared address space where memory access time depends on the memory location relative to
the processor.

Alexey Fedoseev Parallel Programming with OpenMP August 16 - 20, 2021 4 / 52

OpenMP

I Provides a set of compiler directives and library routines that used together to write
multi-threaded applications

I Simplifies writing multi-threaded programs in C, C++ and Fortran

I Most of the constructs in OpenMP are compiler directives.

#pragma omp parallel num_threads(4)

Alexey Fedoseev Parallel Programming with OpenMP August 16 - 20, 2021 5 / 52

Running OpenMP on Teach cluster

I Connect to the Teach login node

$ ssh username@teach.scinet.utoronto.ca

Now you are on the login node teach01. This node is shared between students. Use this node
to develop and compile code, to run short tests, and to submit computations to the scheduler.

I Request the part of the cluster resources

$ debugjob -n 4

I Load the compiler

$ module load gcc

Alexey Fedoseev Parallel Programming with OpenMP August 16 - 20, 2021 6 / 52

Running OpenMP on OS X

I Install Homebrew from https://brew.sh/

I Install gcc using brew

$ brew install gcc

I Use gcc-11 instead of gcc

$ which gcc-11
/usr/local/bin/gcc-11

I To compile the code using OpenMP add -fopenmp

$ gcc-11 -fopenmp program.c

Alexey Fedoseev Parallel Programming with OpenMP August 16 - 20, 2021 7 / 52

https://brew.sh/

Exercise 1: Hello World

#include <stdio.h>
int main()
{

int ID = 0;
printf("hello(%d) ", ID);
printf("world(%d) \n", ID);
return 0;

}

$ gcc hello-world.c

Alexey Fedoseev Parallel Programming with OpenMP August 16 - 20, 2021 8 / 52

Exercise 1: Hello World - Parallel version
1 #include <stdio.h>
2 #include <omp.h>
3 int main()
4 {
5 #pragma omp parallel
6 {
7 int ID = omp_get_thread_num();
8 printf("hello(%d) ", ID);
9 printf("world(%d) \n", ID);

10 }
11 return 0;
12 }

$ gcc -fopenmp hello-world.c

Alexey Fedoseev Parallel Programming with OpenMP August 16 - 20, 2021 9 / 52

Exercise 1: Hello World - Parallel version

$./a.out
hello(2) hello(1) hello(0) hello(3) world(2)
world(1)
world(0)
world(3)

Alexey Fedoseev Parallel Programming with OpenMP August 16 - 20, 2021 10 / 52

Fork-Join

Figure 3: Fork-join model on Wikipedia

Alexey Fedoseev Parallel Programming with OpenMP August 16 - 20, 2021 11 / 52

https://en.wikipedia.org/wiki/Fork-join_model

Requesting global number of threads

#include <stdio.h>
#include <omp.h>
int main() {

omp_set_num_threads(8);
#pragma omp parallel
{

int thread_id = omp_get_thread_num();
int n_threads = omp_get_num_threads();
if (thread_id == 0) printf("There are %d threads\n", n_threads);

}
return 0;

}

Alexey Fedoseev Parallel Programming with OpenMP August 16 - 20, 2021 12 / 52

OMP_NUM_THREADS environmental variable
#include <stdio.h>
#include <omp.h>
int main() {

#pragma omp parallel
{

int thread_id = omp_get_thread_num();
int n_threads = omp_get_num_threads();
if (thread_id == 0) printf("There are %d threads\n", n_threads);

}
return 0;

}

$ export OMP_NUM_THREADS=8
$./a.out
There are 8 threads

Alexey Fedoseev Parallel Programming with OpenMP August 16 - 20, 2021 13 / 52

Requesting local number of threads
#include <stdio.h>
#include <omp.h>
int main() {

#pragma omp parallel num_threads(8)
{

int thread_id = omp_get_thread_num();
int n_threads = omp_get_num_threads();
if (thread_id == 0) printf("There are %d threads\n", n_threads);

}
return 0;

}

$ export OMP_NUM_THREADS=16
$./a.out
There are 8 threads

Alexey Fedoseev Parallel Programming with OpenMP August 16 - 20, 2021 14 / 52

False sharing - example
#include <stdio.h>
#include <omp.h>
int main() {

int *x = new int[100];
#pragma omp parallel
{

int i = omp_get_thread_num(),
stride = 16;

for (int k = 0; k < 2000000000; k++)
x[i*stride]++;

}
delete [] x;
return 0;

}

Alexey Fedoseev Parallel Programming with OpenMP August 16 - 20, 2021 15 / 52

False sharing - example
I Stride = 1
$ time ./a.out

real 0m22.894s
user 1m24.759s
sys 0m0.134s

I Stride = 16
$ time ./a.out

real 0m6.200s
user 0m22.300s
sys 0m0.039s

Figure 4: MacBook Pro (Retina, 13-inch, Early 2015), no optimization

On newer versions of OS X to achieve the same formatting of the time command use the
following command instead:

/usr/bin/time -p ./a.out

Alexey Fedoseev Parallel Programming with OpenMP August 16 - 20, 2021 16 / 52

False sharing

0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

X[0]++

1 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0

X[1]++

Core #0 Core #1

1 1 0 0 0 0 0 0

2 1 0 0 0 0 0 0

X[0]++

1 1 0 0 0 0 0 0

2 2 0 0 0 0 0 0

X[1]++

Cache line
Explanation
False sharing occurs when threads on
different processors modify variables
that reside on the same cache line.
This invalidates the cache line and
forces a memory update.

Alexey Fedoseev Parallel Programming with OpenMP August 16 - 20, 2021 17 / 52

Synchronization

High level synchronization

I critical

A section of code can only be executed by one thread at a time.

I atomic

Update of a single memory location.

I barrier

A barrier defines a point in the code where all active threads will stop until all threads have
arrived at that point.

Alexey Fedoseev Parallel Programming with OpenMP August 16 - 20, 2021 18 / 52

Synchronization - critical

I Mutual exclusion: Only one thread at a time can enter a critical region.

double sum = 0;
#pragma omp parallel
{

int id = omp_get_thread_num();
#pragma omp critical
sum += work(id);

}

Alexey Fedoseev Parallel Programming with OpenMP August 16 - 20, 2021 19 / 52

Synchronization - atomic

I An atomic operation applies only to the single assignment statement that immediately
follows it. It is commonly used to update counters and other simple variables that are
accessed by multiple threads simultaneously.

double sum = 0;
#pragma omp parallel
{

int id = omp_get_thread_num();
#pragma omp atomic
sum += work(id);

}

Alexey Fedoseev Parallel Programming with OpenMP August 16 - 20, 2021 20 / 52

Synchronization - barrier

I Each tread waits until all threads arrive

#pragma omp parallel
{

int id = omp_get_thread_num();
var[id] = work(id);
#pragma omp barrier
res[id] = calc(id, var);

}

Alexey Fedoseev Parallel Programming with OpenMP August 16 - 20, 2021 21 / 52

single work sharing construct
I The single construct denotes a block of code that is executed by only one thread.

I A barrier is implied at the end of the single block (can remove the barrier with a nowait
clause).

#pragma omp parallel
{

do_work();

#pragma omp single
exchange_boundaries();

do_more_work();
}

Alexey Fedoseev Parallel Programming with OpenMP August 16 - 20, 2021 22 / 52

master construct

I The master construct denotes a structured block that is only executed by the master
thread.

I The other threads just skip it (no synchronization is implied).

#pragma omp parallel
{

do_work();
#pragma omp master
exchange_boundaries();
#pragma omp barrier
do_more_work();

}

Alexey Fedoseev Parallel Programming with OpenMP August 16 - 20, 2021 23 / 52

Parallel for loop

#include <stdio.h>
#include <omp.h>
int main() {

#pragma omp parallel for
for (int i = 0; i < 4*omp_get_num_threads(); i++)

printf("Thread %d, i = %d\n",
omp_get_thread_num(), i);

return 0;
}

$ gcc -fopenmp par-for.c

Alexey Fedoseev Parallel Programming with OpenMP August 16 - 20, 2021 24 / 52

Parallel for loop

I Output

$./a.out
Thread 0, i = 0
Thread 2, i = 6
Thread 1, i = 3
Thread 3, i = 8
Thread 0, i = 1
Thread 2, i = 7
Thread 1, i = 4
Thread 3, i = 9
Thread 0, i = 2
Thread 1, i = 5

Alexey Fedoseev Parallel Programming with OpenMP August 16 - 20, 2021 25 / 52

Parallel for loop
#include <stdio.h>
#include <omp.h>
int main() {

#pragma omp parallel num_threads(3)
{

#pragma omp for
for (int i = 0; i < 10; i++)

printf("Thread %d, i = %d\n",
omp_get_thread_num(), i);

}
return 0;

}

$ gcc -fopenmp specify-num-threads.c

Alexey Fedoseev Parallel Programming with OpenMP August 16 - 20, 2021 26 / 52

Parallel for loop

I Output with 4 threads

$./a.out
Thread 0, i = 0
Thread 2, i = 6
Thread 1, i = 3
Thread 3, i = 8
Thread 0, i = 1
Thread 2, i = 7
Thread 1, i = 4
Thread 3, i = 9
Thread 0, i = 2
Thread 1, i = 5

I Output with 3 threads

$./a.out
Thread 1, i = 4
Thread 2, i = 7
Thread 0, i = 0
Thread 1, i = 5
Thread 2, i = 8
Thread 0, i = 1
Thread 1, i = 6
Thread 2, i = 9
Thread 0, i = 2
Thread 0, i = 3

Alexey Fedoseev Parallel Programming with OpenMP August 16 - 20, 2021 27 / 52

Nested for loops - the collapse clause

#include <stdio.h>
#include <omp.h>
int main() {

#pragma omp parallel for collapse(2)
for (int x = -1; x <= 1; x+=1)

for (int y = -1; y <= 1; y+=1)
printf("Thread %d: (%d, %d)\n",

omp_get_thread_num(), x, y);
return 0;

}

$ gcc -fopenmp for-collapse.c

Alexey Fedoseev Parallel Programming with OpenMP August 16 - 20, 2021 28 / 52

Nested for loops - the collapse clause

I Output

$./a.out
Thread 1: (0, -1)
Thread 2: (0, 1)
Thread 0: (-1, -1)
Thread 3: (1, 0)
Thread 1: (0, 0)
Thread 2: (1, -1)
Thread 0: (-1, 0)
Thread 3: (1, 1)
Thread 0: (-1, 1)

Alexey Fedoseev Parallel Programming with OpenMP August 16 - 20, 2021 29 / 52

The reduction clause

#include <stdio.h>
#include <math.h>
#include <omp.h>
#define N 1000000000
int main() {

double calc = 0;
#pragma omp parallel for reduction(+:calc)
for (long i = 0; i < N; i++)

calc += pow(-1,i) * 1.0/(2*i + 1);
printf("%.12f\n", 4*calc); return 0;

}

$ gcc -fopenmp for-reduction.c

Alexey Fedoseev Parallel Programming with OpenMP August 16 - 20, 2021 30 / 52

The reduction clause

I Parallel output

$ time ./a.out
3.141592652589

real 0m5.440s
user 0m19.835s
sys 0m0.038s

I Serial output

$ time ./a.out
3.141592652588

real 0m12.562s
user 0m12.413s
sys 0m0.026s

Alexey Fedoseev Parallel Programming with OpenMP August 16 - 20, 2021 31 / 52

The reduction clause

Operator Initial value
+ 0
* 1
- 0
min Largest positive number
max Most negative number
& (bitwise AND) ~0 (all bits are 1)
| (bitwise OR) 0
ˆ (bitwise XOR) 0
&& (logical AND) 1
|| (logical OR) 0

Alexey Fedoseev Parallel Programming with OpenMP August 16 - 20, 2021 32 / 52

Scheduling

static
Divide the loop into equal-sized chunks or as equal as possible in the case where the number of
loop iterations is not evenly divisible by the number of threads multiplied by the chunk size. By
default, chunk size is loop_count/number_of_threads.

dynamic
Use the internal work queue to give a chunk-sized block of loop iterations to each thread. When
a thread is finished, it retrieves the next block of loop iterations from the top of the work queue.
By default, the chunk size is 1. Involves extra overhead.

Alexey Fedoseev Parallel Programming with OpenMP August 16 - 20, 2021 33 / 52

Scheduling - static

#include <stdio.h>
#include <unistd.h>
#include <omp.h>
int main() {

#pragma omp parallel for schedule(static, 1) num_threads(10)
for (int i = 0; i < 20; i++) {

sleep(i);
printf("Thread %d: iteration %d\n",

omp_get_thread_num(), i);
}
return 0;

}

$ gcc -fopenmp static-schedule.c

Alexey Fedoseev Parallel Programming with OpenMP August 16 - 20, 2021 34 / 52

Scheduling - static

I Default chunk size
$ time ./a.out
Thread 0: iteration 0
Thread 0: iteration 1
...
Thread 8: iteration 17
Thread 9: iteration 19

real 0m37.018s
user 0m0.002s
sys 0m0.005s

I Chunk size = 1
$ time ./a.out
Thread 0: iteration 0
Thread 1: iteration 1
...
Thread 8: iteration 18
Thread 9: iteration 19

real 0m28.009s
user 0m0.002s
sys 0m0.004s

Alexey Fedoseev Parallel Programming with OpenMP August 16 - 20, 2021 35 / 52

Scheduling - dynamic

#include <stdio.h>
#include <unistd.h>
#include <omp.h>
int main() {

#pragma omp parallel for schedule(dynamic, 1) num_threads(10)
for (int i = 0; i < 20; i++) {

sleep(i);
printf("Thread %d: iteration %d\n",

omp_get_thread_num(), i);
}
return 0;

}

$ gcc -fopenmp dynamic-schedule.c

Alexey Fedoseev Parallel Programming with OpenMP August 16 - 20, 2021 36 / 52

Scheduling - dynamic

I Default chunk size
$ time ./a.out
Thread 3: iteration 0
Thread 1: iteration 1
...
Thread 9: iteration 18
Thread 0: iteration 19

real 0m28.013s
user 0m0.003s
sys 0m0.004s

I Chunk size = 2
$ time ./a.out
Thread 5: iteration 0
Thread 5: iteration 1
...
Thread 0: iteration 17
Thread 9: iteration 19

real 0m37.012s
user 0m0.002s
sys 0m0.004s

Alexey Fedoseev Parallel Programming with OpenMP August 16 - 20, 2021 37 / 52

Data sharing

Shared data
The data defined outside of a parallel region is shared, which means visible and accessible by all
threads simultaneously. By default, all variables in the work sharing region are shared except the
loop iteration counter.

int x = 10;
#pragma omp parallel
{

x++;
printf("shared x is %d\n", x);

}

Alexey Fedoseev Parallel Programming with OpenMP August 16 - 20, 2021 38 / 52

Shared data

$ gcc -fopenmp shared-data.c && ./a.out
shared x is 12
shared x is 11
shared x is 13
shared x is 14

Attention!
All threads increment the same variable, so after the loop it will have a value of 10 plus the
number of threads; or maybe less because of the data races involved.

Alexey Fedoseev Parallel Programming with OpenMP August 16 - 20, 2021 39 / 52

Data sharing

Private data
The data defined within a parallel region is private to each thread, which means each thread will
have a local copy and use it as a temporary variable. A private variable is not initialized and the
value is not maintained for use outside the parallel region. By default, the loop iteration
counters in the OpenMP loop constructs are private.

int x = 10;
#pragma omp parallel
{

int x; x = 5;
printf("private x is %d\n", x);

}
printf("shared x is %d\n", x);

Alexey Fedoseev Parallel Programming with OpenMP August 16 - 20, 2021 40 / 52

Private data

$ gcc -fopenmp private-data.c && ./a.out
private x is 5
private x is 5
private x is 5
private x is 5
shared x is 10

Attention!
Stack variables in functions called from parallel regions are private.

Alexey Fedoseev Parallel Programming with OpenMP August 16 - 20, 2021 41 / 52

Data Sharing Attribute Clauses

Some OpenMP clauses enable you to specify visibility context for selected data variables.

Attribute clause Description
private The private clause declares the variables in the list to be private to each

thread in a team.
firstprivate The firstprivate clause provides a superset of the functionality provided

by the private clause. The private variable is initialized by the original value
of the variable when the parallel construct is encountered.

lastprivate The lastprivate clause provides a superset of the functionality provided by
the private clause. The final value of a private variable is transmitted to
the shared variable outside the parallel construct.

Alexey Fedoseev Parallel Programming with OpenMP August 16 - 20, 2021 42 / 52

Data Sharing Attribute Clauses

Attribute clause Description
shared The shared clause declares the variables in the list to be shared among all

the threads in a team. All threads within a team access the same storage
area for shared variables.

reduction The reduction clause performs a reduction on the scalar variables that
appear in the list, with a specified operator.

default The default clause allows the user to affect the data-sharing attribute of
the variables appeared in the parallel construct.

Alexey Fedoseev Parallel Programming with OpenMP August 16 - 20, 2021 43 / 52

Data sharing - private clause
int x = 10;
#pragma omp parallel private(x)
{

x = 1;
printf("Inside x is %d\n", x);

}
printf("Outside x is %d\n", x);

$ gcc -fopenmp private-clause.c && ./a.out
Inside x is 1
Inside x is 1
Inside x is 1
Inside x is 1
Outside x is 10

Alexey Fedoseev Parallel Programming with OpenMP August 16 - 20, 2021 44 / 52

Data sharing - firstprivate clause

int x = 10;
#pragma omp parallel firstprivate(x)
{

printf("Inside x is %d\n", x);
}
printf("Outside x is %d\n", x);

$ gcc -fopenmp first-private-clause.c && ./a.out
Inside x is 10
Inside x is 10
Inside x is 10
Inside x is 10
Outside x is 10

Alexey Fedoseev Parallel Programming with OpenMP August 16 - 20, 2021 45 / 52

Data sharing - lastprivate clause
int x = 10;
#pragma omp parallel for lastprivate(x)
for (int i = 0; i < 4; i++) {

x = i;
printf("Inside x is %d\n", x);

}
printf("Outside x is %d\n", x);

$ gcc -fopenmp last-private-clause.c && ./a.out
Inside x is 1
Inside x is 0
Inside x is 2
Inside x is 3
Outside x is 3

Alexey Fedoseev Parallel Programming with OpenMP August 16 - 20, 2021 46 / 52

Data sharing - default clause
#include <stdio.h>
#include <omp.h>
int main() {

int arr[1000], x = 10;
#pragma omp parallel default(none)
{

x = 1; arr[0] = 2;
printf("Inside x is %d and arr[0] is %d\n",

x, arr[0]);
}
printf("Outside x is %d and arr[0] is %d\n",

x, arr[0]);
return 0;

}

Alexey Fedoseev Parallel Programming with OpenMP August 16 - 20, 2021 47 / 52

Data sharing - default clause
$ gcc -fopenmp default-clause.c
default-clause.c: In function 'main':
default-clause.c:7:5: error: 'x' not specified in enclosing 'parallel'

x = 1; arr[0] = 2;
~~^~~

default-clause.c:5:10: error: enclosing 'parallel'
#pragma omp parallel default(none)

^~~
default-clause.c:7:13: error: 'arr' not specified in enclosing 'parallel'

x = 1; arr[0] = 2;
~~~^~~

default-clause.c:5:10: error: enclosing 'parallel'
#pragma omp parallel default(none)

^~~

Let’s fix it.
Alexey Fedoseev Parallel Programming with OpenMP August 16 - 20, 2021 48 / 52



Data sharing - default clause
#include <stdio.h>
#include <omp.h>
int main() {

int arr[1000], x = 10;
#pragma omp parallel default(none) private(x) shared(arr)
{

x = 1; arr[0] = 2;
printf("Inside x is %d and arr[0] is %d\n",

x, arr[0]);
}
printf("Outside x is %d and arr[0] is %d\n",

x, arr[0]);
return 0;

}

Alexey Fedoseev Parallel Programming with OpenMP August 16 - 20, 2021 49 / 52



Data sharing - default clause

$ gcc -fopenmp default-clause.c && ./a.out
Inside x is 1 and arr[0] is 2
Inside x is 1 and arr[0] is 2
Inside x is 1 and arr[0] is 2
Inside x is 1 and arr[0] is 2
Outside x is 10 and arr[0] is 2

Alexey Fedoseev Parallel Programming with OpenMP August 16 - 20, 2021 50 / 52



Exercise 2: Numerical integration

0 1

2

4

4/(1 + x2)

Write a program that calculates the
integral ∫ 1

0

4
1 + x2 dx = π.

Using the left Riemann sum we
approximate the integral as follows

h
N∑

i=1

4
1 + x2

i

≈ π,

where xi = ih, h = 1/N .

Alexey Fedoseev Parallel Programming with OpenMP August 16 - 20, 2021 51 / 52



Exercise 2: Using data sharing and reduction

The following solution is a serial code. Make it parallel using the knowledge of data sharing and
reduction constructs.
#include <stdio.h>
#define N 1000000000
int main() {

double h = 1.0/N, sum = 0.0, x, pi;
for (long i = 0; i < N; i++) {

x = i*h;
sum += 4.0 / (1.0 + x*x);

}
pi = h * sum;
printf("%.12f\n", pi);
return 0;

}

Alexey Fedoseev Parallel Programming with OpenMP August 16 - 20, 2021 52 / 52


	Introduction
	Threads
	False sharing
	Synchronization
	Parallel for loop
	Scheduling
	Data sharing

