
Python Programming for HPC

Ramses van Zon

August 9, 2021

Ramses van Zon Python Programming for HPC August 9, 2021 1 / 72

Preliminaries

Ramses van Zon Python Programming for HPC August 9, 2021 2 / 72

In this session. . .

Performance and Python
Profiling tools for Python
Fast arrays for Python: Numpy

Numexpr, Numba
Multiprocessing
Mpi4py

Ramses van Zon Python Programming for HPC August 9, 2021 3 / 72

Packages and code

Requirements for this session

If following along on your own laptop, you need the following packages:

numpy
scipy
numexpr
matplotlib

psutil
line_profiler
memory_profiler

mpi4py
cython
numba

Get the code and setup files on the Teach cluster

Code and installation can be copied from the Teach supercomputer. It can be found in the directory
/scinet/course/ss2021/5_hpcpython

Ramses van Zon Python Programming for HPC August 9, 2021 4 / 72

Setting up for this week’s workshop

To get set up for today’s session, perform the following steps.
1 Login to SciNet’s Teach cluster

$ ssh -Y USERNAME@teach.scinet.utoronto.ca

Your username can be found on the course site https://scinet.courses/581, under “Log in info”
2 Copy code for this session:

$ cp -r /scinet/course/ss2021/5_hpcpython $SCRATCH/hpcpycode

3 Request interactive resources:
$ debugjob -n 4

4 Setup the environment:
$ cd $SCRATCH/hpcpycode
$ source activate

Ramses van Zon Python Programming for HPC August 9, 2021 5 / 72

Introduction

Ramses van Zon Python Programming for HPC August 9, 2021 6 / 72

Performance and Python

Python is a high-level, interpreted language.
Those defining features are often at odds with “high performance”.
But development in Python can be substantially easier (and thus faster) than when using compiled
languages.
In this session, we will explore when using Python still makes sense and how to get the most
performance out of it, without losing the flexibility and ease of development.

Ramses van Zon Python Programming for HPC August 9, 2021 7 / 72

Why isn’t Python ‘high performance’?

Interpreted language:

Translation to machine language happens line-by-line as the script is read.
Repeated lines are no faster.
Cross-line optimizations are not possible.

Dynamic language:

Types are part of the data: extra overhead
Memory management is automatic. Behind the scene that means reference counting and garbage
collection.
All this also interferes with optimal streaming of data to processor, which interferes with maximum
performance.

Ramses van Zon Python Programming for HPC August 9, 2021 8 / 72

2D diffusion equation

Suppose we are interested in the time evolution of the two-dimensional diffusion equation:

∂p(x, y, t)
∂t

= D

(
∂2p(x, y, t)

∂x2 +
∂2p(x, y, t)

∂y2

)
,

on domain [x1, x2] ⊗ [x1, x2],
with P (x, y, t) = 0 at all times for all points on
the domain boundary,
with some given initial condition
p(x, y, t) = p0(x, y).

Here:
P : density
x, y: spatial coordinates
t: time
D: diffusion constant

Ramses van Zon Python Programming for HPC August 9, 2021 9 / 72

Example: 2D diffusion, result
x1 = −10, x2 = 10, D = 1, four-peak initial condition.

t=0 t=1 t=2

t=4 t=6 t=10

Ramses van Zon Python Programming for HPC August 9, 2021 10 / 72

Example: 2D diffusion, algorithm
Discretize space in both directions
(points dx apart)
Replace derivatives with finite differences.
Explicit finite time stepping scheme
(time step set by dx)
For graphics: Matplotlib for Python, pgplot
for C++/Fortran, every outtime time units

Parameters in file diff2dparams.py
(also used by C++ and Fortran versions).
D = 1.0;
x1 = -10.0;
x2 = 10.0;
runtime = 10.0;
dx = 0.075;
outtime = 0.5;
graphics = False;

Ramses van Zon Python Programming for HPC August 9, 2021 11 / 72

Example: 2D diffusion, performance

The files diff2d.cpp, diff2.f90 and diff2d.py contain the same code in C++, Fortran, and Python.
$ time make diff2d_cpp.ex diff2d_f90.ex
g++ -c -O3 -march=native -o diff2d_cpp.o diff2d.cpp
gfortran -c -O3 -march=native -o pgplot90.o pgplot90.f90
...
gfortran -O3 -march=native -o diff2d_f90.ex diff2d_f90.o diff2dplot_f90.o pgplot90.o -lcpgplot -lpgplot -lX11 -lxcb -ldl -lXau -lgfortran
Elapsed: 1.19 seconds

$ time ./diff2d_cpp.ex > output_c.txt
Elapsed: 1.04 seconds
$ time ./diff2d_f90.ex > output_f.txt
Elapsed: 0.96 seconds
$ time python diff2d.py > output_p.txt
Elapsed: 521.77 seconds

The Python version is 500× slower than the compiled versions.
This doesn’t look too promising for Python for HPC. . .

Ramses van Zon Python Programming for HPC August 9, 2021 12 / 72

Then why do we bother with Python?
#diff2d.py
from diff2dplot import plotdens
from diff2dparams import D,x1,x2,runtime,dx,outtime,graphics
nrows = int((x2-x1)/d
ncols = nrows
npnts = nrows + 2
dx = (x2-x1)/nrows
dt = 0.25*dx**2/D
nsteps = int(runtime/dt)
nper = int(outtime/dt)
if nper==0: nper = 1
x=[x1+((i-1)*(x2-x1))/nrows for i in range(npnts)]
dens = [[0.0]*npnts for i in range(npnts)]
densnext = [[0.0]*npnts for i in range(npnts)]
simtime = 0*dt
for i in range(1,npnts-1):
a = 1 - abs(1 - 4*abs((x[i]-(x1+x2)/2)/(x2-x1)))
for j in range(1,npnts-1):
b = 1 - abs(1 - 4*abs((x[j]-(x1+x2)/2)/(x2-x1)))
dens[i][j] = a*b

print(simtime)
if graphics: plotdens(dens,x[0],x[-1],first=True)
lapl = [[0.0]*npnts for i in range(npnts)]

for s in range(nsteps):
for i in range(1,nrows+1):
for j in range(1,ncols+1):
lapl[i][j] = (dens[i+1][j]+dens[i-1][j]

+dens[i][j+1]+dens[i][j-1]
-4*dens[i][j])

for i in range(1,nrows+1):
for j in range(1,ncols+1):
densnext[i][j]=dens[i][j]+(D/dx**2)*dt*lapl[i][j]

dens, densnext = densnext, dens
simtime += dt
if (s+1)%nper == 0:
print(simtime)
if graphics: plotdens(dens,x[0],x[-1])

diff2dplot.py
def plotdens(dens,x1,x2,first=False):
import os
import matplotlib.pyplot as plt
if first:
plt.clf(); plt.ion()

plt.imshow(dens,interpolation='none',aspect='equal',
extent=(x1,x2,x1,x2),vmin=0.0,vmax=1.0,
cmap='nipy_spectral')

if first: plt.colorbar()
plt.show();plt.pause(0.1)

Ramses van Zon Python Programming for HPC August 9, 2021 13 / 72

Then why do we bother with Python?
Fast development

Python lends itself easily to writing clear, concise code.
Python is very flexible: large set of very useful packages.
Easy of use → shorter development time

Performance hit depends on application

Python’s performance hit is most prominent on ‘tightly coupled’ calculation on fundamental data
types that are known to the cpu (integers, doubles), which is exactly the case for the 2d diffusion.
It does much less worse on file I/O, text comparisons, etc.
Hooks to compiled libraries to remove worst performance pitfalls.

Only once the performance isn’t too bad, can we start thinking of parallelization, i.e., using more cpu
cores to work on the same problem.

Ramses van Zon Python Programming for HPC August 9, 2021 14 / 72

Simpler Example: Area Under the Curve

Let’s consider a code that numerically
computes the following integral:

b =
∫ 3

x=0

(7
10

x3 − 2x2 + 4
)

dx

Exact answer b = 8.175

It’s the area under the curve on the right.
Method: sample y = 7

10 x3 − 2x2 + 4 at a
uniform grid of x values (using ntot number of
points), and add the y values.

Ramses van Zon Python Programming for HPC August 9, 2021 15 / 72

Simpler Example: Area Under the Curve, Codes
C++

// auc_serial.cpp
#include <iostream>
#include <cmath>
int main(int argc, char** argv)
{

size_t ntot = atoi(argv[1]);
double width = 3.0;
double dx = width/ntot;

double x = 0, y;
double a = 0.0;

for (size_t i=0; i<ntot; ++i) {
y = 0.7*x*x*x - 2*x*x + 4;
a += y*dx;
x += dx;

}
std::cout << "The area is "

<< a << std::endl;
}

Fortran
program auc_serial
implicit none
integer :: i, ntot
character(64) :: arg
double precision :: dx,width,x,y,a
call get_command_argument(1,arg)
read (arg,'(i40)') ntot
width = 3.0
dx = width/ntot
x = 0.0
a = 0.0
do i = 1,ntot

y = 0.7*x**3 - 2*x**2 + 4
a = a + y*dx
x = x + dx

end do
print *, "The area is " , a

end program

Python
auc_serial.py

import sys

ntot = int(sys.argv[1])
width = 3.0
dx = width/ntot

x = 0
a = 0.0

for i in range(ntot):
y = 0.7*x**3 - 2*x**2 + 4
a += y*dx
x += dx

print("The area is %f"%a)

Ramses van Zon Python Programming for HPC August 9, 2021 16 / 72

Simpler Example: Area Under the Curve, Initial Timing
$ time make auc_serial_cpp.ex auc_serial_f90.ex
g++ -O3 -march=native -c -o auc_serial.o auc_serial.cpp
g++ -O3 -march=native -o auc_serial_cpp.ex auc_serial.o
gfortran -c -O3 -march=native -o auc_serial_f90.o auc_serial.f90
gfortran -O3 -march=native -o auc_serial_f90.ex auc_serial_f90.o -lcpgplot -lpgplot -lX11 -lxcb -ldl -lXau -lgfortran
Elapsed: 0.29 seconds

$ time ./auc_serial_cpp.ex 70000000
$ time ./auc_serial_f90.ex 70000000
The area is 8.175
Elapsed: 0.15 seconds
The area is 8.1749997379678891

Elapsed: 0.14 seconds
$ time python auc_serial.py 70000000
The area is 8.175000
Elapsed: 46.35 seconds

Here, Python is about 100× slower than compiled when adding in compilation time.
We want better performance. Where do we start?

Ramses van Zon Python Programming for HPC August 9, 2021 17 / 72

Performance Tuning Tools for Python

Ramses van Zon Python Programming for HPC August 9, 2021 18 / 72

Computational performance

Performance is about maximizing the utility of a resource.
This could be cpu processing power, memory, network, file I/O, etc.
Let’s focus on computational performance first, as measured by the time the computation
requires.

Time Profiling by function
To consider the computational performance of functions, but not of individual lines in your code,
there is the package called cProfile.

Time Profiling by line
To find cpu performance bottlenecks by line of code, there is package called line_profiler

Ramses van Zon Python Programming for HPC August 9, 2021 19 / 72

cProfile
Use cProfile or profile to know in which functions your script spends its time.
You usually do this on a smaller but representative case.
The code should be reasonably modular, i.e., with separate functions for different tasks, for cProfile
to be useful.

Example
$ python -m cProfile -s cumulative diff2d.py
...

2492205 function calls in 521.392 seconds

Ordered by: cumulative time

ncalls tottime percall cumtime percall filename:lineno(function)
1 0.028 0.028 521.392 521.392 diff2d.py:11(<module>)
1 515.923 515.923 521.364 521.364 diff2d.py:14(main)

2411800 5.429 0.000 5.429 0.000 {range}
80400 0.012 0.000 0.012 0.000 {abs}

1 0.000 0.000 0.000 0.000 diff2dplot.py:5(<module>)
1 0.000 0.000 0.000 0.000 diff2dparams.py:1(<module>)
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}

Ramses van Zon Python Programming for HPC August 9, 2021 20 / 72

line_profiler

Use line_profiler to know, line-by-line, where your script spends its time.
You usually do this on a smaller but representative case.
First thing to do is to have your code in a function.
You also need to modify your script slightly:

I Decorate your function with @profile
I Run your script on the command line with

$ kernprof -l -v SCRIPTNAME

Ramses van Zon Python Programming for HPC August 9, 2021 21 / 72

line_profiler script instrumentation

Script before:
x=[1.0]*(2048*2048)
a=str(x[0])
a+="\nis a one\n"
del x
print(a)

Script after:
#file: profileme.py
@profile
def profilewrapper():

x=[1.0]*(2048*2048)
a=str(x[0])
a+="\nis a one\n"
del x
print(a)

profilewrapper()

Run at the command line:
$ kernprof -l -v profileme.py

Ramses van Zon Python Programming for HPC August 9, 2021 22 / 72

Output of line_profiler
$ kernprof -l -v profileme.py

1.0
is a one

Wrote profile results to profileme.py.lprof
Timer unit: 1e-06 s

Total time: 0.019494 s
File: profileme.py
Function: profilewrapper at line 2

Line # Hits Time Per Hit % Time Line Contents
==

2 @profile
3 def profilewrapper():
4 1 9334.0 9334.0 47.9 x=[1.0]*(2048*2048)
5 1 44.0 44.0 0.2 a=str(x[0])
6 1 5.0 5.0 0.0 a+="\nis a one\n"
7 1 10058.0 10058.0 51.6 del x
8 1 53.0 53.0 0.3 print(a)

Ramses van Zon Python Programming for HPC August 9, 2021 23 / 72

Memory usage

Why worry about this?
Once your script runs out of memory, one of a number of things may happen:

Computer may start using the harddrive as memory: very slow
Your application crashes
Your (compute) node crashes

How could you run out of memory?
You’re not quite sure how much memory you program takes.
Python objects may take more memory that expected.
Some functions may temporarily use extra memory.
Python relies on a garbage collector to clean up unused variables.

Ramses van Zon Python Programming for HPC August 9, 2021 24 / 72

memory_profiler

This module/utility monitors the Python memory usage and its changes throughout the run.
Good for catching memory leaks and unexpectedly large memory usage.
Needs same instrumentation as line profiler.
Requires the psutil module (at least on windows, but helps on linux/mac too).

Ramses van Zon Python Programming for HPC August 9, 2021 25 / 72

memory_profiler, details
Your decorated script is usable by memory profiler.
You run your script through the profiler with the command
$ python -m memory_profiler profileme.py

1.0
is a one

Filename: profileme.py

Line # Mem usage Increment Line Contents
==

2 44.453 MiB 44.453 MiB @profile
3 def profilewrapper():
4 76.414 MiB 31.961 MiB x=[1.0]*(2048*2048)
5 76.414 MiB 0.000 MiB a=str(x[0])
6 76.414 MiB 0.000 MiB a+="\nis a one\n"
7 44.531 MiB 0.000 MiB del x
8 44.531 MiB 0.000 MiB print(a)

Ramses van Zon Python Programming for HPC August 9, 2021 26 / 72

Hands-on: Profiling (10 mins)
Profile the auc_serial.py code

Consider the Python code for computing the area under the curve, auc_serial.py.
Put the code in a wrapper main function.
Make sure it still works!
Add @profile to the main function.
Run this through the line profiler and see what line(s) cause the most cpu usage.

Profile the diff2d.py code

Reduce the resolution and runtime in diff2dparams.py, i.e.,
increase dx to 0.5, and decrease runtime to 2.0.
In the same file, ensure that graphics=False.
Add @profile to the main function
Run this through the line profiler and see what line(s) cause the most cpu usage.

Ramses van Zon Python Programming for HPC August 9, 2021 27 / 72

NumPy: Faster Arrays for Python

Ramses van Zon Python Programming for HPC August 9, 2021 28 / 72

Lists aren’t the ideal data type

Python lists can do funny things that you don’t
expect, if you’re not careful.

Lists are just a collection of items, of any
type.
If you do mathematical operations on a list,
you won’t get what you expect.
These are not the ideal data type for scientific
computing.
Arrays are a much better choice, but are not
a native Python data type.

>>> a = [1,2,3,4]
>>> a
[1, 2, 3, 4]
>>> b = [3,5,5,6]
>>> b
[3, 5, 5, 6]
>>> 2*a
[1, 2, 3, 4, 1, 2, 3, 4]
>>> a+b
[1, 2, 3, 4, 3, 5, 5, 6]

Ramses van Zon Python Programming for HPC August 9, 2021 29 / 72

Useful arrays: NumPy

Almost everything that you want to do starts
with NumPy.
Contains arrays of various types and forms:
zeros, ones, linspace, etc.

>>> from numpy import zeros, ones
>>> zeros(5)
array([0., 0., 0., 0., 0.])
>>> ones(5, dtype=int)
array([1, 1, 1, 1, 1])
>>> zeros([2,2])
array([[0., 0.],

[0., 0.]])

>>> from numpy import arange
>>> from numpy import linspace
>>> arange(5)
array([0, 1, 2, 3, 4])
>>> linspace(1,5)
array([1. , 1.08163265, 1.16326531, 1.24489796, 1.32653061,

1.40816327, 1.48979592, 1.57142857, 1.65306122, 1.73469388,
1.81632653, 1.89795918, 1.97959184, 2.06122449, 2.14285714,
2.2244898 , 2.30612245, 2.3877551 , 2.46938776, 2.55102041,
2.63265306, 2.71428571, 2.79591837, 2.87755102, 2.95918367,
3.04081633, 3.12244898, 3.20408163, 3.28571429, 3.36734694,
3.44897959, 3.53061224, 3.6122449 , 3.69387755, 3.7755102 ,
3.85714286, 3.93877551, 4.02040816, 4.10204082, 4.18367347,
4.26530612, 4.34693878, 4.42857143, 4.51020408, 4.59183673,
4.67346939, 4.75510204, 4.83673469, 4.91836735, 5.])

>>> linspace(1,5,6)
array([1. , 1.8, 2.6, 3.4, 4.2, 5.])

Ramses van Zon Python Programming for HPC August 9, 2021 30 / 72

Element-wise arithmetic
vector-vector & vector-scalar multiplication

1-D arrays are often called ‘vectors’.
When vectors are multiplied with *, you get
element-by-element multiplication.
When vectors are multiplied by a scalar
(a 0-D array), you also get
element-by-element multiplication.
To get an inner product, use @.
(Or use the ‘dot’ method in Python < 3.5)

>>> import numpy as np
>>> a = np.arange(4)
>>> a
array([0, 1, 2, 3])
>>> b = np.arange(4.) + 3
>>> b
array([3., 4., 5., 6.])
>>> c = 2
>>> c
2
>>> a * b
array([0., 4., 10., 18.])
>>> a * c
array([0, 2, 4, 6])
>>> b * c
array([6., 8., 10., 12.])
>>> a @ b
32.0

Ramses van Zon Python Programming for HPC August 9, 2021 31 / 72

Matrix-vector multiplication
A 2-D array is sometimes called a ‘matrix’.

Matrix-scalar multiplication with * gives
element-by-element multiplication.
Matrix-vector multiplication with * give a
kind-of element-by-element multiplication
For a linear-algebra-stype matrix-vector
multiplication, use @.
(Or use the ‘dot’ method in Python < 3.5)

>>> import numpy as np
>>> a = np.array([[1,2,3],
... [2,3,4]])
>>> a
array([[1, 2, 3],

[2, 3, 4]])
>>> b = np.arange(3) + 1
>>> b
array([1, 2, 3])
>>> a * b
array([[1, 4, 9],

[2, 6, 12]])
>>> a @ b
array([14, 20])[

a11 a12 a13
a21 a22 a23

]
∗

b1
b2
b3

 =
[
a11 ∗ b1 a12 ∗ b2 a13 ∗ b3
a21 ∗ b1 a22 ∗ b2 a23 ∗ b3

]

[
a11 a12 a13
a21 a22 a23

]
@

b1
b2
b3

 =
[
a11 ∗ b1 + a12 ∗ b2 + a13 ∗ b3
a21 ∗ b1 + a22 ∗ b2 + a23 ∗ b3

]
Ramses van Zon Python Programming for HPC August 9, 2021 32 / 72

Matrix-matrix multiplication
Not surprisingly, matrix-matrix multiplication is
also element-wise unless performed with @.

>>> import numpy as np
>>> a = np.array([[1,2],
... [4,3]])
>>> b = np.array([[1,2],
... [4,3]])
>>> a
array([[1, 2],

[4, 3]])
>>> a * b
array([[1, 4],

[16, 9]])
>>> a @ b
array([[9, 8],

[16, 17]])[
a11 a12
a21 a22

]
∗
[
b11 b12
b21 b22

]
=
[
a11 ∗ b11 a12 ∗ b12
a21 ∗ b21 a22 ∗ b22

]
[
a11 a12
a21 a22

]
@
[
b11 b12
b21 b22

]
=
[
a11 ∗ b11 + a12 ∗ b21 a11 ∗ b12 + a12 ∗ b22
a21 ∗ b11 + a22 ∗ b21 a21 ∗ b12 + a22 ∗ b22

]
Ramses van Zon Python Programming for HPC August 9, 2021 33 / 72

Does changing to NumPy arrays help?

Let’s return to our 2D diffusion example.
Note: restore the original diff2dparam.py

Pure Python implementation:
$ time python diff2d.py > output_p.txt
Elapsed: 521.77 seconds

NumPy implementation:
$ time python diff2d_slow_numpy.py > output_n.txt
Elapsed: 1330.17 seconds

Hmm, not really (really not!), what gives?

Ramses van Zon Python Programming for HPC August 9, 2021 34 / 72

Let’s inspect the code
#diff2d.py
from diff2dplot import plotdens
from diff2dparams import D,x1,x2,runtime,dx,outtime,graphics
import numpy as np
nrows = int((x2-x1)/d
ncols = nrows
npnts = nrows + 2
dx = (x2-x1)/nrows
dt = 0.25*dx**2/D
nsteps = int(runtime/dt)
nper = int(outtime/dt)
if nper==0: nper = 1
x = np.linspace(x1-dx,x2+dx,num=npnts)
dens = np.zeros((npnts,npnts))
densnext = np.zeros((npnts,npnts))
simtime = 0*dt
for i in range(1,npnts-1):
a = 1 - abs(1 - 4*abs((x[i]-(x1+x2)/2)/(x2-x1)))
for j in range(1,npnts-1):
b = 1 - abs(1 - 4*abs((x[j]-(x1+x2)/2)/(x2-x1)))
dens[i][j] = a*b

print(simtime)
if graphics: plotdens(dens,x[0],x[-1],first=True)

Look at all those loops and indices!

Look at all those loops and indices!
lapl = np.zeros((npnts,npnts))
for s in range(nsteps):
for i in range(1,nrows+1):
for j in range(1,ncols+1):
lapl[i][j] = (dens[i+1][j]+dens[i-1][j]

+dens[i][j+1]+dens[i][j-1]
-4*dens[i][j])

for i in range(1,nrows+1):
for j in range(1,ncols+1):
densnext[i][j]=dens[i][j]+(D/dx**2)*dt*lapl[i][j]

dens, densnext = densnext, dens
simtime += dt
if (s+1)%nper == 0:
print(simtime)
if graphics: plotdens(dens,x[0],x[-1])

“Why does that matter?” you ask?
Ramses van Zon Python Programming for HPC August 9, 2021 35 / 72

Python overhead

Python’s overhead comes mainly from its interpreted and dynamic nature.
The diff2d_slow_numpy.py code uses NumPy arrays, but still has a loop over indices.
In each iteration, Python code has to be interpreted and integer manipulation have to be performed,
regardless of whether you’re using numpy arrays.
NumPy will not give much speedup until you use its element-wise ‘vectorized’ operations.

Ramses van Zon Python Programming for HPC August 9, 2021 36 / 72

How to write vectorized Python code
This is easiest explained by example:

Instead of
a = np.linspace(0.0,1.0,101)
b = np.linspace(1.0,2.0,101)
c = np.ndarray(100)
for i in range(100):

c[i] = a[i] + b[i]

You would write:
a = np.linspace(0.0,1.0,100)
b = np.linspace(1.0,2.0,100)
c = a + b

And to deal with shifts, instead of
a = np.linspace(0.0,1.0,101)
b = np.linspace(1.0,2.0,101)
c = np.ndarray(100)
for i in range(100):

c[i] = a[i] + b[i+1]

You would write:
a = np.linspace(0.0,1.0,101)
b = np.linspace(1.0,2.0,101)
c = a[0:100] + b[1:101]

Vectorization results in
shorter Python code
less repeatedly interpreted lines
calls to C or Fortan functions by NumPy.

Ramses van Zon Python Programming for HPC August 9, 2021 37 / 72

Assignment part 1: Vectorizing Python code
Vectorize the auc_serial.py code

Copy the Python code for computing the area under the curve to a new file auc_numpy.py, and
remove any @profile.
Reexpress the code using NumPy arrays.
Make sure you are using vectorized operations.
Measure the speed-up (if any) with the time command.

Vectorize the slow NumPy code (optional)

If you are done with the auc example, try this:
Copy the file diff2d_slow_numpy.py to diff2d_numpy.py.
Try to replace the indexed loops with whole-array vector operations

Ramses van Zon Python Programming for HPC August 9, 2021 38 / 72

Does changing to NumPy really help?

Diffusion example:
Pure Python implementation:
$ time python diff2d.py > output_p.txt
Elapsed: 521.77 seconds

NumPy vectorized implementation:
$ time python diff2d_numpy.py > output_n.txt
Elapsed: 5.90 seconds

Yeah! 180× speed-up

Area-under-the-curve example:
Pure Python implementation:
$ time python auc_serial.py 70000000
The area is 8.175000
Elapsed: 48.45 seconds

NumPy vectorized implementation:
$ time python auc_numpy.py 70000000
The area is 8.175000
Elapsed: 6.42 seconds

11× speed-up

Ramses van Zon Python Programming for HPC August 9, 2021 39 / 72

Note: Is this really vectorization?

We call this vectorization because the code works on whole vectors.
But this is different from ‘vectorization’ which uses the ‘small vector units’ or ‘simd units’ on the cpu.
We’re just minimizing the number of lines Python needs to interpret and trusting NumPy to call C or
Fortran functions.
Those functions may or may not use simd, this depends on how NumPy was compiled and linked.
Regardless, the benefits of using Python vectorization with NumPy are impressive.

Ramses van Zon Python Programming for HPC August 9, 2021 40 / 72

Reality check: NumPy vs. compiled code

Diffusion example:
NumPy, vectorized implementation:
$ time python diff2d_numpy.py > output_n.txt
Elapsed: 5.90 seconds

Compiled versions:
$ time ./diff2d_cpp.ex > output_c.txt
Elapsed: 1.04 seconds
$ time ./diff2d_f90.ex > output_f.txt
Elapsed: 0.96 seconds

Area-under-the-curve example:
NumPy, vectorized implementation:
$ time python auc_numpy.py 70000000
The area is 8.175000
Elapsed: 6.44 seconds

Compiled versions:
$ time ./auc_serial_cpp.ex 70000000
$ time ./auc_serial_f90.ex 70000000
The area is 8.175
Elapsed: 0.15 seconds
The area is 8.1749997379678891

Elapsed: 0.14 seconds

So Python+NumPy is still 5 - 20 × slower than compiled.

Ramses van Zon Python Programming for HPC August 9, 2021 41 / 72

What about Cython?

Cython is a compiler for Python code.
Almost all Python is valid Cython.
Typically used for packages, to be used in regular Python scripts.

Let’s look at the timing first:
$ time make -f Makefile_cython
python diff2dnumpylibsetup.py build_ext --inplace
running build_ext
Elapsed: 0.55 seconds
$ time python diff2d_numpy.py > output_n.txt
Elapsed: 5.83 seconds
$ time python diff2d_numpy_cython.py > output_nc.txt
Elapsed: 6.33 seconds

The compilation preserves the pythonic
nature of the language, i.e, garbage collection,
range checking, reference counting, etc, are
still done: no performance enhancement.

If you want to get around that, you need to
use Cython specific extentions
that use C types.
That would be a whole session in and of itself.

Ramses van Zon Python Programming for HPC August 9, 2021 42 / 72

Parallel Python

Ramses van Zon Python Programming for HPC August 9, 2021 43 / 72

Parallel Python

We will look at a number of approaches to parallel programming with Python:

Package Functionality
numexpr threaded parallelization of certain numpy expressions
multiprocessing create processes that behave more like threads
mpi4py message passing between processes

Unavailable approaches

Threads in Python: these are like pthreads, but even worse: they do not run simultaneously because
of the global interpreted lock.
OpenMP or OpenACC in Python: compiler directive-based techniques do not work since there is no
compiler.

Ramses van Zon Python Programming for HPC August 9, 2021 44 / 72

Using GPUs in Python

There are roughly two ways that make this possible:

1 By using packages that allow you to write CUDA-like kernels.
We won’t have time to cover that here.

2 Using a formalism that uses GPUs in its implementation, e.g. Tensorflow.
If a package supports this, great, use it, but it doesn’t change how you use it.

Ramses van Zon Python Programming for HPC August 9, 2021 45 / 72

Numexpr

Ramses van Zon Python Programming for HPC August 9, 2021 46 / 72

The numexpr package

The numexpr package is useful if you’re doing matrix algebra:
It is essentially a just-in-time compiler for NumPy.
It takes matrix expressions, breaks things up into threads, and does the calculation in parallel.
Somewhat awkwardly, it takes its input in as a string.
In some situations using numexpr can significantly speed up your calculations.
This is the closest thing to “OpenMP-ing a loop” in Python.

Ramses van Zon Python Programming for HPC August 9, 2021 47 / 72

Numexpr in a nutshell

Give it an array arithmetic expression, and it will compile and run it, and return or store the output.
Supported operators:
+, -, *, /, **, %, <<, >>, <, <=, ==, !=, >=, >, &, |, ~

Supported functions:
where, sin, cos, tan, arcsin, arccos arctan, arctan2, sinh, cosh, tanh, arcsinh, arccosh
arctanh, log, log10, log1p, exp, expm1, sqrt, abs, conj, real, imag, complex, contains.
Supported reductions (but often slow):
sum, product

Ramses van Zon Python Programming for HPC August 9, 2021 48 / 72

Using the numexpr package
Without numexpr:
>>> from time import time
>>> import numpy as np
>>> def etime(t):
... print("Elapsed %f seconds" % (time()-t))
...
>>> a = np.random.rand(3000000)
>>> b = np.random.rand(3000000)
>>> c = np.zeros(3000000)
>>> t = time(); \
... c = a**2 + b**2 + 2*a*b; \
... etime(t)
Elapsed 0.014251 seconds

With numexpr:
>>> from time import time
>>> import numpy as np, numexpr as ne
>>> def etime(t):
... print("Elapsed %f seconds" % (time()-t))
...
>>> a = np.random.rand(3000000)
>>> b = np.random.rand(3000000)
>>> c = np.zeros(3000000)
>>> old = ne.set_num_threads(1)
>>> t = time(); \
... c = ne.evaluate('a**2 + b**2 + 2*a*b'); \
... etime(t)
Elapsed 0.022944 seconds
>>> old = ne.set_num_threads(4)
>>> t = time(); \
... c = ne.evaluate('a**2 + b**2 + 2*a*b'); \
... etime(t)
Elapsed 0.010190 seconds
>>> old = ne.set_num_threads(8)
>>> t = time(); \
... c = ne.evaluate('a**2 + b**2 + 2*a*b'); \
... etime(t)
Elapsed 0.007345 seconds

Ramses van Zon Python Programming for HPC August 9, 2021 49 / 72

Assignment part 2: Parallelize Area-under-the-curve

Take your NumPy vectorized auc_numpy.py and copy it to a new Python script auc_numexpr.py.
Use numexpr to parallelize the auc_numexpr.py code.
Measure the speed-up using up to 8 threads.

Ramses van Zon Python Programming for HPC August 9, 2021 50 / 72

Numexpr for the diffusion example

Annoyingly, numexpr has no facilities for slicing or offsets, etc.
This is troubling for our diffusion code, in which we have to do something like:

laplacian[1:nrows+1,1:ncols+1] = (dens[2:nrows+2,1:ncols+1] +
dens[0:nrows+0,1:ncols+1] +
dens[1:nrows+1,2:ncols+2] +
dens[1:nrows+1,0:ncols+0] -
4*dens[1:nrows+1,1:ncols+1])

We would need to make a copy of dens[2:nrows+2,1:ncols+1] etc. into a new NumPy array
before we can use numexpr, but copies are expensive.
We want numexpr to use the same data as in dens, but viewed differently.

Ramses van Zon Python Programming for HPC August 9, 2021 51 / 72

Numexpr for the diffusion example (continued)

We want numexpr to use the same data as in dens, but viewed differently.
That is tricky, and requires knowledge of the data’s memory structure.
diff2d_numexpr.py shows one possible solution.

$ time python diff2d_numpy.py > diff2d_numpy.out
Elapsed: 5.82 seconds
$ export NUMEXPR_NUM_THREADS=8
$ time python diff2d_numexpr.py > diff2d_numexpr.out
Elapsed: 3.04 seconds

You’ll get better speed-up if you increase the grid (i.e., decrease dx).

Ramses van Zon Python Programming for HPC August 9, 2021 52 / 72

Numexpr for the diffusion example (continued more)

To get the diffusion algorithm in a form that has no slices or offsets, we need to linearize the 2d arrays
into 1d arrays, but in a way that avoids copying the data.
This is how this is achieved in diff2d_numexpr:
dens = dens.ravel()
densnext = densnext.ravel()
densL = dens[npnts-1:-npnts-1] # same data one cell left
densR = dens[npnts+1:-npnts+1] # same data one cell right
densU = dens[0:-2*npnts] # same data one cell up
densD = dens[2*npnts:] # same data one cell down
densC = dens[npnts:-npnts]
ne.evaluate('densC + (D/dx**2)*dt*(densL+densR+densU+densD-4*densC)',

out=densnext[npnts:-npnts])
dens = dens.reshape((npnts,npnts))
densnext = densnext.reshape((npnts,npnts))

Ramses van Zon Python Programming for HPC August 9, 2021 53 / 72

Another compiler-within-an-interpreter: Numba

Numba allows compilation of selected portions of Python code to native code.
Decorator based: compile a function.
It can use multi-dimensional arrays and slices, like NumPy.
Very convenient.
Numba can use GPUs, but you’re programming them like CUDA kernels (i.e., not like OpenACC).
While it can also vectorize for multi-core and gpus with, it can only do so for specific, independent,
non-sliced data.

Ramses van Zon Python Programming for HPC August 9, 2021 54 / 72

Numba for the diffusion equation
For the diffusion code, we change the time step to a function with a decorator:
Before:
Take one step to produce new density.
laplacian[1:nrows+1,1:ncols+1]=dens[2:nrows+2,1:ncols+1]+dens[0:nrows+0,1:ncols+1]+dens[1:nrows+1,2:ncols+2]+dens[1:nrows+1,0:ncols+0]-4*dens[1:nrows+1,1:ncols+1]
densnext[:,:] = dens + (D/dx**2)*dt*laplacian

$ time python diff2d_numpy.py >diff2d_numpy.out
Elapsed: 5.82 seconds

After:
from numba import njit
@njit
def timestep(laplacian,dens,densnext,nrows,ncols,D,dx,dt):

laplacian[1:nrows+1,1:ncols+1]=dens[2:nrows+2,1:ncols+1]+dens[0:nrows+0,1:ncols+1]+dens[1:nrows+1,2:ncols+2]+dens[1:nrows+1,0:ncols+0]-4*dens[1:nrows+1,1:ncols+1]
densnext[:,:] = dens + (D/dx**2)*dt*laplacian

...
timestep(laplacian,dens,densnext,nrows,ncols,D,dx,dt)

$ time python diff2d_numba.py >diff2d_numba.out
Elapsed: 10.23 seconds

Ramses van Zon Python Programming for HPC August 9, 2021 55 / 72

Why the low performance of Numba for this case?

Numba can compile more complicated code than e.g. numexpr, but this compilation takes some time.
We already optimized the Python code by using vectorized operations.
For codes that aren’t so easily vectorized (e.g. with complex index operations),
Numba can help a lot with very little code changes.

Ramses van Zon Python Programming for HPC August 9, 2021 56 / 72

Multiprocessing

Ramses van Zon Python Programming for HPC August 9, 2021 57 / 72

The multiprocessing module in a nutshell

Multiprocessing spawns separate processes
that run concurrently and have their own
memory.
The Process function launches a separate
process.
The syntax is very similar to spawning
threads. This is intentional.
The details under the hood depend strongly
upon the system involved (Windows, Mac,
Linux), but are hidden, so your code can be
portable.

multiprocessingexample.py
import multiprocessing

def f(x):
return x*x

processes = []

for x in [1, 2, 3]:
p = multiprocessing.Process(target=f,args=(x,))
processes.append(p)
p.start()

for p in processes:
p.join()

Ramses van Zon Python Programming for HPC August 9, 2021 58 / 72

Work sharing with multiprocessing

The Pool object from multiprocessing offers a convenient means of parallelizing the execution of a
function across multiple input values, distributing the input data across processes (data parallelism).
from multiprocessing import Pool, cpu_count
import os

def f(x):
return x*x

if 'SLURM_NPROCS' in os.environ:
numprocs = int(os.environ['SLURM_NPROCS'])

else:
numprocs = cpu_count()

with Pool(numprocs) as p:
print(p.map(f, [1, 2, 3]))

[1, 4, 9]

Ramses van Zon Python Programming for HPC August 9, 2021 59 / 72

Shared memory with multiprocessing
multiprocess allows one to seamlessly share
memory between processes. This is done
using ‘Value’ and ‘Array’.
Value is a wrapper around a strongly typed
object called a ctype. When creating a
Value, the first argument is the variable type,
the second is that value.
Code on the right has 10 processes add 50
increments of 1 to the Value v.

multiprocessing_shared.py
from multiprocessing import Process
from multiprocessing import Value
def myfun(v):

for i in range(50):
time.sleep(0.001)
v.value += 1

v = Value('i', 0);
procs = []
for i in range(10):

p=Process(target=myfun,args=(v,))
procs.append(p)
p.start()

for proc in procs: proc.join()
print(v.value)

$ time python multiprocessing_shared.py
470
Elapsed: 0.16 seconds

Did the code behave as expect?
Ramses van Zon Python Programming for HPC August 9, 2021 60 / 72

Race conditions

What went wrong?
Race conditions occur when program instructions are executed in an order not intended by the
programmer. The most common cause is when multiple processes are given access to a resource.
In the example here, we’ve modified a location in memory that is being accessed by multiple
processes.
Note that it need not only be processes or threads that can modify a resource, anything can modify a
resource, hardware or software.
Bugs caused by race conditions are extremely hard to find.
Disasters can occur.

Be very very careful when sharing resources between multiple processes or threads!

Ramses van Zon Python Programming for HPC August 9, 2021 61 / 72

Using shared memory, continued
The solution, of course, is to be more explicit in your locking.
If you use shared memory, be sure to test everything thoroughly.

multiprocessing_shared_fixed.py
from multiprocessing import Process
from multiprocessing import Value
from multiprocessing import Lock

def myfun(v, lock):
for i in range(50):

time.sleep(0.001)
with lock:

v.value += 1

multiprocessing_shared_fixed.py
continued
v = Value('i', 0)
lock = Lock()
procs = []
for i in range(10):
p=Process(target=myfun,

args=(v,lock))
procs.append(p)
p.start()

for proc in procs: proc.join()
print(v.value)

$ time python multiprocessing_shared_fixed.py
500
Elapsed: 0.15 seconds

Ramses van Zon Python Programming for HPC August 9, 2021 62 / 72

But there’s more!

The multiprocessing module is loaded with functionality. Other features include:
Multiprocessing also allows you to share a block of memory through the Array ctypes wrapper
(only 1D arrays).
Inter-process communication, using Pipes and Queues.
multiprocessing.manager, which allows jobs to be spread over multiple ‘machines’ (nodes).
subclassing of the Process object, to allow further customization of the child process.
multiprocessing.Event, which allows event-driven programming options.
multiprocess.condition, which is used to synchronize processes.

We’re not going to cover these features today.

Ramses van Zon Python Programming for HPC August 9, 2021 63 / 72

MPI4PY

Ramses van Zon Python Programming for HPC August 9, 2021 64 / 72

Message Passing Interface

The previous parallel techniques used processors on one node.
Using more than one node requires these nodes to communicate.
MPI is one way of doing that communication.

MPI = Message Passing Interface.
MPI is a C/Fortran Library API.
Sending data = sending a message.
Requires setup of processes through mpirun/mpiexec.
Requires MPI_Init(...) in code to collect processes into a ‘communicator’.
Need to be explicit for all data movement.

Ramses van Zon Python Programming for HPC August 9, 2021 65 / 72

Mpi4py features

mpi4py is a Python wrapper around the MPI library
Point-to-point communication (sends, receives)
Collective (broadcasts, scatters, gathers) communications of any picklable Python object,
Optimized communications of Python object exposing the single-segment buffer interface
(NumPy arrays, builtin bytes/string/array objects).
Names of functions much the same as in C/Fortran, but are methods of the communicator
(object-oriented).

Ramses van Zon Python Programming for HPC August 9, 2021 66 / 72

Mpi4py in a nutshell

MPI communication is govered by a
communicator:
from mpi4py import MPI
comm = MPI.COMM_WORLD

Every process runs the same code, the full
Python script, at the same time.
Every process has a rank, which is the only
feature that distinguishes it from its siblings.
rank = comm.Get_rank()

Processes can send values to other ranks:
comm.send(variable, dest=torank)

Processes can receive things from other ranks:
comm.recv(variable, source=fromrank)

Sends and receives must match or your
program will hang. The combined
comm.sendrecv can help avoid this deadlock.
Processes can do collective actions, like
summing up values:
comm.reduce(result,value2sum,

op=MPI.SUM,root=0)

Ramses van Zon Python Programming for HPC August 9, 2021 67 / 72

Mpi4py
One of the drudgeries of MPI is to have to express the binary layout of your data.
The drudgery arises because C and Fortran do not have introspection and the MPI libraries cannot
look inside your code.
With Python, this is potentially different: we can investigate, within Python, what the structure is.
That means we should be able to express sending a piece of data without having to specify types and
amounts.

mpi4py_right_rank.py
from mpi4py import MPI

comm = MPI.COMM_WORLD
rank = comm.Get_rank()
size = comm.Get_size()
right = (rank+1)%size
left = (rank+size-1)%size

rankr = comm.sendrecv(rank, left, source=right)

print("I am",rank,"; my right neighbour is",rankr)

$ mpirun -np 1 python mpi4py_right_rank.py
I am rank 0 ; my right neighbour is 0
$ mpirun -np 3 python mpi4py_right_rank.py
I am rank 1 ; my right neighbour is 2
I am rank 2 ; my right neighbour is 0
I am rank 0 ; my right neighbour is 1

Ramses van Zon Python Programming for HPC August 9, 2021 68 / 72

Assignment part 3: MPI area under the curve

Parallelize auc_numpy.py

Take your NumPy vectorized auc_numpy.py and copy it to a new Python script auc_mpi4.py.
In this new script, divide the work over mpi tasks
Measure speed-up for up to 8 processes.

Ramses van Zon Python Programming for HPC August 9, 2021 69 / 72

Note: Mpi4py + NumPy

It turns out that mpi4py’s communication is pickle-based.
Pickle is a serialization format which can convert any Python object into a bytestream.
Convenient as any Python object can be sent, but conversion takes time.
For NumPy arrays, one can skip the pickling using Uppercase variants of the same communicator
methods.
However, this requires us to preallocate buffers to hold messages to be received.
For the area-under-the curve, it turns out there is no advantage.

Ramses van Zon Python Programming for HPC August 9, 2021 70 / 72

Is there no hope for HPC in Python, then?

Ramses van Zon Python Programming for HPC August 9, 2021 71 / 72

Sure there is, for certain cases:
When throughput matters more

If you have a reasonable efficient serial Python code (using NumPy vectorization, etc.), and you
have many independent cases to compute.
Use multiprocessing, or do it in bash with GNU Parallel
O. Tange (2018): GNU Parallel 2018, March 2018, https://doi.org/10.5281/zenodo.1146014.

When doing (big) data analysis
For reading in data, performing some analysis, and writing it out, performance is likely limited by I/O.
See Big Data session, pyspark.

When using optimized packages

Many Python packages are written in C or Fortran, and just expose an interface to Python.
Examples of this include popular machine learning packages:
pandas sklearn tensorflow keras dask

Ramses van Zon Python Programming for HPC August 9, 2021 72 / 72

	Preliminaries
	Introduction
	Performance Tuning Tools for Python
	NumPy: Faster Arrays for Python
	Parallel Python
	Numexpr
	Multiprocessing
	MPI4PY
	Is there no hope for HPC in Python, then?

