
Parallel Programming at Scale on Supercomputers with MPI

Bruno C. Mundim

SciNet HPC Consortium

July 12, 2021

Bruno C. Mundim (SciNet HPC Consortium) Parallel Programming at Scale on Supercomputers with MPI July 12, 2021 1 / 73

Outline

Distributed Memory Computing
MPI: Basics
MPI: Send & Receive
MPI: Collectives
Scientific MPI Example: 1D Diffusion Equation

Bruno C. Mundim (SciNet HPC Consortium) Parallel Programming at Scale on Supercomputers with MPI July 12, 2021 2 / 73

1

Distributed Memory Computing

Bruno C. Mundim (SciNet HPC Consortium) Parallel Programming at Scale on Supercomputers with MPI July 12, 2021 3 / 73

HPC Systems
Architectures

Vector machines
I No longer dominant in HPC anymore.
I Cray, NEC

Symmetric Multiprocessor (SMP) machines, or, shared memory machines
I These can all see the same memory, typically a limited number of cores.
I Present in virtually all systems these days.

Accelerator devices (GPU, Cell, MIC, FPGA)
I Heterogeneous use of standard CPU’s with a specialized accelerator.
I NVIDIA, AMD, Intel, Xilinx, Altera

Clusters, or, distributed memory machines
I A bunch of servers linked together by a network (“interconnect”).
I GigE, Infiniband, Cray Gemini/Aries, IBM BGQ Torus

Hybrid machines (Modern HPC clusters)
I Hybrid combo of these different architectures.

Bruno C. Mundim (SciNet HPC Consortium) Parallel Programming at Scale on Supercomputers with MPI July 12, 2021 4 / 73

Distributed Memory: Clusters
Simplest type of parallel computer to build

Take existing powerful standalone computers

And network them

(source: http://flickr.com/photos/eurleif)

Bruno C. Mundim (SciNet HPC Consortium) Parallel Programming at Scale on Supercomputers with MPI July 12, 2021 5 / 73

Distributed Memory: Clusters
Simplest type of parallel computer to build

Take existing powerful standalone computers And network them

(source: http://flickr.com/photos/eurleif)

Bruno C. Mundim (SciNet HPC Consortium) Parallel Programming at Scale on Supercomputers with MPI July 12, 2021 5 / 73

Distributed Memory: Clusters
Each node is independent!

I Parallel code consists of programs running
on separate computers, communicating with
each other.

I Could be entirely different programs.

Each node has own memory!
I Whenever it needs data from another region,

requests it from that CPU.
I Usual model: “message passing”

CPU1

CPU2

CPU3

CPU4

Bruno C. Mundim (SciNet HPC Consortium) Parallel Programming at Scale on Supercomputers with MPI July 12, 2021 6 / 73

Clusters+Message Passing
Hardware:

I Easy to build (Harder to build well)
I Can build larger and larger clusters relatively

easily

Software:
I Every communication has to be hand-coded:

hard to program

CPU1

CPU2

CPU3

CPU4

Bruno C. Mundim (SciNet HPC Consortium) Parallel Programming at Scale on Supercomputers with MPI July 12, 2021 7 / 73

HPC Programming Models

Parallel Programming Approaches
Serial (embarrassingly parallel applications)

I C, C++, Fortran, Julia, Bash or Python Scripting Languages

Threads (shared memory systems)
I OpenMP, pthreads

Heterogeneous computing (off-host accelerators: GPU, Cell, MIC, FPGA)
I CUDA, OpenCL, OpenACC, and OpenMP

Message passing (distributed memory systems)
I MPI, PGAS (UPC, Coarray Fortran)

Hybrid combinations of the above
We will focus on MPI programming in this lecture.

Bruno C. Mundim (SciNet HPC Consortium) Parallel Programming at Scale on Supercomputers with MPI July 12, 2021 8 / 73

2

MPI: Basics

Bruno C. Mundim (SciNet HPC Consortium) Parallel Programming at Scale on Supercomputers with MPI July 12, 2021 9 / 73

Message Passing Interface (MPI)
What is it?

An open standard library interface for message passing, ratified by the MPI Forum
Version: 1.0 (1994), 1.1 (1995), 1.2 (1997), 1.3 (2008)
Version: 2.0 (1997), 2.1 (2008), 2.2 (2009)
Version: 3.0 (2012), 3.1 (2015)
Version: 4.0 (under development)

MPI Implementations
OpenMPI www.open-mpi.org

I SciNet clusters (Niagara or Teach):
module load gcc openmpi
or
module load intel openmpi

Currently these give you OpenMPI version 3.1.1.
MPICH2 www.mpich.org

I MPICH 3.x, MVAPICH2 2.x , IntelMPI 2018.x
I Niagara: module load intel intelmpi

Bruno C. Mundim (SciNet HPC Consortium) Parallel Programming at Scale on Supercomputers with MPI July 12, 2021 10 / 73

MPI is a Library for Message Passing

Not built into the compiler.
Function calls that can be made from any compiler, many languages.
Just link to it.
Wrappers: mpicc, mpif90, mpicxx

#include <stdio.h>
#include <mpi.h>
int main(int argc, char **argv) {

int rank, size, err;
err = MPI_Init(&argc, &argv);
err = MPI_Comm_size(MPI_COMM_WORLD, &size);
err = MPI_Comm_rank(MPI_COMM_WORLD, &rank);
printf("Hello world from task %d of %d!\n",rank,

size);
err = MPI_Finalize();

}

program helloworld
use mpi
implicit none
integer :: rank, commsize, err
call MPI_Init(err)
call MPI_Comm_size(MPI_COMM_WORLD, commsize, err)
call MPI_Comm_rank(MPI_COMM_WORLD, rank, err)
print *,'Hello world from task',rank,'of',commsize
call MPI_Finalize(err)
end program helloworld

Bruno C. Mundim (SciNet HPC Consortium) Parallel Programming at Scale on Supercomputers with MPI July 12, 2021 11 / 73

MPI is a Library for Message Passing
Communication/coordination between tasks
done by sending and receiving messages.
Each message involves a function call from
each of the programs.

CPU1

CPU2

CPU3

CPU4

Bruno C. Mundim (SciNet HPC Consortium) Parallel Programming at Scale on Supercomputers with MPI July 12, 2021 12 / 73

MPI is a Library for Message Passing
Three basic sets of functionality:

Pairwise communications via messages
Collective operations via messages
Efficient routines for getting data from
memory into messages and vice versa

CPU1

CPU2

CPU3

CPU4

Bruno C. Mundim (SciNet HPC Consortium) Parallel Programming at Scale on Supercomputers with MPI July 12, 2021 13 / 73

Messages

Messages have a sender and a receiver.
When you are sending a message, don’t need
to specify sender (it’s the current processor).
A sent message has to be actively received by
the receiving process.

CPU1 CPU2

count of MPI_SOMETYPE

tag

Bruno C. Mundim (SciNet HPC Consortium) Parallel Programming at Scale on Supercomputers with MPI July 12, 2021 14 / 73

Messages

MPI messages are a string of length count all
of some fixed MPI type.
MPI types exist for characters, integers,
floating point numbers, etc.
An arbitrary non-negative integer tag is also
included – it helps keep things straight if lots
of messages are sent.

CPU1 CPU2

count of MPI_SOMETYPE

tag

Bruno C. Mundim (SciNet HPC Consortium) Parallel Programming at Scale on Supercomputers with MPI July 12, 2021 15 / 73

Size of MPI Library

Many, many functions (>200)
Not nearly so many concepts
We’ll get started with just 10-12, use more as
needed.

MPI_Init()

MPI_Comm_size()

MPI_Comm_rank()

MPI_Ssend()

MPI_Recv()

MPI_Finalize()

Bruno C. Mundim (SciNet HPC Consortium) Parallel Programming at Scale on Supercomputers with MPI July 12, 2021 16 / 73

Access to SciNet’s Teach supercomputer
Access to SciNet’s Teach supercomputer

SciNet’s Teach supercomputer is part of the
old GPC system (42 nodes) that has been
repurposed for education and training in
general, and in particular for many of summer
school sessions.
Look for your lcl_uot2021ssNNNN account
on the course website under the “Log In Info”
section.
Log into Teach login node, teach01, with
your lcl_uot2021ssNNNN account.

$ ssh -Y lcl_uot2021ssNNNN@teach.scinet.utoronto.ca
$ cd $SCRATCH
$ cp -r /scinet/course/ss2021/4_mpi .
$ cd 4_mpi
$ source setup

Running computations
On most supercomputer, a scheduler governs
the allocation of resources.
This means submitting a job with a jobscript.
srun: a command that is a resource request
+ job running command all in one, and will
run the command on one (or more) of the
available resources.
We have set aside 34 nodes with 16 cores for
this class, so occasionally, only in very busy
sessions, you may have to wait for someone
else’s srun command to finish.

Bruno C. Mundim (SciNet HPC Consortium) Parallel Programming at Scale on Supercomputers with MPI July 12, 2021 17 / 73

Access to SciNet’s Teach supercomputer
Access to SciNet’s Teach supercomputer

SciNet’s Teach supercomputer is part of the
old GPC system (42 nodes) that has been
repurposed for education and training in
general, and in particular for many of summer
school sessions.
Look for your lcl_uot2021ssNNNN account
on the course website under the “Log In Info”
section.
Log into Teach login node, teach01, with
your lcl_uot2021ssNNNN account.

$ ssh -Y lcl_uot2021ssNNNN@teach.scinet.utoronto.ca
$ cd $SCRATCH
$ cp -r /scinet/course/ss2021/4_mpi .
$ cd 4_mpi
$ source setup

Running computations
On most supercomputer, a scheduler governs
the allocation of resources.
This means submitting a job with a jobscript.
srun: a command that is a resource request
+ job running command all in one, and will
run the command on one (or more) of the
available resources.
We have set aside 34 nodes with 16 cores for
this class, so occasionally, only in very busy
sessions, you may have to wait for someone
else’s srun command to finish.

Bruno C. Mundim (SciNet HPC Consortium) Parallel Programming at Scale on Supercomputers with MPI July 12, 2021 17 / 73

Example: Hello World
The obligatory starting point
cd 4_mpi/mpi-intro

Compile and run it together
C:
#include <stdio.h>
#include <mpi.h>
int main(int argc, char **argv) {

int rank, size;
MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &size);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
printf("Hello world from task %d of %d!\n",rank,

size);
MPI_Finalize();

}

Fortran:
program helloworld
use mpi
implicit none
integer :: rank, commsize, err
call MPI_Init(err)
call MPI_Comm_size(MPI_COMM_WORLD, commsize, err)
call MPI_Comm_rank(MPI_COMM_WORLD, rank, err)
print *,'Hello world from task',rank,'of',commsize
call MPI_Finalize(err)
end program helloworld

$ source $SCRATCH/4_mpi/setup
$ mpif90 hello-world.f90 -o hello-worldf
or
$ mpicc hello-world.c -o hello-worldc
$ srun -n 1 hello-worldc
$ srun -n 2 hello-worldc
$ srun -n 8 hello-worldc

Bruno C. Mundim (SciNet HPC Consortium) Parallel Programming at Scale on Supercomputers with MPI July 12, 2021 18 / 73

Example: Hello World
The obligatory starting point
cd 4_mpi/mpi-intro

Compile and run it together
C:
#include <stdio.h>
#include <mpi.h>
int main(int argc, char **argv) {

int rank, size;
MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &size);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
printf("Hello world from task %d of %d!\n",rank,

size);
MPI_Finalize();

}

Fortran:
program helloworld
use mpi
implicit none
integer :: rank, commsize, err
call MPI_Init(err)
call MPI_Comm_size(MPI_COMM_WORLD, commsize, err)
call MPI_Comm_rank(MPI_COMM_WORLD, rank, err)
print *,'Hello world from task',rank,'of',commsize
call MPI_Finalize(err)
end program helloworld

$ source $SCRATCH/4_mpi/setup
$ mpif90 hello-world.f90 -o hello-worldf
or
$ mpicc hello-world.c -o hello-worldc
$ srun -n 1 hello-worldc
$ srun -n 2 hello-worldc
$ srun -n 8 hello-worldc

Bruno C. Mundim (SciNet HPC Consortium) Parallel Programming at Scale on Supercomputers with MPI July 12, 2021 18 / 73

What does mpicc/mpif90 do?

Just wrappers for the regular C, Fortran compilers that have the various -I, -L clauses in there
automaticaly.
--showme (OpenMPI) shows which options are being used.

$ mpicc --showme hello-world.c -o hello-worldc
gcc hello-world.c -o hello-world -I/scinet/niagara/software/2018a/opt/gcc-7.3.0/openmpi/3.1.0/include/openmpi
-I/scinet/niagara/software/2018a/opt/gcc-7.3.0/openmpi/3.1.0/include/openmpi/opal/mca/hwloc/hwloc1117/hwloc/include
-I/scinet/niagara/software/2018a/opt/gcc-7.3.0/openmpi/3.1.0/include/openmpi/opal/mca/event/libevent2022/libevent
-I/scinet/niagara/software/2018a/opt/gcc-7.3.0/openmpi/3.1.0/include/openmpi/opal/mca/event/libevent2022/libevent/include
-I/scinet/niagara/software/2018a/opt/gcc-7.3.0/openmpi/3.1.0/include -pthread -L/opt/slurm/lib64
-L/scinet/niagara/mellanox/hpcx-2.1.0-ofed-4.3/hcoll/lib -L/scinet/niagara/mellanox/hpcx-2.1.0-ofed-4.3/mxm/lib
-L/scinet/niagara/mellanox/hpcx-2.1.0-ofed-4.3/ucx/lib -Wl,-rpath -Wl,/opt/slurm/lib64 -Wl,-rpath
-Wl,/scinet/niagara/mellanox/hpcx-2.1.0-ofed-4.3/hcoll/lib -Wl,-rpath
-Wl,/scinet/niagara/mellanox/hpcx-2.1.0-ofed-4.3/mxm/lib -Wl,-rpath
-Wl,/scinet/niagara/mellanox/hpcx-2.1.0-ofed-4.3/ucx/lib -Wl,-rpath
-Wl,/scinet/niagara/software/2018a/opt/gcc-7.3.0/openmpi/3.1.0/lib -Wl,--enable-new-dtags
-L/scinet/niagara/software/2018a/opt/gcc-7.3.0/openmpi/3.1.0/lib -lmpi
$

Bruno C. Mundim (SciNet HPC Consortium) Parallel Programming at Scale on Supercomputers with MPI July 12, 2021 19 / 73

What mpirun/srun does
Launches n processes, assigns each an MPI
rank and starts the program
For multinode run, has a list of nodes, ssh’s
to each node and launches the program
mpirun only runs the processes on the login
node, and does not allocate resources;
typically used inside a batch job.
srun allocates the resources on the cluster
and runs the processes there: This is what
we’ll use in this class.

Bruno C. Mundim (SciNet HPC Consortium) Parallel Programming at Scale on Supercomputers with MPI July 12, 2021 20 / 73

Number of Processes
Number of processes to use is almost always
equal to the number of processors on a node.
But not necessarily.
If hyperthreading: multiple processes per core
(not available on Teach cluster).
If memory-hungry: less processes than cores
on a node (for Niagara, if > 4GB/process).
If hybrid (threaded+mpi): less processes per
core, but multiple threads per core, usual one
thread per core.

Regular pure mpi run on a 40 core node:

$ srun -N 1 -n 40 hello-worldc

Hyperthreaded mpi run (not on Teach):

$ srun -N 1 -n 80 hello-worldc

Memory-hungry mpi run on a 40 core node
requiring 8GB per process:

$ srun -N 1 -n 20 hello-worldc

Hybrid run (8 mpi processes with 5 threads):

$ srun -N 1 -n 8 -c 5 hello-worldcIn this session, omit the -N argument and use
srun with a -n argument only.

Bruno C. Mundim (SciNet HPC Consortium) Parallel Programming at Scale on Supercomputers with MPI July 12, 2021 21 / 73

Number of Processes
Number of processes to use is almost always
equal to the number of processors on a node.
But not necessarily.
If hyperthreading: multiple processes per core
(not available on Teach cluster).
If memory-hungry: less processes than cores
on a node (for Niagara, if > 4GB/process).
If hybrid (threaded+mpi): less processes per
core, but multiple threads per core, usual one
thread per core.

Regular pure mpi run on a 40 core node:

$ srun -N 1 -n 40 hello-worldc

Hyperthreaded mpi run (not on Teach):

$ srun -N 1 -n 80 hello-worldc

Memory-hungry mpi run on a 40 core node
requiring 8GB per process:

$ srun -N 1 -n 20 hello-worldc

Hybrid run (8 mpi processes with 5 threads):

$ srun -N 1 -n 8 -c 5 hello-worldcIn this session, omit the -N argument and use
srun with a -n argument only.

Bruno C. Mundim (SciNet HPC Consortium) Parallel Programming at Scale on Supercomputers with MPI July 12, 2021 21 / 73

Number of Processes
Number of processes to use is almost always
equal to the number of processors on a node.
But not necessarily.
If hyperthreading: multiple processes per core
(not available on Teach cluster).
If memory-hungry: less processes than cores
on a node (for Niagara, if > 4GB/process).
If hybrid (threaded+mpi): less processes per
core, but multiple threads per core, usual one
thread per core.

Regular pure mpi run on a 40 core node:

$ srun -N 1 -n 40 hello-worldc

Hyperthreaded mpi run (not on Teach):

$ srun -N 1 -n 80 hello-worldc

Memory-hungry mpi run on a 40 core node
requiring 8GB per process:

$ srun -N 1 -n 20 hello-worldc

Hybrid run (8 mpi processes with 5 threads):

$ srun -N 1 -n 8 -c 5 hello-worldcIn this session, omit the -N argument and use
srun with a -n argument only.

Bruno C. Mundim (SciNet HPC Consortium) Parallel Programming at Scale on Supercomputers with MPI July 12, 2021 21 / 73

Number of Processes
Number of processes to use is almost always
equal to the number of processors on a node.
But not necessarily.
If hyperthreading: multiple processes per core
(not available on Teach cluster).
If memory-hungry: less processes than cores
on a node (for Niagara, if > 4GB/process).
If hybrid (threaded+mpi): less processes per
core, but multiple threads per core, usual one
thread per core.

Regular pure mpi run on a 40 core node:

$ srun -N 1 -n 40 hello-worldc

Hyperthreaded mpi run (not on Teach):

$ srun -N 1 -n 80 hello-worldc

Memory-hungry mpi run on a 40 core node
requiring 8GB per process:

$ srun -N 1 -n 20 hello-worldc

Hybrid run (8 mpi processes with 5 threads):

$ srun -N 1 -n 8 -c 5 hello-worldcIn this session, omit the -N argument and use
srun with a -n argument only.

Bruno C. Mundim (SciNet HPC Consortium) Parallel Programming at Scale on Supercomputers with MPI July 12, 2021 21 / 73

Number of Processes
Number of processes to use is almost always
equal to the number of processors on a node.
But not necessarily.
If hyperthreading: multiple processes per core
(not available on Teach cluster).
If memory-hungry: less processes than cores
on a node (for Niagara, if > 4GB/process).
If hybrid (threaded+mpi): less processes per
core, but multiple threads per core, usual one
thread per core.

Regular pure mpi run on a 40 core node:

$ srun -N 1 -n 40 hello-worldc

Hyperthreaded mpi run (not on Teach):

$ srun -N 1 -n 80 hello-worldc

Memory-hungry mpi run on a 40 core node
requiring 8GB per process:

$ srun -N 1 -n 20 hello-worldc

Hybrid run (8 mpi processes with 5 threads):

$ srun -N 1 -n 8 -c 5 hello-worldc

In this session, omit the -N argument and use
srun with a -n argument only.

Bruno C. Mundim (SciNet HPC Consortium) Parallel Programming at Scale on Supercomputers with MPI July 12, 2021 21 / 73

Number of Processes
Number of processes to use is almost always
equal to the number of processors on a node.
But not necessarily.
If hyperthreading: multiple processes per core
(not available on Teach cluster).
If memory-hungry: less processes than cores
on a node (for Niagara, if > 4GB/process).
If hybrid (threaded+mpi): less processes per
core, but multiple threads per core, usual one
thread per core.

Regular pure mpi run on a 40 core node:

$ srun -N 1 -n 40 hello-worldc

Hyperthreaded mpi run (not on Teach):

$ srun -N 1 -n 80 hello-worldc

Memory-hungry mpi run on a 40 core node
requiring 8GB per process:

$ srun -N 1 -n 20 hello-worldc

Hybrid run (8 mpi processes with 5 threads):

$ srun -N 1 -n 8 -c 5 hello-worldcIn this session, omit the -N argument and use
srun with a -n argument only.

Bruno C. Mundim (SciNet HPC Consortium) Parallel Programming at Scale on Supercomputers with MPI July 12, 2021 21 / 73

mpirun / srun runs any program

mpirun will start that process launching
procedure for any program
Sets variables somehow that mpi programs
recognize so that they know which process
they are.

$ hostname
teach01
$ mpirun -n 2 hostname
teach01
teach01
$ srun -n 2 hostname
teach02
teach02
$

Bruno C. Mundim (SciNet HPC Consortium) Parallel Programming at Scale on Supercomputers with MPI July 12, 2021 22 / 73

Example: “Hello World”

$ srun -n 4 ./hello-worldc
Hello from task 2 of 4 world
Hello from task 1 of 4 world
Hello from task 0 of 4 world
Hello from task 3 of 4 world

$ srun --label -n 4 ./hello-worldc
2: Hello from task 2 of 4 world
1: Hello from task 1 of 4 world
0: Hello from task 0 of 4 world
3: Hello from task 3 of 4 world

Bruno C. Mundim (SciNet HPC Consortium) Parallel Programming at Scale on Supercomputers with MPI July 12, 2021 23 / 73

Make

Make builds an executable from a list of
source code files and rules
Many files to do, of which order doesn’t
matter for most
Parallelism!
make -j N launches N processes to do it.

$ make
$ make -j 2
$ make -j

Bruno C. Mundim (SciNet HPC Consortium) Parallel Programming at Scale on Supercomputers with MPI July 12, 2021 24 / 73

What the code does (Fortran)

program helloworld
use mpi
implicit none
integer :: rank, commsize, err

call MPI_Init(err)
call MPI_Comm_size(MPI_COMM_WORLD, commsize, err)
call MPI_Comm_rank(MPI_COMM_WORLD, rank, err)

print *,'Hello world from task',rank,'of',commsize

call MPI_Finalize(err)
end program helloworld

use mpi: imports declarations for MPI
function calls
call MPI_INIT(err): initialization for MPI
library. Must come first.
err: Returns any error code.
call MPI_FINALIZE(err): close up MPI
stuff. Must come last. err: Returns any error
code.
call MPI_COMM_RANK, call
MPI_COMM_SIZE: requires a little more
exposition.

Bruno C. Mundim (SciNet HPC Consortium) Parallel Programming at Scale on Supercomputers with MPI July 12, 2021 25 / 73

What the code does (C)
#include <mpi.h> - MPI library definitions
MPI_Init(&argc,&argv)
MPI Intialization, must come first
MPI_Finalize()
Finalizes MPI, must come last
err - MPI routine could return an error code

#include <stdio.h>
#include <mpi.h>

int main(int argc, char **argv) {

int rank, size;
int err;

err = MPI_Init(&argc, &argv);

err = MPI_Comm_size(MPI_COMM_WORLD, &size);
err = MPI_Comm_rank(MPI_COMM_WORLD, &rank);

printf("Hello world from task %d of %d!\n",rank,
size);

MPI_Finalize();

}

Communicator Components
A communicator is a handle to a group of
processes that can communicate.
MPI_Comm_rank(MPI_COMM_WORLD,&rank)

MPI_Comm_size(MPI_COMM_WORLD,&size)

Bruno C. Mundim (SciNet HPC Consortium) Parallel Programming at Scale on Supercomputers with MPI July 12, 2021 26 / 73

What the code does (C)
#include <mpi.h> - MPI library definitions
MPI_Init(&argc,&argv)
MPI Intialization, must come first
MPI_Finalize()
Finalizes MPI, must come last
err - MPI routine could return an error code

#include <stdio.h>
#include <mpi.h>

int main(int argc, char **argv) {

int rank, size;
int err;

err = MPI_Init(&argc, &argv);

err = MPI_Comm_size(MPI_COMM_WORLD, &size);
err = MPI_Comm_rank(MPI_COMM_WORLD, &rank);

printf("Hello world from task %d of %d!\n",rank,
size);

MPI_Finalize();

}

Communicator Components
A communicator is a handle to a group of
processes that can communicate.
MPI_Comm_rank(MPI_COMM_WORLD,&rank)

MPI_Comm_size(MPI_COMM_WORLD,&size)

Bruno C. Mundim (SciNet HPC Consortium) Parallel Programming at Scale on Supercomputers with MPI July 12, 2021 26 / 73

Communicators

MPI groups processes into communicators.
Each communicator has some size – number
of tasks.
Every task has a rank 0..size-1
Every task in your program belongs to
MPI_COMM_WORLD.

MPI_COMM_WORLD:
size = 4, ranks = 0..3

rank 1

rank 2

rank 3

rank 0

Bruno C. Mundim (SciNet HPC Consortium) Parallel Programming at Scale on Supercomputers with MPI July 12, 2021 27 / 73

Communicators

One can create one’s own
communicators over the same
tasks.
May break the tasks up into
subgroups.
May just re-order them for
some reason

MPI_COMM_WORLD:
size=4,ranks=0..3

rank 1

rank 2

rank 3

rank 0

new_comm:
size=3,ranks=0..2

rank 2

rank 0

rank 1

Bruno C. Mundim (SciNet HPC Consortium) Parallel Programming at Scale on Supercomputers with MPI July 12, 2021 28 / 73

Communicators

One can create one’s own
communicators over the same
tasks.
May break the tasks up into
subgroups.
May just re-order them for
some reason

MPI_COMM_WORLD:
size=4,ranks=0..3

rank 1

rank 2

rank 3

rank 0

new_comm:
size=3,ranks=0..2

rank 2

rank 0

rank 1

Bruno C. Mundim (SciNet HPC Consortium) Parallel Programming at Scale on Supercomputers with MPI July 12, 2021 28 / 73

Communicators

One can create one’s own
communicators over the same
tasks.
May break the tasks up into
subgroups.
May just re-order them for
some reason

MPI_COMM_WORLD:
size=4,ranks=0..3

rank 1

rank 2

rank 3

rank 0

new_comm:
size=3,ranks=0..2

rank 2

rank 0

rank 1

Bruno C. Mundim (SciNet HPC Consortium) Parallel Programming at Scale on Supercomputers with MPI July 12, 2021 28 / 73

MPI Communicator Basics

Communicator Components
MPI_COMM_WORLD:
Global Communicator
MPI_Comm_rank(MPI_COMM_WORLD,&rank)
Get current task’s rank
MPI_Comm_size(MPI_COMM_WORLD,&size)
Get communicator size

Bruno C. Mundim (SciNet HPC Consortium) Parallel Programming at Scale on Supercomputers with MPI July 12, 2021 29 / 73

3

Send & Receive

Bruno C. Mundim (SciNet HPC Consortium) Parallel Programming at Scale on Supercomputers with MPI July 12, 2021 30 / 73

MPI: Send & Receive
hello-world was our first real MPI program
But no Messages were being Passed.

Let’s fix this

mpicc -o firstmessagec
firstmessage.c

srun -n 2 ./firstmessagec

Note C: MPI_CHAR

#include <stdio.h>
#include <mpi.h>
int main(int argc, char **argv) {

int rank, size;
int sendto, recvfrom; /*task to send,recv from*/
int ourtag=1; /*tag to label msgs*/
char sendmsg[]="Hello";/*text to send*/
char getmsg[6]; /*text to receive*/
MPI_Status rstatus; /*recv status info*/
MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &size);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
if (rank == 0) {

sendto = 1;
MPI_Ssend(sendmsg, 6, MPI_CHAR, sendto,

ourtag, MPI_COMM_WORLD);
printf("%d: Sent msg <%s>\n",rank,sendmsg);

} else if (rank == 1) {
recvfrom = 0;
MPI_Recv(getmsg, 6, MPI_CHAR, recvfrom,

ourtag, MPI_COMM_WORLD, &rstatus);
printf("%d: Got msg <%s>\n", rank, getmsg);

}
MPI_Finalize();

}

Bruno C. Mundim (SciNet HPC Consortium) Parallel Programming at Scale on Supercomputers with MPI July 12, 2021 31 / 73

MPI: Send & Receive
hello-world was our first real MPI program
But no Messages were being Passed.

Let’s fix this
mpicc -o firstmessagec
firstmessage.c

srun -n 2 ./firstmessagec

Note C: MPI_CHAR

#include <stdio.h>
#include <mpi.h>
int main(int argc, char **argv) {

int rank, size;
int sendto, recvfrom; /*task to send,recv from*/
int ourtag=1; /*tag to label msgs*/
char sendmsg[]="Hello";/*text to send*/
char getmsg[6]; /*text to receive*/
MPI_Status rstatus; /*recv status info*/
MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &size);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
if (rank == 0) {

sendto = 1;
MPI_Ssend(sendmsg, 6, MPI_CHAR, sendto,

ourtag, MPI_COMM_WORLD);
printf("%d: Sent msg <%s>\n",rank,sendmsg);

} else if (rank == 1) {
recvfrom = 0;
MPI_Recv(getmsg, 6, MPI_CHAR, recvfrom,

ourtag, MPI_COMM_WORLD, &rstatus);
printf("%d: Got msg <%s>\n", rank, getmsg);

}
MPI_Finalize();

}

Bruno C. Mundim (SciNet HPC Consortium) Parallel Programming at Scale on Supercomputers with MPI July 12, 2021 31 / 73

MPI: Send & Receive
Let’s fix this, Fortran version

mpif90 -o firstmessagef
firstmessage.f90

srun -n 2 ./firstmessagef

Note Fortran: MPI_CHARACTER

program firstmessage
use mpi
implicit none
integer :: rank,comsize,err
integer :: sendto,recvfrom !Task to send,recv from
integer :: ourtag=1 !tag to label msgs
character(5) :: sendmessage !text to send
character(5) :: getmessage !text rcvd
integer, dimension(MPI_STATUS_SIZE) :: rstatus
call MPI_Init(err)
call MPI_Comm_rank(MPI_COMM_WORLD, rank, err)
call MPI_Comm_size(MPI_COMM_WORLD, comsize, err)
if (rank == 0) then
sendmessage = 'Hello'
sendto = 1
call MPI_Ssend(sendmessage,5,MPI_CHARACTER,sendto,&

ourtag,MPI_COMM_WORLD,err)
print *, rank, ' sent message <',sendmessage,'>'

else if (rank == 1) then
recvfrom = 0
call MPI_Recv(getmessage,5,MPI_CHARACTER,recvfrom,&

ourtag,MPI_COMM_WORLD,rstatus,err)
print *, rank, ' got message <',getmessage,'>'

endif
call MPI_Finalize(err)
end program firstmessage

Bruno C. Mundim (SciNet HPC Consortium) Parallel Programming at Scale on Supercomputers with MPI July 12, 2021 32 / 73

MPI: Send & Receive
Let’s fix this, Fortran version
mpif90 -o firstmessagef
firstmessage.f90

srun -n 2 ./firstmessagef

Note Fortran: MPI_CHARACTER

program firstmessage
use mpi
implicit none
integer :: rank,comsize,err
integer :: sendto,recvfrom !Task to send,recv from
integer :: ourtag=1 !tag to label msgs
character(5) :: sendmessage !text to send
character(5) :: getmessage !text rcvd
integer, dimension(MPI_STATUS_SIZE) :: rstatus
call MPI_Init(err)
call MPI_Comm_rank(MPI_COMM_WORLD, rank, err)
call MPI_Comm_size(MPI_COMM_WORLD, comsize, err)
if (rank == 0) then
sendmessage = 'Hello'
sendto = 1
call MPI_Ssend(sendmessage,5,MPI_CHARACTER,sendto,&

ourtag,MPI_COMM_WORLD,err)
print *, rank, ' sent message <',sendmessage,'>'

else if (rank == 1) then
recvfrom = 0
call MPI_Recv(getmessage,5,MPI_CHARACTER,recvfrom,&

ourtag,MPI_COMM_WORLD,rstatus,err)
print *, rank, ' got message <',getmessage,'>'

endif
call MPI_Finalize(err)
end program firstmessage

Bruno C. Mundim (SciNet HPC Consortium) Parallel Programming at Scale on Supercomputers with MPI July 12, 2021 32 / 73

Send and Receive

C
MPI_Status status;
err = MPI_Ssend(sendptr, count, MPI_TYPE, destination, tag, Communicator);
err = MPI_Recv(rcvptr, count, MPI_TYPE, source, tag, Communicator, status);

Fortran
integer status(MPI_STATUS_SIZE)
call MPI_SSEND(sendarr, count, MPI_TYPE, destination, tag, Communicator, err)
call MPI_RECV(rcvarr, count, MPI_TYPE, source, tag, Communicator, status, err)

Bruno C. Mundim (SciNet HPC Consortium) Parallel Programming at Scale on Supercomputers with MPI July 12, 2021 33 / 73

More Complicated Example

Send a message to the right:

Bruno C. Mundim (SciNet HPC Consortium) Parallel Programming at Scale on Supercomputers with MPI July 12, 2021 34 / 73

Specials

Special Source/Destination MPI_PROC_NULL

MPI_PROC_NULL basically ignores the relevant operation; can lead to cleaner code.

Special Source MPI_ANY_SOURCE

MPI_ANY_SOURCE is a wildcard; matches any source when receiving.

Bruno C. Mundim (SciNet HPC Consortium) Parallel Programming at Scale on Supercomputers with MPI July 12, 2021 35 / 73

MPI: Send Right, Receive Left
#include <iostream>
#include <string>
#include <mpi.h>
using namespace std;
int main(int argc, char **argv) {

int rank, size, err, left, right, tag = 1;
double msgsent, msgrcvd;
MPI_Status rstatus;
err = MPI_Init(&argc, &argv);
err = MPI_Comm_rank(MPI_COMM_WORLD, &rank);
err = MPI_Comm_size(MPI_COMM_WORLD, &size);
left = rank - 1;
if (left < 0) left = MPI_PROC_NULL;
right = rank + 1;
if (right >= size) right = MPI_PROC_NULL;
msgsent = rank*rank;
msgrcvd = -999.;
err = MPI_Ssend(&msgsent, 1, MPI_DOUBLE, right, tag, MPI_COMM_WORLD);
err = MPI_Recv(&msgrcvd, 1, MPI_DOUBLE, left, tag, MPI_COMM_WORLD, &rstatus);
cout << to_string(rank) + ": Sent " + to_string(msgsent) + " and got " + to_string(msgrcvd) + "\n";
err = MPI_Finalize();

}
Bruno C. Mundim (SciNet HPC Consortium) Parallel Programming at Scale on Supercomputers with MPI July 12, 2021 36 / 73

MPI: Send Right, Receive Left

$ make secondmessagec
$ srun -n 3 ./secondmessagec
2: Sent 4.000000 and got 1.000000
0: Sent 0.000000 and got -999.000000
1: Sent 1.000000 and got 0.000000
$

$ srun -n 6 ./secondmessagec
4: Sent 16.000000 and got 9.000000
5: Sent 25.000000 and got 16.000000
0: Sent 0.000000 and got -999.000000
1: Sent 1.000000 and got 0.000000
2: Sent 4.000000 and got 1.000000
3: Sent 9.000000 and got 4.000000

Bruno C. Mundim (SciNet HPC Consortium) Parallel Programming at Scale on Supercomputers with MPI July 12, 2021 37 / 73

MPI: Send Right, Receive Left with Periodic BCs

Periodic Boundary Conditions:

Bruno C. Mundim (SciNet HPC Consortium) Parallel Programming at Scale on Supercomputers with MPI July 12, 2021 38 / 73

MPI: Send Right, Receive Left with Periodic BCs

...
left = rank - 1;
if (left < 0) left = size-1; // Periodic BC
right = rank + 1;
if (right >= size) right =0; // Periodic BC
msgsent = rank*rank;
msgrcvd = -999.;
...

$ make thirdmessagec # or thirdmessagef
$ srun -n 5 thirdmessagec

Just sort of hangs there doing nothing?

Bruno C. Mundim (SciNet HPC Consortium) Parallel Programming at Scale on Supercomputers with MPI July 12, 2021 39 / 73

MPI: Send Right, Receive Left with Periodic BCs

...
left = rank - 1;
if (left < 0) left = size-1; // Periodic BC
right = rank + 1;
if (right >= size) right =0; // Periodic BC
msgsent = rank*rank;
msgrcvd = -999.;
...

$ make thirdmessagec # or thirdmessagef
$ srun -n 5 thirdmessagec

Just sort of hangs there doing nothing?

Bruno C. Mundim (SciNet HPC Consortium) Parallel Programming at Scale on Supercomputers with MPI July 12, 2021 39 / 73

Deadlock!

A classic parallel bug.
Occurs when a cycle of tasks are waiting for
the others to finish.
Whenever you see a closed cycle, you likely
have (or risk) a deadlock.
Here, all processes are waiting for the send to
complete, but no one is receiving.

Bruno C. Mundim (SciNet HPC Consortium) Parallel Programming at Scale on Supercomputers with MPI July 12, 2021 40 / 73

Big MPI Lesson #1

All sends and receives must be paired at the time of sending

Bruno C. Mundim (SciNet HPC Consortium) Parallel Programming at Scale on Supercomputers with MPI July 12, 2021 41 / 73

How do we fix the deadlock?
Without using new MPI routine, how do we fix the deadlock?
Even-odd solution

First: evens send, odds receive
Then: odds send, evens receive
Will this work with an odd number of processes? How about 2? 1?

Bruno C. Mundim (SciNet HPC Consortium) Parallel Programming at Scale on Supercomputers with MPI July 12, 2021 42 / 73

MPI: Send Right, Receive Left with Periodic BCs - fixed

...
if ((rank % 2) == 0) {

err = MPI_Ssend(&msgsent, 1, MPI_DOUBLE, right, tag, MPI_COMM_WORLD);
err = MPI_Recv(&msgrcvd, 1, MPI_DOUBLE, left, tag, MPI_COMM_WORLD, &rstatus);

} else {
err = MPI_Recv(&msgrcvd, 1, MPI_DOUBLE, left, tag, MPI_COMM_WORLD, &rstatus);
err = MPI_Ssend(&msgsent, 1, MPI_DOUBLE, right, tag, MPI_COMM_WORLD);

}
...

$ make fourthmessagec
$ srun -n 5 ./fourthmessagec
1: Sent 1.000000 and got 0.000000
2: Sent 4.000000 and got 1.000000
3: Sent 9.000000 and got 4.000000
4: Sent 16.000000 and got 9.000000
0: Sent 0.000000 and got 16.000000

Bruno C. Mundim (SciNet HPC Consortium) Parallel Programming at Scale on Supercomputers with MPI July 12, 2021 43 / 73

MPI: Send Right, Receive Left with Periodic BCs - fixed

...
if ((rank % 2) == 0) {

err = MPI_Ssend(&msgsent, 1, MPI_DOUBLE, right, tag, MPI_COMM_WORLD);
err = MPI_Recv(&msgrcvd, 1, MPI_DOUBLE, left, tag, MPI_COMM_WORLD, &rstatus);

} else {
err = MPI_Recv(&msgrcvd, 1, MPI_DOUBLE, left, tag, MPI_COMM_WORLD, &rstatus);
err = MPI_Ssend(&msgsent, 1, MPI_DOUBLE, right, tag, MPI_COMM_WORLD);

}
...

$ make fourthmessagec
$ srun -n 5 ./fourthmessagec
1: Sent 1.000000 and got 0.000000
2: Sent 4.000000 and got 1.000000
3: Sent 9.000000 and got 4.000000
4: Sent 16.000000 and got 9.000000
0: Sent 0.000000 and got 16.000000

Bruno C. Mundim (SciNet HPC Consortium) Parallel Programming at Scale on Supercomputers with MPI July 12, 2021 43 / 73

MPI: Sendrecv

err = MPI_Sendrecv(sendptr, count, MPI_TYPE, destination, tag,
recvptr, count, MPI_TYPE, source, tag, Communicator, MPI_Status)

A blocking send and receive built together
Let them happen simultaneously
Can automatically pair send/recvs
Why 2 sets of tags/types/counts?

Bruno C. Mundim (SciNet HPC Consortium) Parallel Programming at Scale on Supercomputers with MPI July 12, 2021 44 / 73

Send Right, Receive Left with Periodic BCs - Sendrecv

Code
...
err = MPI_Sendrecv(&msgsent, 1, MPI_DOUBLE, right, tag,

&msgrcvd, 1, MPI_DOUBLE, left, tag, MPI_COMM_WORLD, &rstatus);
...

Execution
$ make fifthmessagec
$ srun -n 5 ./fifthmessagec
1: Sent 1.000000 and got 0.000000
2: Sent 4.000000 and got 1.000000
3: Sent 9.000000 and got 4.000000
4: Sent 16.000000 and got 9.000000
0: Sent 0.000000 and got 16.000000

Bruno C. Mundim (SciNet HPC Consortium) Parallel Programming at Scale on Supercomputers with MPI July 12, 2021 45 / 73

Different versions of SEND

MPI_Ssend: Standard synchronous send
guaranteed to be synchronous.
routine will not return until the receiver has “picked up’ ’.

MPI_Bsend: Buffered Send
guaranteed to be asynchronous.
routine returns before the message is delivered.
system copies data into a buffer and sends it in due course.
can fail if buffer is full.

MPI_Send (standard Send)
may be implemented as synchronous or asynchronous send.
causes a lot of confusion.

In this class, stick with
MPI_Ssend for clarity and
robustness

Bruno C. Mundim (SciNet HPC Consortium) Parallel Programming at Scale on Supercomputers with MPI July 12, 2021 46 / 73

4

Collectives

Bruno C. Mundim (SciNet HPC Consortium) Parallel Programming at Scale on Supercomputers with MPI July 12, 2021 47 / 73

Reductions: Min, Mean, Max Example

Calculate the min/mean/max of random
numbers -1.0 . . . 1.0
Should trend to -1/0/+1 for a large N.
How to MPI it?
Partial results on each node, collect all to
node 0.

Bruno C. Mundim (SciNet HPC Consortium) Parallel Programming at Scale on Supercomputers with MPI July 12, 2021 48 / 73

Reductions: Min, Mean, Max Example
#include <mpi.h>
#include <iostream>
#include <algorithm>
#include <cstdlib>
using namespace std;
int main(int argc, char **argv) {

const int nx = 1500, MIN=0, MEAN=1, MAX=2;
double mmm[3] = {1e+19, 0, -1e+19};
int rank, size, tag = 1;
MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &size);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
double *dat = new double[nx];
srand(0);
for (int i=0;i<dx*rank;i++) rand();
for (int i=0;i<nx;i++)

dat[i] = 2*((double)rand()/RAND_MAX)-1.;
for (int i=0;i<nx;i++) {

mmm[MIN] = min(dat[i], mmm[MIN]);
mmm[MAX] = max(dat[i], mmm[MAX]);
mmm[MEAN] += dat[i];

}
mmm[MEAN] /= nx;

if (rank != 0)
MPI_Ssend(mmm, 3, MPI_DOUBLE, 0, tag,

MPI_COMM_WORLD);
else {

double recvmmm[3];
for (int i=1;i<size;i++) {

MPI_Recv(recvmmm, 3, MPI_DOUBLE,
MPI_ANY_SOURCE, tag,
MPI_COMM_WORLD,MPI_STATUS_IGNORE);

mmm[MIN] = min(recvmmm[MIN], mmm[MIN]);
mmm[MAX] = max(recvmmm[MAX], mmm[MAX]);
mmm[MEAN] += recvmmm[MEAN];

}
mmm[MEAN] /= size;
cout << "Global Min/mean/max " << mmm[MIN] << " " <<

globmmm[MEAN]<<" "<<mmm[MAX]<<endl;
}
MPI_Finalize();

}

Bruno C. Mundim (SciNet HPC Consortium) Parallel Programming at Scale on Supercomputers with MPI July 12, 2021 49 / 73

Inefficient!

Requires (P-1) messages

2(P-1) if everyone then needs to get the
answer.

Tcomm = P Ccomm

sum sum sum sum

sum

sum

sum

sum

CPU1 CPU2 CPU3 CPU4

total

+

Bruno C. Mundim (SciNet HPC Consortium) Parallel Programming at Scale on Supercomputers with MPI July 12, 2021 50 / 73

Better Summing

Pairs of processors; send partial sums

Max messages received log2(P)

Can repeat to send total back.

Tcomm = 2 log2(P)Ccomm

sum sum sum sum

sum

total

sum

CPU1 CPU2 CPU3 CPU4

+ +

+

Reduction: Works for a variety of operations (+,*,min,max)

Bruno C. Mundim (SciNet HPC Consortium) Parallel Programming at Scale on Supercomputers with MPI July 12, 2021 51 / 73

MPI Collectives

err = MPI_Allreduce(sendptr, rcvptr, count, MPI_TYPE, MPI_Op, Communicator);
err = MPI_Reduce(sendbuf, recvbuf, count, MPI_TYPE, MPI_Op, root, Communicator);

sendptr/rcvptr: pointers to buffers
count: number of elements in ptrs
MPI_TYPE: one of MPI_DOUBLE, MPI_FLOAT, MPI_INT, MPI_CHAR, etc.
MPI_Op: one of MPI_SUM, MPI_PROD, MPI_MIN, MPI_MAX.
Communicator: MPI_COMM_WORLD or user created.
All variants send result back to all processes; non-All sends to process root.

Bruno C. Mundim (SciNet HPC Consortium) Parallel Programming at Scale on Supercomputers with MPI July 12, 2021 52 / 73

Reductions: Min, Mean, Max with MPI Collectives

double globalmmm[3];
MPI_Allreduce(&mmm[MIN], &globalmmm[MIN], 1, MPI_DOUBLE, MPI_MIN, MPI_COMM_WORLD);
MPI_Allreduce(&mmm[MAX], &globalmmm[MAX], 1, MPI_DOUBLE, MPI_MAX, MPI_COMM_WORLD);
MPI_Allreduce(&mmm[MEAN], &globalmmm[MEAN], 1, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD);
globalmmm[MEAN] /= size;
if (rank==0)

cout << "Global Min/mean/max " << mmm[MIN] << " " <<
globmmm[MEAN]<<" "<<mmm[MAX] << endl;

Bruno C. Mundim (SciNet HPC Consortium) Parallel Programming at Scale on Supercomputers with MPI July 12, 2021 53 / 73

Collective Operations
Collective

Reductions are an example of a collective operation.
As opposed to the pairwise messages we’ve seen before
All processes in the communicator must participate.
Cannot proceed until all have participated.
Don’t necessarity know what’s ‘under the hood’.

Other MPI Collectives

Broadcast Scatter Gather File I/O

Barriers (don’t!)

All-to-all . . .

Bruno C. Mundim (SciNet HPC Consortium) Parallel Programming at Scale on Supercomputers with MPI July 12, 2021 54 / 73

Collective Operations
Collective

Reductions are an example of a collective operation.
As opposed to the pairwise messages we’ve seen before
All processes in the communicator must participate.
Cannot proceed until all have participated.
Don’t necessarity know what’s ‘under the hood’.

Other MPI Collectives

Broadcast

Scatter Gather File I/O

Barriers (don’t!)

All-to-all . . .

Bruno C. Mundim (SciNet HPC Consortium) Parallel Programming at Scale on Supercomputers with MPI July 12, 2021 54 / 73

Collective Operations
Collective

Reductions are an example of a collective operation.
As opposed to the pairwise messages we’ve seen before
All processes in the communicator must participate.
Cannot proceed until all have participated.
Don’t necessarity know what’s ‘under the hood’.

Other MPI Collectives

Broadcast Scatter

Gather File I/O

Barriers (don’t!)

All-to-all . . .

Bruno C. Mundim (SciNet HPC Consortium) Parallel Programming at Scale on Supercomputers with MPI July 12, 2021 54 / 73

Collective Operations
Collective

Reductions are an example of a collective operation.
As opposed to the pairwise messages we’ve seen before
All processes in the communicator must participate.
Cannot proceed until all have participated.
Don’t necessarity know what’s ‘under the hood’.

Other MPI Collectives

Broadcast Scatter Gather

File I/O

Barriers (don’t!)

All-to-all . . .

Bruno C. Mundim (SciNet HPC Consortium) Parallel Programming at Scale on Supercomputers with MPI July 12, 2021 54 / 73

Collective Operations
Collective

Reductions are an example of a collective operation.
As opposed to the pairwise messages we’ve seen before
All processes in the communicator must participate.
Cannot proceed until all have participated.
Don’t necessarity know what’s ‘under the hood’.

Other MPI Collectives

Broadcast Scatter Gather File I/O

Barriers (don’t!)

All-to-all . . .

Bruno C. Mundim (SciNet HPC Consortium) Parallel Programming at Scale on Supercomputers with MPI July 12, 2021 54 / 73

MPI_Collectives: Broadcast
Broadcasts a message from process with rank
“root” to all processes in group, including
itself.
Amount of data sent must be equal to
amount of data received.
err = MPI_Bcast(void *buf, count,
MPI_Type, root, Comm)

I buf: buffer of data to send/recv
I count: number of elements in buf
I MPI_TYPE: one of MPI_DOUBLE, MPI_FLOAT,

MPI_INT, MPI_CHAR, etc.
I root: “root” processor to send from
I Communicator: MPI_COMM WORLD or

user created

Bruno C. Mundim (SciNet HPC Consortium) Parallel Programming at Scale on Supercomputers with MPI July 12, 2021 55 / 73

MPI_Collectives: Scatter/Gather
Scatter: Sends data from “root” to all
processes in group.
err = MPI_Scatter(void *send_buf,
send_count, MPI_Type, void
*recv_buf, recv_count, MPI_Type,
root, Comm)

Gather: Receives data on “root” from all
processes in group.
err = MPI_Gather(void *send_buf,
send_count, MPI_Type, void
*recv_buf, recv_count, MPI_Type,
root, Comm)

Bruno C. Mundim (SciNet HPC Consortium) Parallel Programming at Scale on Supercomputers with MPI July 12, 2021 56 / 73

Example: Scatter/Gather

Scatter
Simple Scatter example sending data from root to 4 procesors.
$ cd $SCRATCH/4_mpi/collectives
$ make
$ srun -n 4 ./scatter

Gather
Copy Scatter.c to Gather.c and reverse the process.
Send from 4 processes and collect on root using MPI_Gather().

Bruno C. Mundim (SciNet HPC Consortium) Parallel Programming at Scale on Supercomputers with MPI July 12, 2021 57 / 73

MPI_Collectives: Barrier

Blocks calling process until all group members have called it.
Decreases performance. Try to avoid using it explicitly.
err = MPI_Barrier(Comm)

I Communicator Comm: MPI_COMM WORLD or user created

Bruno C. Mundim (SciNet HPC Consortium) Parallel Programming at Scale on Supercomputers with MPI July 12, 2021 58 / 73

MPI_Collectives: All-to-all

int MPI_Alltoall(const void *sendbuf, int sendcount,
MPI_Datatype sendtype, void *recvbuf, int recvcount,
MPI_Datatype recvtype, MPI_Comm comm)

MPI_ALLTOALL(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT,
RECVTYPE, COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)
INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE
INTEGER COMM, IERROR

MPI_Alltoall is a collective operation in which all processes send the same amount of data to each
other, and receive the same amount of data from each other.
Each process breaks up its local sendbuf into n blocks (like Scatter),
each containing sendcount elements of type sendtype, and divides
its recvbuf similarly according to recvcount and recvtype (like Gather).

Bruno C. Mundim (SciNet HPC Consortium) Parallel Programming at Scale on Supercomputers with MPI July 12, 2021 59 / 73

5

Scientific MPI Example

Bruno C. Mundim (SciNet HPC Consortium) Parallel Programming at Scale on Supercomputers with MPI July 12, 2021 60 / 73

Scientific MPI Example

Consider a diffusion equation with an explicit finite-difference, time-marching method.
Imagine the problem is too large to fit in the memory of one node, so we need to do domain
decomposition, and use MPI.

Bruno C. Mundim (SciNet HPC Consortium) Parallel Programming at Scale on Supercomputers with MPI July 12, 2021 61 / 73

Discretizing Derivatives

Partial Differential Equations like the diffusion
equation

∂T

∂t
= D

∂2T

∂x2

are usually numerically solved by finite
differencing the discretized values.
Implicitly or explicitly involves interpolating
data and taking the derivative of the
interpolant.
Larger ‘stencils’ → More accuracy.

∂2T

∂x2 ≈
Ti+1 − 2Ti + Ti−1

∆x2

i−2 i−1 i i+2

+1+1 −2

i+1

Bruno C. Mundim (SciNet HPC Consortium) Parallel Programming at Scale on Supercomputers with MPI July 12, 2021 62 / 73

Diffusion equation in higher dimensions
Spatial grid separation: ∆x. Time step ∆t.
Grid indices: i, j. Time step index: (n)

1D
∂T

∂t

∣∣∣∣
i

≈
T

(n)
i − T

(n−1)
i

∆t

∂2T

∂x2

∣∣∣∣
i

≈
T

(n)
i−1 − 2T

(n)
i + T

(n)
i+1

∆x2

+1+1 −2

2D

+1+1

+1

+1

−4

∂T

∂t

∣∣∣∣
i,j

≈
T

(n)
i,j − T

(n−1)
i,j

∆t(
∂2T

∂x2 +
∂2T

∂y2

)∣∣∣∣
i,j

≈
T

(n)
i−1,j + T

(n)
i,j−1 − 4T

(n)
i,j + T

(n)
i+1,j + T

(n)
i,j+1

∆x2

Bruno C. Mundim (SciNet HPC Consortium) Parallel Programming at Scale on Supercomputers with MPI July 12, 2021 63 / 73

Diffusion equation in higher dimensions
Spatial grid separation: ∆x. Time step ∆t.
Grid indices: i, j. Time step index: (n)

1D
∂T

∂t

∣∣∣∣
i

≈
T

(n)
i − T

(n−1)
i

∆t

∂2T

∂x2

∣∣∣∣
i

≈
T

(n)
i−1 − 2T

(n)
i + T

(n)
i+1

∆x2

+1+1 −2

2D

+1+1

+1

+1

−4

∂T

∂t

∣∣∣∣
i,j

≈
T

(n)
i,j − T

(n−1)
i,j

∆t(
∂2T

∂x2 +
∂2T

∂y2

)∣∣∣∣
i,j

≈
T

(n)
i−1,j + T

(n)
i,j−1 − 4T

(n)
i,j + T

(n)
i+1,j + T

(n)
i,j+1

∆x2

Bruno C. Mundim (SciNet HPC Consortium) Parallel Programming at Scale on Supercomputers with MPI July 12, 2021 63 / 73

Diffusion equation in higher dimensions
Spatial grid separation: ∆x. Time step ∆t.
Grid indices: i, j. Time step index: (n)

1D
∂T

∂t

∣∣∣∣
i

≈
T

(n)
i − T

(n−1)
i

∆t

∂2T

∂x2

∣∣∣∣
i

≈
T

(n)
i−1 − 2T

(n)
i + T

(n)
i+1

∆x2

+1+1 −2

2D

+1+1

+1

+1

−4

∂T

∂t

∣∣∣∣
i,j

≈
T

(n)
i,j − T

(n−1)
i,j

∆t(
∂2T

∂x2 +
∂2T

∂y2

)∣∣∣∣
i,j

≈
T

(n)
i−1,j + T

(n)
i,j−1 − 4T

(n)
i,j + T

(n)
i+1,j + T

(n)
i,j+1

∆x2

Bruno C. Mundim (SciNet HPC Consortium) Parallel Programming at Scale on Supercomputers with MPI July 12, 2021 63 / 73

Stencils and Boundaries
How do you deal with
boundaries?
The stencil juts out, you need
info on cells beyond those
you’re updating.
Common solution:

Guard cells:
I Pad domain with these

guard cells so that stencil
works even for the first
point in domain.

I Fill guard cells with values
such that the required
boundary conditions are
met.

1D

2 30 1 4 5 6

Number of guard cells
ng = 1
Loop from i = ng . . .
N − 2ng.

2D

���
���
���
���
���

���
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

Bruno C. Mundim (SciNet HPC Consortium) Parallel Programming at Scale on Supercomputers with MPI July 12, 2021 64 / 73

Stencils and Boundaries
How do you deal with
boundaries?
The stencil juts out, you need
info on cells beyond those
you’re updating.
Common solution:

Guard cells:
I Pad domain with these

guard cells so that stencil
works even for the first
point in domain.

I Fill guard cells with values
such that the required
boundary conditions are
met.

1D

2 30 1 4 5 6

Number of guard cells
ng = 1
Loop from i = ng . . .
N − 2ng.

2D

���
���
���
���
���

���
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

Bruno C. Mundim (SciNet HPC Consortium) Parallel Programming at Scale on Supercomputers with MPI July 12, 2021 64 / 73

Domain decomposition
A very common approach to
parallelizing on distributed
memory computers.
Subdivide the domain into
contiguous subdomains.
Give each subdomain to a
different MPI process.
No process contains the full
data!
Maintains locality.
Need mostly local data, ie.,
only data at the boundary of
each subdomain will need to
be sent between processes.

Bruno C. Mundim (SciNet HPC Consortium) Parallel Programming at Scale on Supercomputers with MPI July 12, 2021 65 / 73

Guard cell exchange

In the domain decomposition, the stencils will
jut out into a neighbouring subdomain.
Much like the boundary condition.
One uses guard cells for domain
decomposition too.
If we managed to fill the guard cell with
values from neighbouring domains, we can
treat each coupled subdomain as an isolated
domain with changing boundary conditions.

6 9 10 1185 7

2 30 1 4 5 6

Could use even/odd trick, or sendrecv.

Bruno C. Mundim (SciNet HPC Consortium) Parallel Programming at Scale on Supercomputers with MPI July 12, 2021 66 / 73

2D diffusion with MPI
How to divide the work in a 2D grid?

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

Less communication (18 edges).
Harder to program, non-contiguous data to
send, left, right, up and down.

Easier to code, similar to 1d, but with
contiguous guard cells to send up and down.
More communication (30 edges).

Bruno C. Mundim (SciNet HPC Consortium) Parallel Programming at Scale on Supercomputers with MPI July 12, 2021 67 / 73

2D diffusion with MPI
How to divide the work in a 2D grid?

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

Less communication (18 edges).
Harder to program, non-contiguous data to
send, left, right, up and down.

Easier to code, similar to 1d, but with
contiguous guard cells to send up and down.
More communication (30 edges).

Bruno C. Mundim (SciNet HPC Consortium) Parallel Programming at Scale on Supercomputers with MPI July 12, 2021 67 / 73

2D diffusion with MPI
How to divide the work in a 2D grid?

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

Less communication (18 edges).
Harder to program, non-contiguous data to
send, left, right, up and down.

Easier to code, similar to 1d, but with
contiguous guard cells to send up and down.
More communication (30 edges).

Bruno C. Mundim (SciNet HPC Consortium) Parallel Programming at Scale on Supercomputers with MPI July 12, 2021 67 / 73

Let’s look at the easiest domain decomposition.

Serial :
��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

Parallel (P = 3):

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���
���

���
���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��
��

��
��
��
��
��

Communication pattern:

Copy upper stripe to upper neighbour bottom guard cell.
Copy lower stripe to lower neighbout top guard cell.
Contiguous cells: can use count in MPI_Sendrecv.
Similar to 1d diffusion.

Bruno C. Mundim (SciNet HPC Consortium) Parallel Programming at Scale on Supercomputers with MPI July 12, 2021 68 / 73

Let’s look at the easiest domain decomposition.
Serial :

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

Parallel (P = 3):

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���
���

���
���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��
��

��
��
��
��
��

Communication pattern:

Copy upper stripe to upper neighbour bottom guard cell.
Copy lower stripe to lower neighbout top guard cell.
Contiguous cells: can use count in MPI_Sendrecv.
Similar to 1d diffusion.

Bruno C. Mundim (SciNet HPC Consortium) Parallel Programming at Scale on Supercomputers with MPI July 12, 2021 68 / 73

Let’s look at the easiest domain decomposition.
Serial :

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

Parallel (P = 3):

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���
���

���
���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��
��

��
��
��
��
��

Communication pattern:

Copy upper stripe to upper neighbour bottom guard cell.
Copy lower stripe to lower neighbout top guard cell.
Contiguous cells: can use count in MPI_Sendrecv.
Similar to 1d diffusion.

Bruno C. Mundim (SciNet HPC Consortium) Parallel Programming at Scale on Supercomputers with MPI July 12, 2021 68 / 73

Let’s look at the easiest domain decomposition.
Serial :

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

Parallel (P = 3):

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���
���

���
���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��
��

��
��
��
��
��

Communication pattern:

Copy upper stripe to upper neighbour bottom guard cell.
Copy lower stripe to lower neighbout top guard cell.
Contiguous cells: can use count in MPI_Sendrecv.
Similar to 1d diffusion.

Bruno C. Mundim (SciNet HPC Consortium) Parallel Programming at Scale on Supercomputers with MPI July 12, 2021 68 / 73

Hands-on: 1D MPI Diffusion
Serial code:

$ cd $SCRATCH/4_mpi/diffusion
$ # source ../setup
$ make diffusionc # or diffusionf
$./diffusionc

cp diffusion.c diffusionc-mpi.c
or
cp diffusion.f90 diffusionf-mpi.f90

Make an MPI-ed version!
Build with make diffusionc-mpi or make
diffusionf-mpi.
Test on 1..8 processors

Plan of Attack

Switch off graphics (in Makefile, change
USEPGPLOT=-DPGPLOT to USEPGPLOT=);
Add standard MPI calls: init, finalize,
comm_size, comm_rank;
Figure out how many points each process is
responsible for (~totpoints/size);
Figure out neighbors;
Start at 1, but end at totpoints/size;
At end of step, exchange guardcells; use
sendrecv;
Get total error.

Bruno C. Mundim (SciNet HPC Consortium) Parallel Programming at Scale on Supercomputers with MPI July 12, 2021 69 / 73

Hands-on: 1D MPI Diffusion
Serial code:

$ cd $SCRATCH/4_mpi/diffusion
$ # source ../setup
$ make diffusionc # or diffusionf
$./diffusionc

cp diffusion.c diffusionc-mpi.c
or
cp diffusion.f90 diffusionf-mpi.f90

Make an MPI-ed version!
Build with make diffusionc-mpi or make
diffusionf-mpi.
Test on 1..8 processors

Plan of Attack

Switch off graphics (in Makefile, change
USEPGPLOT=-DPGPLOT to USEPGPLOT=);
Add standard MPI calls: init, finalize,
comm_size, comm_rank;
Figure out how many points each process is
responsible for (~totpoints/size);
Figure out neighbors;
Start at 1, but end at totpoints/size;
At end of step, exchange guardcells; use
sendrecv;
Get total error.

Bruno C. Mundim (SciNet HPC Consortium) Parallel Programming at Scale on Supercomputers with MPI July 12, 2021 69 / 73

Hands-on: 1D MPI Diffusion
Serial code:

$ cd $SCRATCH/4_mpi/diffusion
$ # source ../setup
$ make diffusionc # or diffusionf
$./diffusionc

cp diffusion.c diffusionc-mpi.c
or
cp diffusion.f90 diffusionf-mpi.f90

Make an MPI-ed version!
Build with make diffusionc-mpi or make
diffusionf-mpi.
Test on 1..8 processors

Plan of Attack

Switch off graphics (in Makefile, change
USEPGPLOT=-DPGPLOT to USEPGPLOT=);
Add standard MPI calls: init, finalize,
comm_size, comm_rank;
Figure out how many points each process is
responsible for (~totpoints/size);
Figure out neighbors;
Start at 1, but end at totpoints/size;
At end of step, exchange guardcells; use
sendrecv;
Get total error.

Bruno C. Mundim (SciNet HPC Consortium) Parallel Programming at Scale on Supercomputers with MPI July 12, 2021 69 / 73

6

MPI Summary

Bruno C. Mundim (SciNet HPC Consortium) Parallel Programming at Scale on Supercomputers with MPI July 12, 2021 70 / 73

MPI Summary - C syntax
MPI_Status status;

err = MPI_Init(&argc, &argv);

err = MPI_Comm_{size,rank}(Communicator, &{size,rank});

err = MPI_Send(sendptr, count, MPI_TYPE, destination, tag, Communicator);

err = MPI_Recv(rcvptr, count, MPI_TYPE, source, tag, Communicator, &status);

err = MPI_Sendrecv(sendptr, count, MPI_TYPE, destination,tag, recvptr, count, MPI_TYPE, source,
tag, Communicator, &status);

err = MPI_Allreduce(&mydata, &globaldata, count, MPI_TYPE, MPI_OP, Communicator);

Communicator -> MPI_COMM_WORLD
MPI_Type -> MPI_FLOAT, MPI_DOUBLE, MPI_INT, MPI_CHAR...
MPI_OP -> MPI_SUM, MPI_MIN, MPI_MAX,...

Bruno C. Mundim (SciNet HPC Consortium) Parallel Programming at Scale on Supercomputers with MPI July 12, 2021 71 / 73

MPI Summary - FORTRAN syntax
integer status(MPI_STATUS_SIZE)

call MPI_INIT(err)

call MPI_COMM_{SIZE,RANK}(Communicator, {size,rank},err)

call MPI_SSEND(sendarr, count, MPI_TYPE, destination, tag, Communicator)

call MPI_RECV(rcvarr, count, MPI_TYPE, destination,tag, Communicator, status, err)

call MPI_SENDRECV(sendptr, count, MPI_TYPE, destination,tag, recvptr, count, MPI_TYPE, source, &
tag, Communicator, status, err)

call MPI_ALLREDUCE(mydata, globaldata, count, MPI_TYPE, MPI_OP, Communicator, err)

Communicator -> MPI_COMM_WORLD
MPI_Type -> MPI_REAL, MPI_DOUBLE_PRECISION, MPI_INTEGER, MPI_CHARACTER
MPI_OP -> MPI_SUM, MPI_MIN, MPI_MAX,...

Bruno C. Mundim (SciNet HPC Consortium) Parallel Programming at Scale on Supercomputers with MPI July 12, 2021 72 / 73

Conclusion
Recap

Distributed Memory Computing
MPI: Basics
MPI: Send & Receive
MPI: Collectives
Scientific MPI Example: 1D Diffusion Equation

Good References
W. Gropp, E. Lusk, and A. Skjellun, Using MPI: Portable Parallel Programming with the
Message-Passing Interface. Third Edition. (MIT Press, 2014).
W. Gropp, T. Hoefler, R. Thakur, E. Lusk, Using Advanced MPI: Modern Features of the
Message-Passing Interface. (MIT Press, 2014).
The man pages for various MPI commands.
http://www.mpi-forum.org/docs/

Bruno C. Mundim (SciNet HPC Consortium) Parallel Programming at Scale on Supercomputers with MPI July 12, 2021 73 / 73

	Distributed Memory Computing
	MPI: Basics
	Send & Receive
	Collectives
	Scientific MPI Example
	MPI Summary

