

1

Advanced Linux command-line interface

2

Shells

bash

The GNU Bourne Again Shell (bash) is based on the earlier Bourne shell for Unix but extends it in several ways. In Linux,
bash is the most common default shell for user accounts, and it’s the one emphasized in this course.

tcsh

This shell is based on the earlier C shell (csh). It’s a fairly popular shell in some circles, but no major Linux distributions
make it the default shell.

csh

The original C shell isn’t much used on Linux, but if a user is familiar with csh, tcsh makes a good substitute.

ksh

The Korn shell (ksh) was designed to take the best features of the Bourne shell and the C shell and extend them further.

zsh

The Z shell (zsh) takes shell evolution further than the Korn Shell, incorporating features from earlier shells and adding still
more. zsh is the new default shell on Mac OS X.

This course is about bash. This is the default shell in Linux and is the one we will use in this course. For now on the terms
“shell” and “bash” refer to the same.

Exploring Your Linux Shell Options
Linux provides a range of options for shells.

3

Shells

PATH is a shell variable, also called an environment variable. It holds the
search path for commands. It is a colon-separated list of directories in which
the shell looks for commands. A common value is:

PATH is slightly different for the root user:

Exploring Your Linux Shell Options

PATH

$ echo $PATH

/usr/local/bin:/usr/bin:/bin:/usr/games:/usr/lib/mit/bin:/usr/lib/mit/sbin

echo $PATH

/sbin:/usr/sbin:/usr/local/sbin:/root/bin:/usr/local/bin:/usr/bin:/bin:/usr/games:/
usr/lib/mit/bin:/usr/lib/mit/sbin

4

Shells

When you type a command in the command-line, the shell looks for
a file in the directories listed in the PATH variable, in the same order
as they are in the variable. When the shell finds the first, it runs it.

If you want to know where the executable file is located, you can run
a command called which:

Exploring Your Linux Shell Options

PATH

$ which grep
/usr/bin/grep

$ which nocommand
which: no nocommand in
(/usr/local/bin:/usr/bin:/bin:/usr/games:/usr/lib/mit/bin:/usr/lib/mit/sbin)

5

Exploring Linux command-line tools

Many users find typing commands to be tedious and error prone. This is particularly
true of slow or sloppy typists. For this reason, Linux bash shell include various tools
that can help speed up operations.

The first of these is command completion: type part of a command or (as an option
to a command) a filename, and then press the Tab key. The shell tries to fill in the
rest of the command or the filename. If just one command or filename matches the
characters you’ve typed so far, the shell fills it in and places a space after it. If the
characters you’ve typed don’t uniquely identify a command or filename, the shell
fills in what it can and then stops. Depending on the shell and its configuration, it
may beep. If you press the Tab key again, the system responds by displaying the
possible completions. You can then type another character or two and, if you
haven’t completed the command or filename, press the Tab key again to have the
process repeat.

Performing Some Shell Command Tricks

Command completion

6

Exploring Linux command-line tools

This is, by far, the most powerful tool of the command-line. The history
keeps a record of every command you type (stored in ~/.bash_history).
If you’ve typed a long command recently and want to use it again, or use
a minor variant of it, you can pull the command out of the history.

The simplest way to do this is to press the Up arrow key on your
keyboard; this brings up the previous command. Pressing the Up arrow
key repeatedly moves through multiple commands so you can find the
one you want. If you overshoot, press the Down arrow key to move
down the history.

Performing Some Shell Command Tricks

history

7

Exploring Linux command-line tools

Another way to use the command history is to search through it.
Press Ctrl+R to begin a backward (reverse) search, which is what
you probably want, and begin typing characters that should be
unique to the command you want to find.

The characters you type need not be the ones that begin the
command; they can exist anywhere in the command. You can
either keep typing until you find the correct command or, after
you’ve typed a few characters, press Ctrl+R repeatedly until you
find the one you want.

Performing Some Shell Command Tricks

history (continued)

8

Exploring Linux command-line tools

Frequently, after finding a command in the history, you want to edit it. The bash
shell, provides editing features modelled after those of the Emacs editor:

Performing Some Shell Command Tricks

history (continued)

Editing the command line

Move within the line

Press Ctrl+A or Ctrl+E to move the cursor to the start or end of the line,
respectively. The Left and Right arrow keys move within the line a character at a
time. Pressing Ctrl plus the Left or Right arrow key (Alt-left arrow or Alt-right
arrow in the Mac) moves backward or forward a word at a time, as does
pressing Esc and then B or F.

9

Exploring Linux command-line tools
Performing Some Shell Command Tricks

history (continued)

Editing the command line (continued)

Delete text Pressing

Ctrl+D or the Delete key deletes the character under the cursor, whereas pressing
the Backspace key deletes the character to the left of the cursor. Pressing Ctrl+K
deletes all text from the cursor to the end of the line. Pressing Ctrl+X and then
Backspace deletes all the text from the cursor to the beginning of the line. Pressing
Ctrl-U deletes all text from the cursor to the beginning of the line.

Transpose text

Pressing Ctrl+T transposes the character before the cursor with the character under
the cursor. Pressing Esc and then T transposes the two words immediately before (or
under) the cursor.

10

Exploring Linux command-line tools
Performing Some Shell Command Tricks

history (continued)

Editing the command line (continued)

Change case

Pressing Esc and then U converts text from the cursor to the end of the word to
uppercase. Pressing Esc and then L converts text from the cursor to the end of
the word to lowercase. Pressing Esc and then C converts the letter under the
cursor (or the first letter of the next word) to uppercase, leaving the rest of the
word unaffected.

11

Exploring Linux command-line tools
Performing Some Shell Command Tricks

history (continued)

These editing commands are just the most useful ones supported by bash
history; consult its man page to learn about many more obscure editing
features. In practice, you’re likely to make heavy use of command and filename
completion, the command history, and perhaps a few editing features.

The history command provides an interface to view and manage the history.

Typing history alone displays all the commands in the history (typically the latest
500 commands); adding a number causes only that number of the latest
commands to appear. Typing history -c clears the history, which can be handy if
you’ve recently typed commands you’d rather not have discovered by others
(such as commands that include passwords).

12

Exploring Linux command-line tools
Performing Some Shell Command Tricks

Exercise
Editing Commands

To experiment with your shell’s completion and command-line editing tools, follow these
steps:

1. Log in as an ordinary user.

2. Create a temporary directory by typing mkdir test.

3. Change into the test directory by typing cd test.

4. Create a few temporary files by typing touch one two three. This command creates three
empty files named one, two, and three.

5. Type ls -l t, and without pressing the Enter key, press the Tab key. The system may beep
at you or display two three. If it doesn’t display two three, press the Tab key again, and it
should do so. This reveals that either two or three is a valid completion to your command,
because these are the two files in the test directory whose filenames begin with the letter t.

13

Exploring Linux command-line tools
Performing Some Shell Command Tricks

Exercise
Editing Commands (continued)

7. Type h, and again without pressing the Enter key, press the Tab key. The system should complete
the command (ls -l three), at which point you can press the Enter key to execute it. (You’ll see
information on the file.)

8. Press the Up arrow key. You should see the ls -l three command appear on the command line.

9. Press Ctrl+A to move the cursor to the beginning of the line.

10. Press the Right arrow key once, and type es (without pressing the Enter key). The command line
should now read less -l three.

11. Press the Right arrow key once, and press the Delete key three times. The command should now
read less three. Press the Enter key to execute the command. (Note that you can do so even
though the cursor isn’t at the end of the line.) This invokes the less pager on the three file. (The
less pager is described more fully later, in “Getting Help.”) Because this file is empty, you’ll see a
mostly empty screen.

12. Press the Q key to exit from the less pager.

14

Exploring Linux command-line tools
Shortcuts

aliases
A bash alias is essentially nothing more than a keyboard shortcut, an abbreviation,
a means of avoiding typing a long command sequence. If, for example, we
include:

in the ~/.bashrc file, then each lm typed at the command-line will automatically be
replaced by a ls l | more‑ . This can save a great deal of typing at the command-
line and avoid having to remember complex combinations of commands and
options. Setting alias rm="rm -i" (interactive mode delete) may save a good deal
of grief, since it can prevent inadvertently deleting important files.

alias lm="ls -l | more"

15

Exploring Linux command-line tools
Getting Help

man
Linux provides a text-based help system known as man.
This command’s name is short for manual. For instance, to
learn about man itself, you can type man man. The result is
a description of the man command.

The man utility uses the less pager to display information.
We will talk more about less later.

16

Exploring Linux command-line tools
Getting Help
apropos
apropos - search the manual page names and descriptions.

Each manual page has a short description available within it. apropos searches the descriptions for
instances of a keyword.

$ apropos grep

bzegrep [bzgrep] (1) - search possibly bzip2 compressed files for a regular expression
bzfgrep [bzgrep] (1) - search possibly bzip2 compressed files for a regular expression
bzgrep (1) - search possibly bzip2 compressed files for a regular expression
egrep [grep] (1) - print lines matching a pattern
fgrep [grep] (1) - print lines matching a pattern
grep (1) - print lines matching a pattern
grep (1p) - search a file for a pattern
grep (rpm) - The GNU versions of grep pattern matching utilities.
grepdiff (1) - show files modified by a diff containing a regex
grephistory (1) - Query the INN history database
grepjar (1) - search files in a jar file for a pattern
msggrep (1) - pattern matching on message catalog
pcregrep (1) - a grep with Perl-compatible regular expressions
pgrep (1) - look up or signal processes based on name and other attributes
pkill [pgrep] (1) - look up or signal processes based on name and other attributes
zgrep (1) - search possibly compressed files for a regular expression
zipgrep (1) - search files in a ZIP archive for lines matching a pattern

17

Exploring Linux command-line tools
Using Streams, Redirection, and Pipes

Streams, redirection, and pipes
Streams, redirection, and pipes are very powerful command-line
tools in Linux. Linux treats the input to and output from programs
as a stream, which is a data entity that can be manipulated.

Ordinarily, input comes from the keyboard and output goes to the
screen. You can redirect these input and output streams to come
from or go to other sources, though, such as files. Similarly, you
can pipe the output of one program into another program. These
facilities can be great tools to tie together multiple programs or
commands.

18

Exploring Linux command-line tools
Using Streams, Redirection, and Pipes
Exploring Types of Streams
To begin understanding redirection and pipes, you must first understand the different types of input and
output streams. Three are most important for this topic:

Standard input

Programs accept keyboard input via standard input, or stdin. In most cases, this is the data that comes
into the computer from a keyboard.

Standard output

Text-mode programs send most data to their users via standard output (a.k.a. stdout), which is normally
displayed on the screen, either in a full-screen text-mode session or in a GUI window such as an xterm.

Standard error

Linux provides a second type of output stream, known as standard error, or stderr. This output stream
is intended to carry high-priority information such as error messages. Ordinarily, standard error is sent
to the same output device as standard output, so you can’t easily tell them apart. You can redirect one
independently of the other, though, which can be handy. For instance, you can redirect standard error
to a file while leaving standard output going to the screen so that you can interact with the program and
then study the error messages later.

19

Exploring Linux command-line tools
Redirection
Redirecting Input and Output

To redirect input or output, you use symbols following the
command, including any options it takes. For instance, to
redirect the output of the echo command, you would type
something like this:

The result is that the file nntpserver.txt contains the output of
the command. Redirection operators exist to achieve several
effects, as summarized in the next slide:

$ echo $NNTPSERVER > nntpserver.txt

20

Exploring Linux command-line tools
Redirection
Common Redirection Operators
Redirection
Operator

Effect

> Creates a new file containing standard output. If the specified file exists, it’s overwritten.

>> Appends standard output to the existing file. If the specified file doesn’t exist, it’s created.

2> Creates a new file containing standard error. If the specified file exists, it’s overwritten.

2>> Appends standard error to the existing file. If the specified file doesn’t exist, it’s created.

&> Creates a new file containing both standard output and standard error. If the specified file exists, it’s
overwritten.

< Sends the contents of the specified file to be used as standard input

<< Accepts text on the following lines as standard input.

<> Causes the specified file to be used for both standard input and standard output.

21

Exploring Linux command-line tools
Pipes
Piping Data Between Programs
Programs can frequently operate on other programs’ outputs.

For instance, you might use a text-filtering command, such as
grep, to manipulate text output by another program.

The solution is to use data pipes. A pipe redirects the first
program’s standard output to the second program’s standard
input and is denoted by a vertical bar (|):

$ first | second

22

Exploring Linux command-line tools
Pipes
Piping Data Between Programs (continued)

For instance, suppose that first generates some system statistics, such as system
uptime, CPU use, number of users logged in, and so on. This output might be
lengthy, so you want to trim it a bit.

You might therefore use second, which could be a script or command that echoes
from its standard input only the information in which you’re interested. The grep
command is often used in this role.

Pipes can be used in sequences of arbitrary length:

$ first | second | third | fourth | fifth | sixth [...]

23

Exploring Linux command-line tools
Processing Text Using Filters

File-Combining Commands
Combining Files with cat

The cat command’s name is short for concatenate, and this tool does just that: It links together
an arbitrary number of files end to end and sends the result to standard output.

By combining cat with output redirection, you can quickly combine two files into one:

Although cat is officially a tool for combining files, it’s also commonly used to display the contents
of a short file. If you type only one filename as an option, cat displays that file. This is a great way
to review short files; but for long files, you’re better off using a full-fledged pager command, such
as more or less.

Many simple commands are available to manipulate text. These commands
accomplish tasks of various types, such as combining files, transforming
the data in files, formatting text, displaying text, and summarizing data.

$ cat first.txt second.txt > combined.txt

24

Exploring Linux command-line tools
Processing Text Using Filters
File-Transforming Commands

Converting Tabs to Spaces with expand

Sometimes text files contain tabs but programs that need to process the
files don’t cope well with tabs; you may want to convert tabs to spaces.
The expand command does this.

By default, expand assumes a tab stop every eight characters. You can
change this spacing with the -t num or --tabs=num option, where num is
the tab spacing value.

Many of Linux’s text-manipulation commands are aimed at transforming the
contents of files. These commands don’t actually change files’ contents, though;
rather, they send the changed file to standard output. You can then pipe this output
to another command or redirect it into a new file.

25

Exploring Linux command-line tools
Processing Text Using Filters

File-Transforming Commands
Sorting Files with sort

Sometimes you’ll create an output file that you want sorted. To do so, you can use a
command that’s called, appropriately enough, sort. This command can sort in several
ways, including the following:

Ignore case Ordinarily, sort sorts by ASCII value, which differentiates between
uppercase and lowercase letters. The -f or --ignore-case option causes sort to ignore
case.

Month sort The -M or --month-sort option causes the program to sort by three-letter
month abbreviation (JAN through DEC).

Numeric sort You can sort by number by using the -n or --numeric-sort option.

26

Exploring Linux command-line tools
Processing Text Using Filters
File-Transforming Commands
Sorting Files with sort (continued)

Reverse sort order The -r or --reverse option sorts in reverse order.

Sort field By default, sort uses the first field as its sort field. You can specify another
field with the -k field or --key=field option. (The field can be two numbered fields
separated by commas, to sort on multiple fields.)

As an example, suppose you wanted to sort listing1.1.txt by first name. You could do so
like this:

The sort command supports a large number of additional options, many of them quite
exotic. Consult sort’s man page for details.

$ sort -k 3 listing1.1.txt

555-2397 Beckett, Barry
555-5116 Carter, Gertrude
555-9871 Orwell, Samuel
555-7929 Jones, Theresa

27

Exploring Linux command-line tools
Processing Text Using Filters
File-Viewing Commands

Viewing the Starts of Files with head

Sometimes all you need to do is see the first few lines of a file. This may be enough to
identify what a mystery file is, for instance; or you may want to see the first few entries of
a log file to determine when that file was started. You can accomplish this goal with the
head command, which echoes the first 10 lines of one or more files to standard output.

You can modify the amount of information displayed by head in two ways:

Specify the number of bytes The -c num or --bytes=num option tells head to display
num bytes from the file rather than the default 10 lines.

Specify the number of lines You can change the number of lines displayed with the -n
num or --lines=num option.

Sometimes you just want to view a file or part of a file. A few commands can help
you accomplish this goal without loading the file into a full-fledged editor.

28

Exploring Linux command-line tools
Processing Text Using Filters
File-Viewing Commands
Viewing the Ends of Files with tail

The tail command works just like head, except that tail displays the last 10 lines
of a file. (You can use the -c/--bytes and -n/--lines options to change the amount
of data displayed, just as with head.) This command is useful for examining
recent activity in log files or other files to which data may be appended.

The tail command supports several options that aren’t present in head and that
enable the program to handle additional duties, including the following:

Track a file The -f or --follow option tells tail to keep the file open and to display
new lines as they’re added.

Some additional options provide more obscure capabilities. Consult tail’s man
page for details.

29

Exploring Linux command-line tools
Processing Text Using Filters
File-Viewing Commands
Paging Through Files with less

The less command’s name is a joke; it’s a reference to the more command, which was an
early file pager. The idea was to create a better version of more, so the developers called it
less.

The idea behind less (and more, for that matter) is to enable you to read a file a screen at
a time. When you type less filename, the program displays the first few lines of filename.
You can then page back and forth through the file:
● Pressing the spacebar moves forward through the file one screen at a time.
● Pressing B moves backward through the file one screen at a time.
● Pressing D moves forward through the file half a screen at a time.
● Pressing U moves backward through the file half a screen at a time.
● The Up and Down arrow keys move up or down through the file one line at a time.

30

Exploring Linux command-line tools
Processing Text Using Filters
File-Viewing Commands
Paging Through Files with less (continued)

● You can search the file’s contents by pressing the slash (/) key followed by
the search term. Typing n alone repeats the search forward, while typing N
alone repeats the search backward.

● You can move to a specific line by typing g followed by the line number, as
in 50g to go to line 50.

● You can move to an approximate percentage position of the file by typing g
followed by the line number, as in 50p to go to the 50% of the file.

● g will take you to the beginning of the file, while G will take you to the end
of the file.

● When you’re done, type q to exit from the program.

31

Exploring Linux command-line tools
Processing Text Using Filters
File-Viewing Commands
Extracting Text with cut

The cut command extracts portions of input lines and displays them on standard
output. You can specify what to cut from input lines in several ways:

By byte The -b list or --bytes=list option cuts the specified list of bytes from the
input file. (The format of a list is described shortly.)

By character The -c list or --characters=list option cuts the specified list of
characters from the input file.

By field The -f list or --fields=list option cuts the specified list of fields from the
input file. By default, a field is a tab-delimited section of a line, but you can
change the delimiting character with the -d char, --delim=char, or --delimiter=char
option option, where char is the character you want to use to delimit fields.

32

Exploring Linux command-line tools
Processing Text Using Filters
File-Viewing Commands
Extracting Text with cut (continued)

The cut command is frequently used in scripts to extract data
from some other command’s output. For instance, suppose
you’re writing a script and the script needs to know the
hardware address of an Ethernet adapter. This information can
be obtained from the ifconfig command:
ifconfig eth1
eth1 Link encap:Ethernet HWaddr 00:13:72:4C:5E:49
 inet addr:192.168.0.254 Bcast:192.168.0.255 Mask:255.255.255.0
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:1777749 errors:0 dropped:0 overruns:0 frame:0
 TX packets:1034637 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:273446318 (260.7 Mb) TX bytes:548066085 (522.6 Mb)

33

Exploring Linux command-line tools
Processing Text Using Filters
File-Viewing Commands
Extracting Text with cut (continued)

Unfortunately, most of this information is extraneous for the desired purpose.
The hardware address is the 6-byte hexadecimal number following HWaddr. To
extract that data, you can combine grep (described shortly, in “Using grep”)
with cut in a pipe:

Of course, in a script you would probably assign this value to a variable or
otherwise process it through additional pipes.

ifconfig eth1 | grep HWaddr | cut -d" " -f11
00:13:72:4C:5E:49

34

Exploring Linux command-line tools
Processing Text Using Filters

File-Viewing Commands

Obtaining a Word Count with wc

The wc command produces a word count (that’s where it gets its name), as well
as line and byte counts, for a file:

This file contains 308 lines (or, more precisely, 308 newline characters); 2,343
words; and 15,534 bytes. You can limit the output to the newline count, the word
count, the byte count, or a character count with the --lines (-l), --words (w), --‑
bytes (-c), or --chars (-m) option, respectively. You can also learn the maximum
line length with the --max-line-length (-L) option.

$ wc file.txt
308 2343 15534 file.txt

35

Exploring Linux command-line tools
Using Regular Expressions

Many Linux programs employ regular expressions, which are
tools for expressing patterns in text. At their simplest, regular
expressions can be plain text without adornment. Certain
characters are used to denote patterns, though.

Understanding Regular Expressions

Two forms of regular expression are common: basic and extended.

Which form you must use depends on the program; some accept one
form or the other.

The differences between basic and extended regular expressions are
complex and subtle, but the fundamental principles of both are similar.

36

Exploring Linux command-line tools
Using Regular Expressions
Understanding Regular Expressions (continued)
The simplest type of regular expression is an alphabetic string, such as Linux or
HWaddr. These regular expressions match any string of the same size or longer that
contains the regular expression. For instance, the HWaddr regular expression
matches HWaddr. The real strength of regular expressions comes in the use of non-
alphabetic characters, which activate advanced matching rules:

Bracket expressions Characters enclosed in square brackets ([]) constitute bracket
expressions, which match any one character within the brackets. For instance, the
regular expression b[aeiou]g matches the words bag, beg, big, bog, and bug.

Range expressions A range expression is a variant on a bracket expression.
Instead of listing every character that matches, range expressions list the start and
end points separated by a dash (-), as in a[2-4]z. This regular expression matches
a2z, a3z, and a4z.

37

Exploring Linux command-line tools
Using Regular Expressions
Understanding Regular Expressions (continued)
Any single character The dot (.) represents any single character except a
newline. For instance, a.z matches a2z, abz, aQz, or any other three-character
string that begins with a and ends with Z.

Start and end of line The carat (^) represents the start of a line, and the dollar
sign ($) denotes the end of a line.

Repetition operators A full or partial regular expression may be followed by a
special symbol to denote how many times a matching item must exist. Specifically,
an asterisk (*) denotes zero or more occurrences, a plus sign (+) matches one or
more occurrences, and a question mark (?) specifies zero or one match. The
asterisk is often combined with the dot (as in .*) to specify a match with any
substring. For instance, A.*Lincoln matches any string that contains A and Lincoln,
in that order—Abe Lincoln and Abraham Lincoln are just two possible matches.

38

Exploring Linux command-line tools
Using Regular Expressions
Understanding Regular Expressions (continued)

Multiple possible strings The vertical bar (|) separates two possible matches;
for instance, car|truck matches either car or truck.

Parentheses Ordinary parentheses (()) surround subexpressions. Parentheses
are often used to specify how operators are to be applied; for example, you can
put parentheses around a group of words that are concatenated with the vertical
bar, to ensure that the words are treated as a group, any one of which may
match, without involving surrounding parts of the regular expression.

Escaping If you want to match one of the special characters, such as a dot, you
must escape it—that is, precede it with a backslash (\). For instance, to match a
computer hostname (say, twain.example.com), you must escape the dots, as in
twain\.example\.com.

39

Exploring Linux command-line tools
Using Regular Expressions
Using grep
The grep command is extremely useful. It searches for files
that contain a specified string and returns the name of the
file and (if it’s a text file) a line of context for that string. The
basic grep syntax is as follows:

 grep [options] regexp [files]

The regexp is a regular expression, as just described. The
grep command supports a large number of options. Some of
the more common options enable you to modify the way the
program searches files.

40

Exploring Linux command-line tools
Using Regular Expressions
Using grep (continued)

Count matching lines Instead of displaying context lines, grep displays
the number of lines that match the specified pattern if you use the -c or --
count option.

Specify a pattern input file The -f file or --file=file option takes pattern
input from the specified file rather than from the command line.

Ignore case You can perform a case-insensitive search, rather than the
default case-sensitive search, by using the -i or --ignore-case option.

Search recursively The -r or --recursive option searches in the specified
directory and all subdirectories rather than simply the specified directory.
You can use rgrep rather than specify this option.

41

Exploring Linux command-line tools
Using Regular Expressions
Using grep (continued)
Use an extended regular expression The grep command interprets regexp as a
basic regular expression by default. To use an extended regular expression, you can
pass the -E or --extended-regexp option. Alternatively, you can call egrep rather than
grep; this variant command uses extended regular expressions by default.

A simple example of grep uses a regular expression with no special components:

This example finds all the files in /etc that contain the string eth0 (the identifier for the
first Ethernet device). Because the example includes the -r option, it searches
recursively, so files in subdirectories of /etc are examined as well as those in /etc
itself. For each matching text file, the line that contains the string is printed.

$ grep -r eth0 /etc/

42

Exploring Linux command-line tools
Using Regular Expressions
Using grep (continued)
Ramping up a bit, suppose you want to locate all the files in /etc that contain the
string eth0 or eth1. You can enter the following command, which uses a bracket
expression to specify both variant devices:

A still more complex example searches all files in /etc that contain the hostname
twain. example.com or bronto.pangaea.edu and, later on the same line, the number
127. This task requires using several of the regular expression features. Expressed
using extended regular expression notation, the command looks like this:

$ grep eth[01] /etc/*

$ grep -E “(twain\.example\.com|bronto\.pangaea\.edu).*127” /etc/*

43

Exploring Linux command-line tools
Using Regular Expressions
Using grep (continued)
This command illustrates another feature you may need to use: shell quoting.
Because the shell uses certain characters, such as the vertical bar and the asterisk,
for its own purposes, you must enclose certain regular expressions in quotes lest the
shell attempt to parse the regular expression as shell commands.

You can use grep in conjunction with commands that produce a lot of output.

For example, suppose you want to find the process ID (PID) of a running xterm. You
can use a pipe to send the result of a ps command through grep:

The result is a list of all running processes called xterm, along with their PIDs. You
can even do this in series, using grep to further restrict the output on some other
criterion, which can be useful if the initial pass still produces too much output.

ps aux | grep xterm

44

Exploring Linux command-line tools
Using Regular Expressions
Using sed
The sed command directly modifies the contents of files, sending the changed
file to standard output. Its syntax can take one of two forms:

sed [options] -f script-file [input-file]

sed [options] script-text [input-file]

In either case, input-file is the name of the file you want to modify.
(Modifications are temporary unless you save them in some way).

The script (script-text or the contents of script-file) is the set of commands you
want sed to perform. When you pass a script directly on the command line,
the script-text is typically enclosed in single quote marks.

45

Exploring Linux command-line tools
Using Regular Expressions
Using sed (continued)

In operation, sed looks something like this:

This command processes the input file, cal-2018.txt, using sed’s s
command to replace the first occurrence of 2018 on each line with
2019. (If a single line may have more than one instance of the
search string, you must perform a global search by appending g to
the command string, as in s/2018/2019/g.) By default, sed sends
the modified file to standard output, so this example uses
redirection to send the output to cal-2019.txt.

$ sed ‘s/2018/2019/‘ cal-2018.txt > cal-2019.txt

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

