
Neural network programming:
reinforcement learning

Erik Spence

SciNet HPC Consortium

18 May 2023

Erik Spence (SciNet HPC Consortium) Reinforcement learning 18 May 2023 1 / 25

Today’s code and slides

You can get the slides and code for today’s class at the SciNet Education web page.

https://scinet.courses/1271

Click on the link for the class, and look under ”Lectures” on the right side-bar, click on
”Reinforcement learning”.

The code for today’s class will need OpenAI’s ”gym” package. The command ”pip install
gym” should work. You’ll also probably need ’pygame’ installed.

Erik Spence (SciNet HPC Consortium) Reinforcement learning 18 May 2023 2 / 25

http://www.scinethpc.ca
https://scinet.courses/1271

Supervised versus unsupervised learning

One way of categorizing machine learning algorithms is based on whether they are
”supervised” or ”unsupervised”.

• Supervised learning means that all data comes in (x, y) pairs, where x are the input
features and y is the ’label’ or ’target’. The goal is develop a model, f , such that
f(x) = y.

• Most of the neural networks we have trained so far have been supervised, with the
exception of the generative networks: VAEs and GANs.

• Unsupervised learning means that you only get (or use) x and the goal is to determine
patterns in x which may be useful.

There are other categories, one of which is the topic of today’s class: semi-supervised learning.

Erik Spence (SciNet HPC Consortium) Reinforcement learning 18 May 2023 3 / 25

http://www.scinethpc.ca

Reinforcement learning

Suppose you want to teach a neural network to play a video game. There are several
approaches you could use.

• You could use a supervised-learning approach, whereby you compile a data set of current
states of the game, and associated ’best actions’ to take given that data, and then train
the NN in one of the ways we’ve already examined.

• But this is unsatisfying, since this is not at all how we learn to play video games in real
life.

• In real life we learn to play by interacting with the game, figuring out strategies for
getting points.

• This is how Reinforcement Learning (RL) works: the NN interacts with the game, and is
rewarded for desirable results.

• As such, this method of training is ’semi-supervised’, since rewards only arrive once in a
while, and they are often time delayed.

Erik Spence (SciNet HPC Consortium) Reinforcement learning 18 May 2023 4 / 25

http://www.scinethpc.ca

Reinforcement learning, applications

Who cares? Isn’t this only used for video games?

No, reinforcement learning has been used in a number of important applications, including
areas of science and engineering.

• Robotics: teaching robots to move around and interact with their environment.

• Business: inventory and delivery management.

• Finance: development of trading strategies.

• Science: protein folding, drug discovery, materials discovery.

• Games: AlphaGo, StarCraft II.

Any situation where you can set up a ”agent” which interacts with an ”environment” can use
a reinforcement-learning approach.

Erik Spence (SciNet HPC Consortium) Reinforcement learning 18 May 2023 5 / 25

http://www.scinethpc.ca

The reinforcement learning framework

Reinforcement learning terminology:

• agent: this is you, the game player.

• environment: the game you are playing.

• state: the current state of the
environment.

• action: actions the agent can perform in
the environment.

• reward: positive or negative results from
certain actions.

• policy: a set of rules which dictate
which actions to perform, given the
state of the environment.

environment

agent

State Reward Action

The actions and states, with the rules of
the environment, make up a Markov
decision process.

Erik Spence (SciNet HPC Consortium) Reinforcement learning 18 May 2023 6 / 25

http://www.scinethpc.ca

Markov decision processes

A collection of actions and changes to the environment (an ”episode”) forms a sequence of
states (s), actions (a) and rewards (r):

s0, a0, r1, s1, a1, r2, s2, a2, . . . , rn−1, sn−1, an−1, rn, sn

The Markov decision process relies on the Markov assumption, namely that the probability of
the reaching the next state, si+1, only depends upon the current state, si, and the action, ai.
How we got to the current state does not matter.

Erik Spence (SciNet HPC Consortium) Reinforcement learning 18 May 2023 7 / 25

http://www.scinethpc.ca

Long-term success

To have the best performance in the long run, we need to consider not just the immediate
rewards for any given action, but also the long-term rewards. How is this done?

Consider the total possible reward for a given number of actions:

R = r1 + r2 + r3 + · · · + rn−1 + rn

The total future reward, starting from t, can be expressed as

Rt = rt + rt+1 + rt+2 + · · · + rn−1 + rn

Erik Spence (SciNet HPC Consortium) Reinforcement learning 18 May 2023 8 / 25

http://www.scinethpc.ca

Long-term success, continued

Sometimes the environment has a stochastic (random) component to it. Consequently we
can’t be completely sure if we will get the same rewards the next time we perform the same
actions. The farther into the future we go, the more and more it may diverge. It is common to
use the ”discounted future reward” to account for this:

Rt = rt + γrt+1 + γ2rt+2 + · · · + γn−trn

where γ is the ”discount factor”, between 0 and 1. We can rewrite the discounted reward as a
recursive expression

Rt = rt + γ (rt+1 + γ (rt+2 + . . .)) = rt + γRt+1

A good plan is to choose an action which maximizes the discounted future reward.

Erik Spence (SciNet HPC Consortium) Reinforcement learning 18 May 2023 9 / 25

http://www.scinethpc.ca

The discount factor

How do we choose a good value for the discount factor, γ?

Rt = rt + γRt+1

• If we choose a small value, γ ≃ 0, then the model will be short-sighted, ignoring future
rewards. This is appropriate if there is alot of randomness in the system.

• If we choose a large value, γ ≃ 1, then the model is assuming that the system is fairly
deterministic, and the future can be well-predicted.

Choose a value of γ which is appropriate for the system you’re dealing with.

Erik Spence (SciNet HPC Consortium) Reinforcement learning 18 May 2023 10 / 25

http://www.scinethpc.ca

Q-learning

Let us define a function Q(a, s) which returns the maximum total discounted future reward
when we perform action a on state s.

Q(at, st) = max (Rt+1)

This is the ”Q function”. It represents the ”quality” of a certain action, given a state. You
might legitimately wonder how we could know the score at the end of the game, given the
current state and a given action. The truth is, we can’t, but it’s a useful theoretical construct.

Like the discounted future reward, we can express Q in terms of the Q value of the next state:

Q(at, st) = rt+1 + γmaxat+1 (Q (at+1, st+1))

This is called the Bellman equation. It allows us a formulation around which to train a neural
network.

Erik Spence (SciNet HPC Consortium) Reinforcement learning 18 May 2023 11 / 25

http://www.scinethpc.ca

Q-learning loss function

Let us create a neural network which will take the place of the Q function. Given the Bellman
equation:

Q(at, st) = rt+1 + γmaxat+1 (Q (at+1, st+1))

we can then define a loss function for our NN training:

L =
1

2

Q(at, st) −
{
rt+1 + γmaxat+1 (Q (at+1, st+1))

}︸ ︷︷ ︸
target

2

which is just the usual quadratic loss function.

Erik Spence (SciNet HPC Consortium) Reinforcement learning 18 May 2023 12 / 25

http://www.scinethpc.ca

Problems RL faces

Reinforcement learning has some challenges it needs to deal with.

• Problem 1: often, when you make a move which gets points, it has nothing to do with
the immediately-preceding move. The time-delay between the move responsible for the
point and receiving the point needs to be reconciled. This is called the ”credit assignment
problem”.

• How do we deal with this? The standard approach is called ”Experience Replay”, which
involves compiling a collection of moves, a ”data set”, against which to train. We choose
a random mini-batch from the collection, which breaks the similarity between subsequent
data points, which tends to push the network into a local minimum.

Our algorithm will create a collection of ”observations” against which to train.

Erik Spence (SciNet HPC Consortium) Reinforcement learning 18 May 2023 13 / 25

http://www.scinethpc.ca

Problems RL faces, continued

What other problems does reinforcement learning have?

• Problem 2: perhaps I come up with a strategy which is marginally effective at getting
points. Should I stop there? Should I experiment to find new techniques? This is the
”explore-exploit” problem.

• The standard method of addressing this problem is to throw randomness into the
decision-making process. This can ”encourage” the network to explore areas of the action
space that it would otherwise avoid.

The collection of observations we train against starts out totally random; the randomness is
reduced as the training of the network progresses.

Erik Spence (SciNet HPC Consortium) Reinforcement learning 18 May 2023 14 / 25

http://www.scinethpc.ca

RL example

Let’s build a neural network to play a video game.

• We’ll use cartpole, which is available through
OpenAI’s gym, through the ”gym” package.

• The goal is to move the cart back and forth
to keep the pendulum vertical.

• You get points for the amount of time the
pendulum is near vertical.

• The game ends if
• the pendulum exceeds 15 degrees from

vertical, in either direction,
• the cart moves off the screen.

The OpenAI Gym has been designed to be easy to
use to develop reinforcement learning algorithms.

Erik Spence (SciNet HPC Consortium) Reinforcement learning 18 May 2023 15 / 25

http://www.scinethpc.ca

RL example, continued

What is the environment for this game?

• The state consists of 4 pieces of information: x,
dx

dt
, θ,

dθ

dt
• x is the position of the cart and θ is the angle of the pendulum.

• There are two possible actions: left and right. This refers to the motion of the cart.

• The cart and pendulum both have mass.

• Gravity points downward.

Erik Spence (SciNet HPC Consortium) Reinforcement learning 18 May 2023 16 / 25

http://www.scinethpc.ca

Computer playing cartpole

How does the computer play the game?

• First the Cartpole OpenAI environment is initialized.
• Then, while the game is not done:

• The current state of the game is rendered to the screen.
• The next action of the game is (somehow) decided.
• The state of the game is stepped forward, based on the chosen action.
• Repeat.

Great. Now how do we add the Q-learning to the control of the game?

Erik Spence (SciNet HPC Consortium) Reinforcement learning 18 May 2023 17 / 25

http://www.scinethpc.ca

Computer learning cartpole

L =
1

2

Q(at, st) −
{
rt+1 + γmaxat+1 (Q (at+1, st+1))

}︸ ︷︷ ︸
target

2

How do we implement Q-learning?
• We implement the function Q as a neural network.

• The input is the state, s.
• The output is the predicted discounted future reward for each possible action.

• A collection of ”observations” is made, and stored. Each observation consists of:
(previous state, action, reward, current state, is finished).

• To train the network:
• Take a batch of current state observations; run them through the NN to get the predicted

reward for each action, Q(at+1, st+1).
• Use this to construct the right side of the above equation:

rt+1 + γmaxat+1
Q (at+1, st+1).

• Use supervised learning to train Q.

Erik Spence (SciNet HPC Consortium) Reinforcement learning 18 May 2023 18 / 25

http://www.scinethpc.ca

Implementing the loss function

L =
1

2

Q(at, st) −
{
rt+1 + γmaxat+1 (Q (at+1, st+1))

}︸ ︷︷ ︸
target

2

You may have noticed a peculiarity about the loss function.

• Given a state st we can calculate Q for every possible action, at.

• However, we only have the right side of the equation for one of the values of at, the
action that we end up choosing, the action that leads to st+1, and results in rt+1.

• If our neural network produces one value of Q for each possible action, how to do train
the network for the actions which aren’t chosen? There’s no right side of the equation for
those actions!

• It turns out that setting the right side to zero for those actions ruins the training.

• A better approach is to set the right side to Q(at, st) for those at which are not selected.

Erik Spence (SciNet HPC Consortium) Reinforcement learning 18 May 2023 19 / 25

http://www.scinethpc.ca

Computer learning cartpole, the algorithm

What’s the actual algorithm?

• Setup the cartpole game.

• Run the game with random actions to get a set of observations from which to start
training the network.

• For each screen update of the game:
• Get the current state.
• Get the next best action, given the current state.
• Step the game forward.
• Get the reward for the chosen action.
• Add the latest observation set to the collection of observations.
• Train the neural network on a mini-batch of the observations.

Erik Spence (SciNet HPC Consortium) Reinforcement learning 18 May 2023 20 / 25

http://www.scinethpc.ca

Deep Q-learning with cartpole

Q Cartpole Player.py

def build model(self):

input state = kl.Input(

shape = (self.state dim,))

x = kl.Dense(24,

activation = "relu")(input state)

x = kl.Dense(24,

activation = "relu")(x)

q = kl.Dense(self.num actions,

activation = "linear")(x)

self.q model = km.Model(inputs =

input state, outputs = q)

self.q model.compile(loss = "mse",

optimizer = ko.Adam(lr = 0.001))

Train the NN.

def train model(self):

batch = random.sample(self.observations,

self.batch size)

previous, actions, rewards, current, dones = \

list(zip(*batch))

q update = rewards + (1 - np.array(dones)) *

self.future reward discount *

np.max(self.q model.predict(np.array(current)))

q values = self.q model.predict(np.array(previous)))

q values[range(self.mini batch size), actions] = q update

self.q model.fit(np.array(previous), q values,

verbose = 0)

Erik Spence (SciNet HPC Consortium) Reinforcement learning 18 May 2023 21 / 25

http://www.scinethpc.ca

Training our game player

There’s not much to it really.

ejspence@mycomp ~>
ejspence@mycomp ~> python

q cartpole player.py

Using Tensorflow backend.

Starting training.

Score is 173
.
.
.

The code will run 200 games,
and train on them.

Train the player.

player = QCartPolePlayer()

for i in range(200):

state = player.env.reset()[0]; total = 0; done = False

while (not done):

player.env.render()

prev state = state

action = player.get next action(prev state)

state, reward, done, , info = player.env.step(action)

reward = reward if not done else -reward

total += reward

player.remember([prev state, action, reward, state, done])

player.train model()

print(i, "reward is ", total)

Erik Spence (SciNet HPC Consortium) Reinforcement learning 18 May 2023 22 / 25

http://www.scinethpc.ca
~
~

Notes about our player

Some notes about the player, and its training.

• Random moves are used to create the initial set of observations, before training of the NN
begins.

• As training begins, the fraction of moves which are random, rather than from the NN,
decreases slowly until only 5% of the moves are random.

• Random moves are still included in the training to help address the ”explore-exploit”
problem, forcing the network explore actions it wouldn’t otherwise try.

• There is a maximum size to the collection of observations. Once it is filled, the older
observations are discarded and replaced by the latest observations.

Read the code for all of the details.

Erik Spence (SciNet HPC Consortium) Reinforcement learning 18 May 2023 23 / 25

http://www.scinethpc.ca

Notes about our player, continued

Note that the algorithm which we’ve been examining, Deep Q-learning, is only appropriate, as
presented, for discrete decision-making. Continuous decision-making, in which we output a
value instead of a category, requires a different algorithm. There are many others out there:

• Deep Deterministic Policy Gradient (DDPG),

• Continuous DQN (CDQN or NAF)

• Cross-Entropy Method (CEM)

• Actor-critic methods (A2C and A3C)

• Proximal Policy Optimization

If you end up going down this road you will need to familiarize yourself with these other
algorithms.

Erik Spence (SciNet HPC Consortium) Reinforcement learning 18 May 2023 24 / 25

http://www.scinethpc.ca

Linky goodness

Reinforcement learning:

• https://arxiv.org/abs/1312.5602

• https://www.davidsilver.uk/teaching

• http://edersantana.github.io/articles/keras_rl

• https://keon.io/deep-q-learning

• https://medium.com/@gtnjuvin/

my-journey-into-deep-q-learning-with-keras-and-gym-3e779cc12762

• http:

//www.danielslater.net/2015/12/how-to-run-learning-agents-against.html

• https://spinningup.openai.com/en/latest/algorithms/ddpg.html

Erik Spence (SciNet HPC Consortium) Reinforcement learning 18 May 2023 25 / 25

http://www.scinethpc.ca
https://arxiv.org/abs/1312.5602
https://www.davidsilver.uk/teaching
http://edersantana.github.io/articles/keras_rl
https://keon.io/deep-q-learning
https://medium.com/@gtnjuvin/my-journey-into-deep-q-learning-with-keras-and-gym-3e779cc12762
https://medium.com/@gtnjuvin/my-journey-into-deep-q-learning-with-keras-and-gym-3e779cc12762
http://www.danielslater.net/2015/12/how-to-run-learning-agents-against.html
http://www.danielslater.net/2015/12/how-to-run-learning-agents-against.html
https://spinningup.openai.com/en/latest/algorithms/ddpg.html

	Supervised and unsupervised learning
	Reinforcement learning
	Markov processes
	Long-term success
	Q-learning
	RL problems

	RL example
	Implementing Q-learning
	The code
	Example notes

