
Securing File Access Permissions on Linux
Ramses van Zon
SciNet HPC, University of Toronto
27 October 2022

Motivation

The Linux operating system has built-in tools to control file access.

This controls which specific users and groups can access which files
and directories.

Very powerful, but needs to be use properly.

We will teach you

what these Linux permissions are;
how to use the available tools to control access and sharing;
and how to avoid common security pitfalls.

Thanks to

Jaime Pinto and Ram Sharma from SciNet
Mohamed Jabir, Darcy Quesnel and Pier-Luc St-Onge from Calcul
Québec.

2

Understanding Linux
Permissions

3

User organization in Linux

Users in Linux are organized in groups, so called posix groups.

A user can be part of several posix groups.

This is very useful if you want to share files with a specific set of users
(e.g. your research group).

Try this: Find out what groups you’re part of!

$ whoami
rzon
$ groups
scinet ccstaff
$ id -gn
scinet

The result of id -gn is your primary group.

4

Ownership in Linux

The purpose of these groups is to control access and sharing.

All files and directories are always ‘owned’ by a specific user.

In addition, files have a ‘group ownership’ property, which shows to
which group they belong.

Try this: Find out what group your files belong to.

$ ls -al .
total 24
drwxrwxr-x 2 rzon scinet 4096 Oct 11 00:17 .
drwxrwxr-x 4 rzon scinet 4096 Oct 11 00:17 ..
-rw-rw-r-- 1 rzon scinet 6251 Oct 11 10:07 slide1.pdf
-rw-rw-r-- 1 rzon ccstaff 8245 Oct 11 10:08 slide2.pdf

This is a long listing (-l) of the current directory (.) showing all (-a) files
and directories (even hidden ones).

5

Understanding the output of ls -al
$ ls -al .
total 24
drwxrwxr-x 2 rzon scinet 4096 Oct 11 00:17 .
drwxrwxr-x 4 rzon scinet 4096 Oct 11 00:17 ..
-rw-rw-r-- 1 rzon scinet 6251 Oct 11 10:07 slide1.pdf
-rw-rw-r-- 1 rzon ccstaff 8245 Oct 11 10:08 slide2.pdf

This is a table with one row per file or directory with the following fields:

1 Cryptic-looking permission strings that will be explained soon;

2 A number showing howmany places in the file system link to it;

3 The owner of the file or directory;

4 The group membership of the file or directory;

5 The size of a file;

6 Its date of last modification;

7 Its name.6

drwxrwxrwx (i.e. file permissions)

$ ls -al .
total 24
drwxrwxr-x 2 rzon scinet 4096 Oct 11 00:17 .
drwxrwxr-x 4 rzon scinet 4096 Oct 11 00:17 ..
-rw-rw-r-- 1 rzon scinet 6251 Oct 11 10:07 slide1.pdf
-rw-rw-r-- 1 rzon ccstaff 8245 Oct 11 10:08 slide2.pdf

There are 10 characters in the first column that represent the permissions
set for this file.

The first character is d is it’s a directory, l if it’s a link, otherwise -.

The next three are the permission for the user, i.e., the owner.
They can be rwx, for read, write, and execute permission.
If a permission is not “set”, the character at its position is -.

The following three are the permissions for members of the group to
which the file belongs.

The final three are the permissions for others.
7

drwxrwxrwx (i.e. file permissions)

$ ls -al .
total 24
drwxrwxr-x 2 rzon scinet 4096 Oct 11 00:17 .
drwxrwxr-x 4 rzon scinet 4096 Oct 11 00:17 ..
-rw-rw-r-- 1 rzon scinet 6251 Oct 11 10:07 slide1.pdf
-rw-rw-r-- 1 rzon ccstaff 8245 Oct 11 10:08 slide2.pdf

Understand what different users are allowed to do with these files.

. and .. are directories (in fact, the current directory and its parent).
They can be written to, read from, and executed by the user, or
anyone in the scinet group. Others can only read and execute.
slide1.pdf is not a directory, and cannot be executed, but can be
written to and read from by rzon andmembers of the scinet group,
and read by others.
Similar for slide2.pdf, but writing is restricted to members of the
ccstaff group.

8

Let's try another example
$ ls -l /
drwxr-xr-x 4 root root 0 Oct 11 00:51 cvmfs/
drwxr-xr-x 18 root root 3200 Oct 6 20:00 dev/
drwxr-xr-x 93 root root 4340 Oct 4 18:20 etc/
drwxrwxrwx 1 root root 14 Oct 4 18:11 home/
lrwxrwxrwx 1 root root 7 Oct 4 18:09 lib -> usr/lib/
drwxr-xr-x 2 root root 40 Apr 11 2018 media/
drwxr-xr-x 2 root root 40 Apr 11 2018 mnt/
drwxr-xr-x 10 root root 220 Oct 4 18:11 opt/
dr-xr-xr-x 821 root root 0 Oct 4 18:08 proc/
drwxrwxrwx 1 root root 17 Oct 4 18:11 project/
dr-xr-x--- 3 root root 260 Oct 7 14:39 root/
drwxr-xr-x 23 root root 1060 Oct 4 18:20 run/
lrwxrwxrwx 1 root root 8 Oct 4 18:09 sbin -> usr/sbin/
drwxrwxrwx 1 root root 17 Oct 4 18:11 scratch/
drwxr-xr-x 2 root root 40 Apr 11 2018 srv/
dr-xr-xr-x 13 root root 0 Oct 4 18:11 sys/
drwxrwxrwt 516 root root 26100 Oct 11 00:55 tmp/
drwxr-xr-x 14 root root 300 Oct 4 18:09 usr/
drwxr-xr-x 21 root root 500 Oct 4 18:11 var/

Who’s this “root” person?

9

Who's this ``root''?

root is the all-powerful administrative account.

That account owns all of the operating system files.

Other users can access these files and directories because of the
permissions set.

Access to the account is controlled though the sudo command.

On a shared system, you will never have access to the root account
or the sudo command.
(in fact, many of the Alliance staff cannot either).

10

Controlling Ownership and
Permissions

11

How do files get their ownership?
When a user creates a file:

Its owner is that user.

Its permissions are those set by the umask.

Its group is the user’s primary group

or…

the group of the directory containing the file,
if its set group id a.k.a. setGID is set.
(sometimes called the “sticky bit”, but that is technically incorrect.)

Try this

$ echo 'echo hello world!' > newfile.sh
$ ls -l newfile.sh
-rw-r--r-- 1 rzon scinet 18 Oct 11 10:26 newfile.sh
$ umask -S
u=rwx,g=rx,o=rx

12

Changing Permissions with chmod
$ echo 'echo hello world!' > newfile.sh
$ ls -l newfile.sh
-rw-r--r-- 1 rzon scinet 18 Oct 11 10:26 newfile
$ umask -S
u=rwx,g=rx,o=rx

This file cannot be executed despite the umask
(umask is a restriction not a prescription):

$./newfile.sh
bash: ./newfile.sh: Permission denied

With chmod +x we can change this:

$ chmod +x newfile.sh
$ ls -l newfile.sh
-rwxr-xr-x 1 rzon scinet 18 Oct 11 10:26 newfile
$./newfile
hello world!

Note that my umask caused everyone to get execution permissions.13

More specific chmod commands

Add permissions (with umask):

$ chmod +r newfile.sh
$ chmod +w newfile.sh
$ chmod +rxw newfile.sh

Adding permissions for owner

$ chmod u+r newfile.sh
$ chmod u+w newfile.sh
$ chmod u+rxw newfile.sh

Adding permissions for group

$ chmod g+r newfile.sh

Adding permissions for other

$ chmod o+r newfile.sh

Removing permissions (with umask):

$ chmod -r newfile.sh
$ chmod -w newfile.sh
$ chmod -rxw newfile.sh

Removing permissions for owner

$ chmod u-r newfile.sh
$ chmod u-w newfile.sh
$ chmod u-rxw newfile.sh

Removing permissions for group

$ chmod g-r newfile.sh

Removing permissions for other

$ chmod o-r newfile.sh

14

Numeric options for chmod
Each character in the permission string is on or off, so it’s a bit.

The three characters for rwx can be seen as a 3-bit number, where

0 -> no permissions
1 -> r
2 -> w
3 -> rw
4 -> x
5 -> rx
6 -> wx
7 -> rwx

Play around and see the net effect

$ chmod 755 FILENAME
$ chmod 655 FILENAME
$ chmod 777 FILENAME

The umask can also be given in this numerical
format.

$ umask 0027
$ echo "Hello" > a.txt
$ umask 0077
$ echo "World" > b.txt
$ ls -l a.txt b.txt
-rw-r-----. 1 rzon scinet 6 Oct 11 08:35 a.txt
-rw-------. 1 rzon scinet 6 Oct 11 08:35 b.txt15

Changing group ownership with chgrp

Selective sharing:

$ chgrp GROUP NAME

where NAME is the name of a file or directory
and GROUP is the name of a group of which you are part.

Afterwards, the group permissions of NAME are applied as
pertaining to members of GROUP.

Whole-sale sharing:

$ chgrp -R GROUP DIR

This applies group membership recursively to all files in DIR.

However, this does not apply to files created afterwards in that
directory.

16

Future sharing

$ chgrp GROUP DIR
$ chmod g+s DIR

This sets the
setGUID bit.

Newly created
content in DIR now
inherits the group
membership.

Try it!

$ mkdir shrdir
$ chgrp ccstaff shrdir
$ ls -ld shrdir
drwxr-x--- 2 rzon ccstaff 4096 Oct 11 08:52 shrdir
$ echo "hi" > shrdir/file1
$ chmod g+s shrdir
$ ls -ld shrdir
drwxr-s--- 2 rzon ccstaff 4096 Oct 11 08:52 shrdir
$ echo "there" > shrdir/file2
$ ls -l d
-rw-------. 1 rzon scinet 3 Oct 11 08:58 file1
-rw-------. 1 rzon ccstaff 6 Oct 11 08:58 file2

17

Permissions down a directory tree
It is not enough to give file access to a user or group.

Access must also be given to allow that user or group to descend down
into the parent directory of that file, and its parent, and so on.

The “descending into” bit for directories is the “executing” bit for files.

Without execution permission on a directory, there is no access to files or
subdirectories of that directory.

Example

$ mkdir newdir
$ echo "hello" > newdir/world
$ ls newdir
world
$ cat newdir/world
hello

$ chmod -x newdir
$ ls newdir
world

$ cat newdir/world
cat: newdir/world: Permission denied

The issue is not the permissions of world, but of newdir!

18

Sharing with other users

What if you need to share with users outside your group, or even
with selected users in your group?

The standard “user, group, other” Linux permissions do not suffice
for that.

You need to use Access Control Lists.

19

Access Control Lists

ACL are traditional Windows file permissions that can be overlaid on
Linux files.

They allowmore granulated per-user access control.

The commands differ per file system:

For Lustre and local Linux file systems (Cedar,Graham,Béluga,Narval)

getfacl to see the ACL permissions of FILENAME
setfacl to set PERMISSIONS on FILENAME

For GPFS (Niagara,Mist)

mmgetacl to see the ACL permissions
mmputacl to alter them
mmdelacl to remove any previous added ACL

20

ACL Examples for Lustre file systems
$ setfacl -m u:jdoe:rx my_script.py

Gives user jdoe read and execute permissions to my_script.py.

$ setfacl -d -m u:jdoe:rwX /home/USER/projects/def-PI/shareddata

Sets default access rules to directory
/home/USER/projects/def-PI/shareddata, so any file or directory
created within it inherits the same ACL rule. Required for new data.
The X attribute above (compared to x) sets the execute permission
only when the item is already executable.

$ setfacl -R -m u:jdoe:rwX /home/USER/projects/def-PI/shareddata

Sets ACL to directory /home/USER/projects/def-PI/shareddata
and all its current content. So it is applicable only to existing data.

$ setfacl -bR /home/USER/projects/def-PI/shareddata

Removes the ACLs in the shareddata directory recursively.21

ACL Examples for GPFS file systems
mmputacl works slightly differently:

does not have a recursive option.
requires a permissions file, e.g.

user::rwxc
group::----
other::----
mask::rwxc
user:USER:rwxc
user:PI:rwxc #read and WRITE permissions to group PI
group:OTHERGROUP:r-xc #read-only for members of OTHERGROUP

Because of the lack of a recursive option, you need do down the tree, e.g.

$ mmputacl -i permissions.acl /project/g/group/owner
$ mmputacl -i permissions.acl /project/g/group/owner/dir1
$ mmputacl -i permissions.acl /project/g/group/owner/dir1/subdir2
$ mmputacl -d -i permissions.acl /project/g/group/owner/dir1/subdir2

In the last command, the -d means setting the default permissions for
new files in that directory.

22

Common Permission Pitfalls
and Security Risks

23

Overly permissive permissions

Anytime permissions don’t work, it is tempting to ‘just’ run chmod 777.

But this opens permissions completely to anyone, which is undesirable,
particularly on shared systems.

Anyone can now read, change, delete or add files and directories to
your account.

You might not even be able to log in anymore.

Be careful and diligent!

Do not give away any more permissions than is necessary.

24

Confusing chmod with chown or chgrp

chmod changes permissions of a file or directory.

chgrp changes group membership of a file or directory.

This changes to which group the permissions set by chmod apply.
It also changes towards which quota the file or directory counts.

chown would change the ownership of a file.

Only the root user can do this, or a user with sudo powers.
Not possible on any on the Alliance clusters.

25

Trying to set permissions on other's files

Sometimes, users try to change permissions or apply ACL to files
that they do not own.

That won’t work. Only the owner of the file can do this.

So if you need to gain access to files of a collaborator, or of a student,
you need to ask them to change the permissions.

Note

Files in project are, by default, in a group associated with an allocation.

On the General Purpose clusters (Cedar, Graham, Béluga, and Narval), by
default, files in $HOME and $SCRATCH are in a group with the user as the
only member. Thus, other research group member do not have access.

On the Large Parallel cluster Niagara, as well as on Mist, by default, files in
$HOME and $SCRATCH are in the group of your sponsor, and are
readable by others also in the research group of that sponsor.

26

Permissions do not work along directory tree

When you open permissions at a particular sub-level (chmod or
ACL), but overlook the levels above, which are oftentimes owned by
the PI, the net result is that the permissions still don’t work.

Don’t overreact in the worst possible way, and run chmod -R 777.

Set the x permission of all parent directories, or, if owned by
someone else, ask them to set that permission.

27

Setting permissions on .ssh

Giving bulk +r permission to $HOME will expose contents of
$HOME/.ssh

This is potentially very dangerous as it may contain private ssh keys.

It can also prevent you from using ssh

Resist the urge to given bulk permissions!

28

Detecting and Fixing Permission Down a Tree

Users may run the command below to find files/directories with
permissions 777 (rwxrwxrwx)

$ find -perm -2 -not -type l

(search and show, world-writable files under current directory)

Recursive ways to use chmod, e.g.

$ chmod -R o-rwx directory_name

Recursive ways to use chgrp, e.g.

$ chgrp -R ccstaff directory_name

29

References

30

References

https://docs.alliancecan.ca

https://docs.alliancecan.ca/wiki/Sharing_data

https://docs.scinet.utoronto.ca/index.php/Data_Management
(Niagara/GPFS specific)

31

https://docs.alliancecan.ca
https://docs.alliancecan.ca/wiki/Sharing_data
https://docs.scinet.utoronto.ca/index.php/Data_Management

	Understanding Linux Permissions
	Controlling Ownership and Permissions
	Common Permission Pitfalls and Security Risks
	References

