
Neural network programming:
convolutional neural networks

Erik Spence

SciNet HPC Consortium

4 May 2023

Erik Spence (SciNet HPC Consortium) Convolutional neural networks 4 May 2023 1 / 31

Today’s code and slides

You can get the slides and code for today’s class at the SciNet Education web page.

https://scinet.courses/1271

Click on the link for the class, and look under ”Lectures”, click on ”CNNs”.

The best contact address is courses@scinet.utoronto.ca.

Erik Spence (SciNet HPC Consortium) Convolutional neural networks 4 May 2023 2 / 31

http://www.scinethpc.ca
https://scinet.courses/1271

Today’s class

This class will cover the following topics:

• Convolutional neural networks

• Feature maps

• Pooling layers

• The latest (and best) versions of our MNIST neural network.

Please ask questions if something isn’t clear.

Erik Spence (SciNet HPC Consortium) Convolutional neural networks 4 May 2023 3 / 31

http://www.scinethpc.ca

A review of last class

Our story so far:

• We’ve built a neural network, using Keras, consisting of an input layer, a hidden layer,
and an output layer, to classify the MNIST data:

• We used the tanh function as the activation for the hidden layer.
• We used the softmax function as the activation for the output layer.

• We used cross entropy as the cost function, and Stochastic Gradient Descent as the
optimization algorithm.

• We trained on the full data set, and achieved an accuracy of 93% on the test data.

We can do better, but it requires a different approach.

Erik Spence (SciNet HPC Consortium) Convolutional neural networks 4 May 2023 4 / 31

http://www.scinethpc.ca

What next?

What we’ve done so far is pretty good, but it’s not going to scale well.

• These are small images, and only black-and-white.

• Imagine we had a more-typical image size (200 x 200) and 3 colours? Now we’re up to
120,000 input parameters.

• We need an approach that is more efficient.

• A good place to start would be an approach that doesn’t throw away all of the spatial
information.

• The data is 28 x 28, not 1 x 784.

• We should redesign our network to account for the spatial information. How do we do
that?

• The first step called a Convolutional Layer. This is the bread-and-butter of all neural
network image analysis.

Erik Spence (SciNet HPC Consortium) Convolutional neural networks 4 May 2023 5 / 31

http://www.scinethpc.ca

Convolutional layers: feature maps

Create a set of neurons that, instead of using all of the data as input, only takes input from a
small area of the image. This set of neurons is called a ”feature map”.

input layer

feature map

Erik Spence (SciNet HPC Consortium) Convolutional neural networks 4 May 2023 6 / 31

http://www.scinethpc.ca

Feature maps

Some notes about feature maps.

• Notice that the feature map is smaller (24 x 24) than the input layer (28 x 28).

• The size of the feature map is partially set by the ’stride’, meaning the number of pixels
we shift to use as the input to the next neuron. In this case I’ve used a stride of 1.

• The weights and biases are shared by all the neurons in the feature map.

• Why? The goal is to train the feature map to recognize a single feature in the input,
regardless of its location in the image.

• Consequently, it makes no sense to have a single feature map as the first hidden layer.
Rather, multiple feature maps are used as the first layer.

• Feature maps are also called ”filters” and ”kernels”.

Erik Spence (SciNet HPC Consortium) Convolutional neural networks 4 May 2023 7 / 31

http://www.scinethpc.ca

Convolutional layers, continued more

The first hidden layer, a ”convolutional layer”, consists of multiple feature maps. The same
inputs are fed to the neurons in different feature maps.

input layer

first hidden layer

Erik Spence (SciNet HPC Consortium) Convolutional neural networks 4 May 2023 8 / 31

http://www.scinethpc.ca

Pooling layers

Each feature map is often followed by a ”pooling layer”.

input layer
feature map

pooling layer

In this case, 2 x 2 feature map neurons are mapped to a single pooling layer neuron.

Erik Spence (SciNet HPC Consortium) Convolutional neural networks 4 May 2023 9 / 31

http://www.scinethpc.ca

Pooling layers, continued

Some notes about pooling layers.

• The purpose of a pooling layer is to reduce the size of the data, and thus the number of
free parameters in the network.

• The reduction in data also helps with over-fitting.

• Rather than use one of the activation functions we’ve already discussed, pooling layers
use other functions.

• These functions do not have free parameters in them which need to be fit. They are
merely functions which operate on the input.

• The most common function used is ’max’, simply taking the maximum input value.

• Other functions are sometimes used, average pooling, L2-norm pooling.

Erik Spence (SciNet HPC Consortium) Convolutional neural networks 4 May 2023 10 / 31

http://www.scinethpc.ca

2D data formatting

In [1]: from tensorflow.keras.datasets import mnist

In [2]: import tensorflow.keras.utils as ku

In [2]:

In [2]: (x train, y train), (x test, y test) =

...: mnist.load data()

In [3]:

In [3]: x train.shape

Out[3]: (60000, 28, 28)

In [4]:

2D images are actually 3D, due to colours. The
third dimension (the ”channels”) shows up in the
dimension given by the ”image data format”
function.

In [4]: import tensorflow.keras.backend as K

In [5]: K.image data format()

Out[5]: ’channels last’

In [6]:

In [6]: x train = x train.reshape(60000,28,28,1)

In [7]: x test = x test.reshape(10000,28,28,1)

In [8]:

In [8]: x train.shape

Out[8]: (60000, 28, 28, 1)

In [9]:

In [9]: y train = ku.to categorical(y train, 10)

In [10]: y test = ku.to categorical(y test, 10)

In [11]:

Erik Spence (SciNet HPC Consortium) Convolutional neural networks 4 May 2023 11 / 31

http://www.scinethpc.ca

Our network, latest version

input layer

convolutional layer
max pooling

fully-connected

output

Erik Spence (SciNet HPC Consortium) Convolutional neural networks 4 May 2023 12 / 31

http://www.scinethpc.ca

Our network, latest version

input layer

convolutional layer
max pooling

fully-connected

output

Erik Spence (SciNet HPC Consortium) Convolutional neural networks 4 May 2023 13 / 31

http://www.scinethpc.ca

Our network revisited again

model4.py

import tensorflow.keras.models as km

import tensorflow.keras.layers as kl

def get model(numfm, numnodes):

model = km.Sequential()

model.add(kl.Conv2D(numfm, kernel size = (5, 5),

input shape = (28, 28, 1), activation = "relu"))

model.add(kl.MaxPooling2D(pool size = (2, 2),

strides = (2, 2)))

model.add(kl.Flatten())

model.add(kl.Dense(numnodes, activation = "tanh"))

model.add(kl.Dense(10, activation = "softmax"))

return model

In [11]:

In [11]: import model4 as m4

In [12]:

In [12]: model = m4.get model(20, 100)

In [13]:

The ”Flatten” layer converts the 2D
output to 1D, so that the
fully-connected layer can handle it.

Erik Spence (SciNet HPC Consortium) Convolutional neural networks 4 May 2023 14 / 31

http://www.scinethpc.ca

Our network revisited again, continued

In [13]: model.summary()

Layer (type) Output Shape Param #

===

conv2d 1 (Conv2D) (None, 24, 24, 20) 520

max pooling2d 1 (MaxPooling2 (None, 12, 12, 20) 0

flatten 1 (Flatten) (None, 2880) 0

dense 1 (Dense) (None, 100) 288100

dense 2 (Dense) (None, 10) 1010

===

Total params: 289,630

Trainable params: 289,630

Non-trainable params: 0

Erik Spence (SciNet HPC Consortium) Convolutional neural networks 4 May 2023 15 / 31

http://www.scinethpc.ca

Our network revisited again, more

In [14]:

In [14]: model.compile(loss = "categorical crossentropy", optimizer = "sgd",

...: metrics = [’accuracy’])

In [15]:

In [15]: fit = model.fit(x train, y train, epochs = 30, batch size = 128, verbose = 2)

Epoch 1/30

25s - loss: 0.4992 - acc: 0.8638

Epoch 2/30

25s - loss: 0.1973 - acc: 0.9466
.
.
.

Epoch 30/30

24s - loss: 0.0321 - acc: 0.9911

In [16]:

Erik Spence (SciNet HPC Consortium) Convolutional neural networks 4 May 2023 16 / 31

http://www.scinethpc.ca

Our network revisited again, some more

Now check against the test data.

98.35%! Only 165 / 10000 wrong!

Not bad!

You can improve this even more by
adding another convolutional
layer-max pooling layer after the first
pair.

In [16]:

In [16]: score = model.evaluate(x test, y test)

In [17]:

In [17]: score

Out[17]: [0.053592409740015862, 0.98350000000000004]

In [18]:

Erik Spence (SciNet HPC Consortium) Convolutional neural networks 4 May 2023 17 / 31

http://www.scinethpc.ca

Notes on Convolutional Networks

The previous network is called a Convolutional Neural Network (CNN), and is quite common
in image analysis.

• Often more than a single convolutional layer-pooling layer combination will be used.

• This will lead to improved performance, in this case.

• In practice people come up with all manner of combinations of convolutional, pooling and
fully-connected layers in their networks.

• Trial-and-error is a good starting point. Again, hyperparameter optimization techniques
should be considered. Reviewing the literature, you will find themes, but also much art.

Erik Spence (SciNet HPC Consortium) Convolutional neural networks 4 May 2023 18 / 31

http://www.scinethpc.ca

Our latest network, version 2

input layer

convolutional layer
max pooling

convolutional
layer

max pooling

fully-connected

output

Erik Spence (SciNet HPC Consortium) Convolutional neural networks 4 May 2023 19 / 31

http://www.scinethpc.ca

Our latest network, version 2, continued

model5.py

import tensorflow.keras.models as km, tensorflow.keras.layers as kl

def get model(numfm, numnodes, input shape = (28, 28, 1)):

model = km.Sequential()

model.add(kl.Conv2D(numfm, kernel size = (5, 5), input shape = input shape, activation = "relu"))

model.add(kl.MaxPooling2D(pool size = (2, 2), strides = (2, 2)))

model.add(kl.Conv2D(2 * numfm, kernel size = (3, 3), activation = "relu"))

model.add(kl.MaxPooling2D(pool size = (2, 2), strides = (2, 2)))

model.add(kl.Flatten())

model.add(kl.Dense(numnodes, activation = "tanh"))

model.add(kl.Dense(10, activation = "softmax"))

return model

Erik Spence (SciNet HPC Consortium) Convolutional neural networks 4 May 2023 20 / 31

http://www.scinethpc.ca

Our latest network, version 2, summary

In [18]: import model5 as m5

In [19]: model = m5.get model(20, 100)

In [20]:

In [20]: model.summary()

Layer (type) Output Shape Param #

===

conv2d 1 (Conv2D) (None, 24, 24, 20) 520

max pooling2d 1 (MaxPooling2 (None, 12, 12, 20) 0

conv2d 2 (Conv2D) (None, 10, 10, 40) 7240

max pooling2d 2 (MaxPooling2 (None, 5, 5, 40) 0

flatten 1 (Flatten) (None, 1000) 0

dense 1 (Dense) (None, 100) 100100

dense 2 (Dense) (None, 10) 1010

===

Total params: 108,870

Trainable params: 108,870

Non-trainable params: 0

Erik Spence (SciNet HPC Consortium) Convolutional neural networks 4 May 2023 21 / 31

http://www.scinethpc.ca

Understanding successive Convolutional Layers

As you noticed, we previously had to change the input data to have dimension (28, 28, 1)
rather than (28, 28).

• All convolutional layers assume that its input has a ’channel’, which is a third dimension.

• For colour images the three colours of the image (RGB) are the three channels.

• The channel is usually put in the third dimension, though sometimes in the first.

• When the output of one convolutional layer is fed into another layer, the feature maps are
the channels.

• How are the channels read by the feature maps?

• If the filter size is, say (3 x 3), and there 20 channels, as in this example, then the number
of weights in a given feature map will be (3 x 3) x 20, plus 1 bias.

• Thus, the number of trainable parameters in the second convolutional layer is
(((3 x 3) x 20) + 1) x 40 = 7240.

Erik Spence (SciNet HPC Consortium) Convolutional neural networks 4 May 2023 22 / 31

http://www.scinethpc.ca

Our latest network, version 2, more

In [21]:

In [21]: model.compile(loss = "categorical crossentropy", optimizer = "sgd",

...: metrics = [’accuracy’])

In [22]:

In [22]: fit = model.fit(x train, y train, epochs = 100, batch size = 128, verbose = 2)

Epoch 1/100

33s - loss: 0.7378 - acc: 0.7966

Epoch 2/100

33s - loss: 0.2010 - acc: 0.9486
.
.
.

Epoch 99/100

33s - loss: 0.0028 - acc: 0.9996

Epoch 100/100

32s - loss: 0.0028 - acc: 0.9996

In [23]:

Erik Spence (SciNet HPC Consortium) Convolutional neural networks 4 May 2023 23 / 31

http://www.scinethpc.ca

Our latest network, version 2, even more

Now check against the test data.

99.1%! Only 88 / 10000 wrong! Not
bad!

In [23]:

In [23]: score = model.evaluate(x test, y test)

In [24]:

In [24]: score

Out[24]: [0.028576645734044722, 0.99119999999999997]

In [25]:

Erik Spence (SciNet HPC Consortium) Convolutional neural networks 4 May 2023 24 / 31

http://www.scinethpc.ca

Using GPUs

An important note. Graphical Processing Units (GPUs) are particularly good at running
NN-training calculations.

data size CPU only CPU-GPU
epoch time total time epoch time total time

50000 41 s 21 min 4 s 4 s 2 min 43s
250000 198 s 100 min 26 s 15 min

These numbers are for the previous network. These were run on a Power 8 CPU, and a P100
GPU.

Multi-GPU functionality is available in Keras running on TensorFlow, though it can be a bit of
work to set up.

Erik Spence (SciNet HPC Consortium) Convolutional neural networks 4 May 2023 25 / 31

http://www.scinethpc.ca

Our original network using Keras, different syntax

model1.py

import tensorflow.keras.models as km

import tensorflow.keras.layers as kl

def get model(numnodes):

model = km.Sequential()

model.add(kl.Dense(numnodes,

input dim = 784, , name = ’hidden’,

activation = ’sigmoid’))

model.add(kl.Dense(10, name = ’output’,

activation = ’sigmoid’))

return model

Keras has two network-building syntaxes.

model1 v2.py

import tensorflow.keras.models as km

import tensorflow.keras.layers as kl

def get model(numnodes):

input image = kl.Input(shape = (784,),

name = ’input’)

x = kl.Dense(numnodes, name = ’hidden’,

activation = ’sigmoid’)(input image)

x = kl.Dense(10, name = ’output’,

activation = ’sigmoid’)(x)

model = km.Model(inputs = input image, outputs = x)

return model

Erik Spence (SciNet HPC Consortium) Convolutional neural networks 4 May 2023 26 / 31

http://www.scinethpc.ca

Keras’ functional syntax

The second syntax is known as the ’functional’ syntax. Why would such a thing be available?

• The original syntax, using model = km.Sequential(), works fine assuming you have a
single input, a single output, and all the layers lay in a sequence.

• But what do you do if you have multiple inputs or outputs?

• In a later class, we’ll do an example of a network which takes two inputs: input data, and
a requested number. The sequential networks can’t handle this sort of input without
combining the input together at the input stage, which may not make sense.

• The functional syntax allows you to create networks which have multiple inputs and
outputs.

• It also gives you the ability to combine the output of layers within the network.

• Options for combining layer outputs include concatenating, multipling/dividing,
adding/subtracting, etc.

Erik Spence (SciNet HPC Consortium) Convolutional neural networks 4 May 2023 27 / 31

http://www.scinethpc.ca

Keras’ functional syntax

input 1

input 2

output 1

output 2

Erik Spence (SciNet HPC Consortium) Convolutional neural networks 4 May 2023 28 / 31

http://www.scinethpc.ca

Training with multiple outputs

As you might imagine, if you have multiple outputs the training of your network is going to get
complicated. There are several things that must be done to train such networks.

• The first is to specify multiple loss functions, one for each output. This is done by putting
a list of loss functions into your compile command (loss = [’mean squared error’,
’categorical crossentropy’])

• You can also scale how much emphasis to put on one output versus another, using the
’loss weights’ argument to the compile function (loss weights = [1.0, 0.2]).

• You can also define your own custom loss functions. These take two arguments (y true
and y pred), and return the loss value.

There is lots of flexibility available for setting up the loss functions. We will use this
functionality later in the course.

Erik Spence (SciNet HPC Consortium) Convolutional neural networks 4 May 2023 29 / 31

http://www.scinethpc.ca

Deep Learning

What is Deep Learning?

• Quite simply: a neural network with many hidden layers.

• Our last network probably qualified as Deep Learning, though barely.

• Up until the mid-2000s neural network research was dominated by ”shallow” networks,
networks with only 1 or 2 hidden layers.

• The breakthrough came in discovering that it was practical to train networks with a larger
number of hidden layers.

• But it only became practical with the advent of sufficient computing power (GPUs) and
easily-accessible huge data sets.

• State-of-the-art networks today can contain dozens of layers.

Most of the rest of this course will involve networks which qualify as Deep Learning.

Erik Spence (SciNet HPC Consortium) Convolutional neural networks 4 May 2023 30 / 31

http://www.scinethpc.ca

Linky goodness

Convolutional neural networks:

• http://www.cs.utoronto.ca/~fidler/teaching/2015/CSC2523.html

• https://cs231n.github.io/convolutional-networks
• https://medium.com/technologymadeeasy/the-best-explanation-of-convolutional-neural-networks-on-the-internet-fbb8b1ad5df8

Erik Spence (SciNet HPC Consortium) Convolutional neural networks 4 May 2023 31 / 31

http://www.scinethpc.ca
http://www.cs.utoronto.ca/~fidler/teaching/2015/CSC2523.html
https://cs231n.github.io/convolutional-networks
https://medium.com/technologymadeeasy/the-best-explanation-of-convolutional-neural-networks-on-the-internet-fbb8b1ad5df8

	Convolutional networks
	Feature maps
	Pooling layers
	Convolutional data formatting

	Our latest network
	Convolutional Neural Networks
	Version 2
	Successive convolutional layers

	Keras functional syntax

