
Chemical Biophysics Symposium:
introduction to neural networks

Erik Spence

SciNet HPC Consortium

28 April 2023

Erik Spence (SciNet HPC Consortium) Neural networks 28 April 2023 1 / 84



Today’s slides and code

Today’s slides and code can be found here. Go to the ”Chemical Biophysics Symposium”
page, under Lectures, ”slides”.

https://scinet.courses/1289

Erik Spence (SciNet HPC Consortium) Neural networks 28 April 2023 2 / 84

https://scinet.courses/1289


Who am I?

My name is Erik Spence.

I am an Applications Analyst at SciNet (https://www.scinethpc.ca).

SciNet is a High-Performance-Computing (HPC) consortium, one of six in Canada, run by
the University of Toronto.

These consortia run massively parallel computers, with tens of thousands of cores, to
perform computations that couldn’t be done otherwise.

My job at SciNet is to help users get their codes to run on these machines.

We also educate users on how to write fast, efficient code.

Today I’m going to give an introduction to programming and using neural networks.

Erik Spence (SciNet HPC Consortium) Neural networks 28 April 2023 3 / 84

https://www.scinethpc.ca


Neural networks are commonplace

Neural networks are particularly good at detecting patterns, and for certain problems perform
better than any other known class of algorithm. Neural networks are used for

Image recognition, object detection (pneumonia, cancer).

Medical diagnosis.

Natural language processing (voice recognition).

Novelty detection (detection of outliers).

Next-word predictions.

Text sentiment analysis.

System control (self-driving cars).

Neural networks are finding their way into everything.

Erik Spence (SciNet HPC Consortium) Neural networks 28 April 2023 4 / 84



Neural networks, motivation

Consider the problem of hand-written digit recognition:

How would you go about writing a program which can tell you what digits are displayed?

All the algorithms you might use to describe what a given number ”looks like” are
extremely difficult to implement in code. Where do you even start?

And yet humans can easily tell what these digits are.

Neural networks are based on a ”biologically inspired” approach to solving such
classification problems.

This is one of the classic problems which have been solved using neural networks.

Erik Spence (SciNet HPC Consortium) Neural networks 28 April 2023 5 / 84



Neural networks, the approach

Rather than focus on the details of what individual numbers look like, we will instead ignore
those details altogether. We will use a completely different approach:

Break the data set of numbers into two or three groups: training, testing, and optionally
validation.

As with other supervised machine-learning algorithms, feed the training data to the neural
network and train it to recognize one number from another.

Rather than focus on details of the numbers, let the neural network figure out the details
for itself.

This is the goal of this workshop.

Erik Spence (SciNet HPC Consortium) Neural networks 28 April 2023 6 / 84



Neurons

Neural networks are built upon ”neurons”. This is just a fancy way of saying a ”function that
takes multiple inputs and returns a single output”.

neuron

x1

x2

x3

y

The function which the neuron implements is up to the programmer, but it must contain free
parameters so that the network can be trained. These functions usually take the form

f(x1, x2, x3) = f

(
3∑

i=1

wixi + b

)
= f (w · x + b)

Where w are the ’weights’ and b is the ’bias’. These are the trainable parameters.

Erik Spence (SciNet HPC Consortium) Neural networks 28 April 2023 7 / 84



Neurons, continued

What function should we use for f? One which is usually used, at least when initially teaching
about neural networks, is the ”sigmoid function” (also called the ”logistic function”).

σ(z) =
1

1 + e−z

And so our neuron function becomes

f(x1, x2, x3) = f (w · x + b) =
1

1 + e−(w·x+b)

Where again w are the ’weights’ and b is the ’bias’.

Erik Spence (SciNet HPC Consortium) Neural networks 28 April 2023 8 / 84



Why the sigmoid function?

8 6 4 2 0 2 4 6 8

z

0.0

0.2

0.4

0.6

0.8

1.0

sigmoid

Because it ranges from 0 to 1 smoothly.
Erik Spence (SciNet HPC Consortium) Neural networks 28 April 2023 9 / 84



Neural networks
Suppose we combine many neurons together, into a proper network, consisting of ”layers”.

output

output

output

inputs

hidden layersinput layer output layer

Erik Spence (SciNet HPC Consortium) Neural networks 28 April 2023 10 / 84



Some notes about neural networks

Some details about the graphic on the previous slide:

The input neurons do not contain any functions. They merely represent the input data
being fed into the network.

Each neuron in the ’hidden’ layers and the output layer all contain functions with their
own free parameters, w and b.

Each neuron outputs a single value. This output is passed to all of the neurons in the
subsequent layer. This type of layer is known as a ”fully-connected”, or ”dense”, layer.

The number of free parameters in the neurons in any given layer depends upon the
number of neurons in the previous layer.

The output from the output layer is aggregated into the desired form.

Erik Spence (SciNet HPC Consortium) Neural networks 28 April 2023 11 / 84



Seriously?

You might legitimately wonder why on Earth we would think this would lead anywhere.

As it happens, this topology is similar to some simple biological neural networks.

Each layer takes the output of the previous layer as its input.

Each layer makes ”decisions” about the information that it receives.

In this way the later layers are able to make more complex and abstract decisions than the
earlier layers.

A many-layered network can potentially make sophisticated decisions.

However, there are subtleties in training such a network.

Erik Spence (SciNet HPC Consortium) Neural networks 28 April 2023 12 / 84



Training our neural network

How do we optimize the weights and biases? We need to define some sort of ”cost function”
(sometimes called ”loss” or ”objective” function):

C =
1

2

∑
i

(f(xi) − yi)
2

where f is our neural network, and yi are the correct answers, based on the data, associated
with each xi. Here we are using the ”quadratic” cost function.

We then use an optimization algorithm to search for the values of w and b which generate the
minimum of C, given the data x and y. We will use the Gradient Descent algorithm to find
this minimum.

Erik Spence (SciNet HPC Consortium) Neural networks 28 April 2023 13 / 84



Gradient descent

Suppose the function we want to minimize has
only one parameter.

C = w2

Suppose we’ve guessed that the minimum of C is
wj , and we wish to improve the guess. Gradient
descent says to move according to the formula:

wj+1 = wj − η
∂C

∂wj

where η is called the step size. We then repeat
until some stopping criterion is satisfied.

If we have multiple parameters, we step them all.
4 2 0 2 4

x

0

5

10

15

20

25

C

Erik Spence (SciNet HPC Consortium) Neural networks 28 April 2023 14 / 84



Training a neural network

How do we apply Gradient Descent to a neural network?

Suppose that we decide to try to use gradient descent to train the network from five
slides ago (slide 10).

Each of the neurons has its own set of free parameters, w and b. There are lots of free
parameters!

To update the parameters we need to calculate every ∂C
∂wi

and ∂C
∂b

for every neuron!

But how do we calculate those derivatives, especially for the parameters associated with
the neurons that are several layers away from the output?

Actually, as it happens, this is a solved problem. The algorithm is call Backpropagation, but
we won’t cover it today.

Erik Spence (SciNet HPC Consortium) Neural networks 28 April 2023 15 / 84



Handwritten digits

One of the classic data sets on which to test neural-network techniques is the MNIST data set.

A database of handwritten digits, compiled by NIST.

Contains 60000 training, and 10000 test examples.

The training digits were written by 250 different people; the test data by 250 different
people.

The digits have been size-normalized and centred.

Each image is grey scale, 28 x 28 pixels.

We can create a neural network to classify these digits.

Erik Spence (SciNet HPC Consortium) Neural networks 28 April 2023 16 / 84



Our network

How would we design a network to analyze this data?

Each image is 28 x 28 = 784 pixels. Let the input layer consist of 784 input nodes. Each
node will consist of the grey value for that pixel.

The output will consist of a one-hot-encoding of the networks analysis of the input data.
This means that, if the input image depicts a ’7’, the output vector should be
[0, 0, 0, 0, 0, 0, 0, 1, 0, 0].

Thus, let there be 10 output nodes, one for each possible digit.

To start, let’s just use a single hidden layer.

Fortunately, packages exist which make coding such a network quite easy.

Erik Spence (SciNet HPC Consortium) Neural networks 28 April 2023 17 / 84



Our neural network

output

output

inputs

hidden layer
(arbitrary)

input layer
(784 nodes)

output layer
(10 nodes)

Erik Spence (SciNet HPC Consortium) Neural networks 28 April 2023 18 / 84



Neural network frameworks

Now that we have a plan for our network, how are we going to code it? The standard way is
to use a neural network ’framework’. Why would you do that?

Coding your own networks from scratch can be a bit of work.

Neural network (NN) frameworks have been specifically designed to solve NN problems.

Python, of course, is not a high-performance language.

The NN frameworks which have been developed are compiled before being used, thus
being much faster than interpreted Python.

The NN frameworks are also designed to use GPUs, which make things significantly faster
than just using CPUs.

Standard NN frameworks include TensorFlow, Torch, MXNet, Caffe and many many
others.

We will use Keras on a TensorFlow backend.

Erik Spence (SciNet HPC Consortium) Neural networks 28 April 2023 19 / 84



Keras

We will use Keras on top of TensorFlow.

Keras is a NN framework, but it’s only the top-most level.

More accurately, it’s an API standard for creating neural networks.

Designed for fast development of networks.

The original version ran on top of a ’back end’, which by default is now TensorFlow, as
Keras is being absorbed into TensorFlow.

Historically it ran on top of many other backends also: Theano, CNTK, MXNet,
TypeScript, JavaScript, PlaidML, Scala, CoreML, and others.

Because it’s a proper framework, all of the NN goodies you need are already built into it.

Because the recommended way is to use Keras through TensorFlow, that is the way we
will be using it.

Erik Spence (SciNet HPC Consortium) Neural networks 28 April 2023 20 / 84



Getting the data

Let us implement our
neural network using Keras.
First let us get the MNIST
data.

The data can be
automatically
downloaded by Keras.

The data comes
pre-split into training
and testing data sets.

We one-hot-encode
the target data before
returning.

# get mnist.py

from tensorflow.keras.datasets import mnist

import tensorflow.keras.utils as ku

def get data():

(x train, y train), (x test, y test) = mnist.load data()

y train = ku.to categorical(y train, 10)

y test = ku.to categorical(y test, 10)

return x train, x test, y train, y test

In [1]: import get mnist

In [2]:

In [2]: x train, x test, y train, y test = get mnist.get data()

In [3]: x train.shape

Out[3]: (60000, 28, 28)

Erik Spence (SciNet HPC Consortium) Neural networks 28 April 2023 21 / 84



Reshaping the data

The data needs to be in a specific
format:

As mentioned, we want the data
to have dimension 784, rather
than 28 x 28.

If the input data is 2D, it must
have a ’depth’ added, to make it
3D, even if the depth is 1.

If the input data is 1D no depth
is needed.

In [4]:

In [4]: x train = x train.reshape(60000, 784)

In [5]: x test = x test.reshape(10000, 784)

In [6]:

In [6]: x test.shape

Out[6]: (10000, 784)

In [7]:

Erik Spence (SciNet HPC Consortium) Neural networks 28 April 2023 22 / 84



Our network using Keras

We implement our neural network using
Keras, with a single hidden layer.

A ”Sequential” model means the
layers are stacked on one another in a
linear fashion.

A ”Dense” (”fully-connected”) layer is
the layer we’ve already discussed.

Use ”input dim” in the first layer to
indicate the shape of the incoming
data.

The ”activation” is the output
function of the neuron.

# model1.py

import tensorflow.keras.models as km

import tensorflow.keras.layers as kl

def build model(numnodes):

model = km.Sequential()

model.add(kl.Dense(numnodes,

input dim = 784,

activation = ’sigmoid’))

model.add(kl.Dense(10,

activation = ’sigmoid’))

return model

Erik Spence (SciNet HPC Consortium) Neural networks 28 April 2023 23 / 84



Our network using Keras, continued

We implement our neural network using
Keras, with 30 neurons in the hidden layer.

We can use the summary function to look
at the details of the network.

In [7]:

In [7]: import model1

In [8]:

In [8]: model = model1.build model(30)

In [9]:

In [9]: model.summary()

Layer (type) Output Shape Param #

=============================================

dense 1 (Dense) (None, 30) 23550

dense 2 (Dense) (None, 10) 310

=============================================

Total params: 23,860

Trainable params: 23,860

Non-trainable params: 0

In [10]:

Erik Spence (SciNet HPC Consortium) Neural networks 28 April 2023 24 / 84



Our network using Keras, continued more

Now that the network is constructed, it must be compiled.

The loss function must be specified.

The optimizer indicates what minimization algorithm to use. Here we use Stochastic
Gradient Descent (SGD), which is a variation on regular Gradient Descent.

The ’metrics’ flag indicates what to print out during the training of the network.

The ’fit’ command is used to execute the training.

The number of epochs, and the batch size, are parameters which apply to Stochastic
Gradient Descent.

Erik Spence (SciNet HPC Consortium) Neural networks 28 April 2023 25 / 84



Our network using Keras, continued

In [10]:

In [10]: model.compile(loss = ’mean squared error’, optimizer = ’sgd’, metrics = [’accuracy’])

In [11]:

In [11]: fit = model.fit(x train, y train, epochs = 200, batch size = 128)

Epoch 1/200

469/469 [==============================] - 0s - loss: 0.1368 - acc: 0.1933

Epoch 2/200

469/469 [==============================] - 0s - loss: 0.0923 - acc: 0.3126
.
.
.

Epoch 199/200

469/469 [==============================] - 0s - loss: 0.0225 - acc: 0.8947

Epoch 200/200

469/469 [==============================] - 0s - loss: 0.0225 - acc: 0.8947

In [12]:

Erik Spence (SciNet HPC Consortium) Neural networks 28 April 2023 26 / 84



Plotting the training

The fit.history dictionary contains useful
information about the training.
Sometimes plotting can give you some
insight into the quality of the training,
and whether or not it’s finished.

In [12]:

In [12]: import matplotlib.pyplot as plt

In [13]: plt.plot(fit.history[’accuracy’])

In [14]: plt.xlabel(’Epoch’)

In [15]: plt.ylabel(’Accuracy’)

In [16]: 0 25 50 75 100 125 150 175 200
Epoch

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

Erik Spence (SciNet HPC Consortium) Neural networks 28 April 2023 27 / 84



Our network using Keras, continued even more

Now check against the test data.
88.5%!

This isn’t great. We can do
better.

In [16]:

In [16]: score = model.evaluate(x test, y test)

313/313 [=====================>........] - ETA: 0s

In [17]:

In [17]: score

[0.024616853955388068, 0.88519999999999999]

In [18]:

Erik Spence (SciNet HPC Consortium) Neural networks 28 April 2023 28 / 84



The next steps

We can do better. What might we do? There are a few simple approaches that might be
explored.

Change the activation function.

Change the cost function.

Change the optimization algorithm.

Change the way things are initialized.

Add regularization, to try to deal with over-fitting.

The most important technique, however:

Completely overhaul the network strategy.

This field is huge; we’ve barely scratched the surface.

Erik Spence (SciNet HPC Consortium) Neural networks 28 April 2023 29 / 84



Other activation functions: relu

Two commonly-used functions:

Rectifier (also called Rectifier Linear Units, or
RELUs):

f(z) = max(0, z).

Softplus:

f(z) = ln(1 + ez).

Good: doesn’t suffer from the
vanishing-gradient problem.

Bad: unbounded, could blow up.

Other variants: leaky RELU, and SELU (scaled
exponential). 4 3 2 1 0 1 2 3 4

z

0

1

2

3

4 Rectifier
Softplus

Erik Spence (SciNet HPC Consortium) Neural networks 28 April 2023 30 / 84



Other activation functions: tanh
Another commonly-used activation function is
tanh:

f(z) = tanh(z).

Good: stronger gradients than sigmoid,
faster learning rate, doesn’t suffer from the
vanishing-gradient problem.

Good: because the function is
anti-symmetric about zero. This also results
in faster learning, at least for deeper
networks.

4 3 2 1 0 1 2 3 4
z

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00 tanh

Erik Spence (SciNet HPC Consortium) Neural networks 28 April 2023 31 / 84



Other activation functions: softmax

One of the more-commonly used output-layer activation functions is the softmax function:

s(zj) =
ezj

N∑
k=1

ezk

,

where N is the number of output neurons. The advantage of this function is that it converts
the output to a probability.

This is the activation function that is always used on the output layer when doing classification.

Erik Spence (SciNet HPC Consortium) Neural networks 28 April 2023 32 / 84



Other cost functions: cross entropy

The most-commonly used cost function for
categorical output data is cross entropy:

C = −
1

n

n∑
i

[yi log(ai) + (1 − yi) log(1 − ai)]

The above equation is for 2 categories, but it
easily generalizes to more.

Good: the gradient of cross entropy is directly
proportional to the error; learning is faster than
with mean squared error.

Because 0 ≤ a ≤ 1, this is always used with
the softmax activation function as output.

y = 1 in the example on the right.

0.0 0.2 0.4 0.6 0.8 1.0
a

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

C

Mean Squared
Cross Entropy

Erik Spence (SciNet HPC Consortium) Neural networks 28 April 2023 33 / 84



Our Keras network, revisited

What’s our new strategy for our MNIST
neural network?

Change our hidden layer activation
function to tanh.

Change our output layer activation
function to softmax.

Use the cross-entropy cost function.

Use the Adam minimization algorithm.

Using regular gradient descent would also
probably work. Using the rectifier linear unit
activation function on the hidden layer is also
an option.

# model2.py

import tensorflow.keras.models as km

import tensorflow.keras.layers as kl

def build model(numnodes):

model = km.Sequential()

model.add(kl.Dense(numnodes,

input dim = 784,

activation = ’tanh’))

model.add(kl.Dense(10,

activation = ’softmax’))

return model

Erik Spence (SciNet HPC Consortium) Neural networks 28 April 2023 34 / 84



Our Keras network, revisited, continued
In [18]: import model2

In [19]:

In [19]: model = model2.build model(30)

In [20]:

In [20]: model.compile(loss = "categorical crossentropy", optimizer = "adam",

...: metrics = [’accuracy’])

In [21]:

In [21]: fit = model.fit(x train, y train, epochs = 100, batch size = 128, verbose = 2)

Epoch 1/100

469/469 [==============================] - 1s - loss: 0.0688 - acc: 0.4576

Epoch 2/100

469/469 [==============================] - 1s - loss: 0.3661 - acc: 0.7246
.
.
.

Epoch 100/100

469/469 [==============================] - 1s - loss: 0.0103 - acc: 0.9338

In [22]:

Erik Spence (SciNet HPC Consortium) Neural networks 28 April 2023 35 / 84



Our Keras network, revisited, continued more

Now check against the test data.

93%! Better!

In [22]:

In [22]: score = model.evaluate(x test, y test)

In [23]:

In [23]: score

Out[23]: [0.010993927612225524, 0.92949999999999999]

In [24]:

Erik Spence (SciNet HPC Consortium) Neural networks 28 April 2023 36 / 84



The next steps, an aside
There are alot of things we can tweak to make the network do better on the testing data
(number of layers, neurons, activation functions, etc.). How do we know what to do?

In many ways, implementing a network is an art.

Certain forms and functions and parameters are known to lead to certain types of
behaviour, and thus are used in certain situations.

Choosing the correct values of parameters can often seem like a matter of trial-and-error.

And choosing the correct activation functions, number of nodes, can also seem like
trial-and-error.

But there are more-sophisticated ways of finding the optimum parameter choices. We
won’t delve into this today.

Practice is often needed to know how to approach various types of problems. Consult your
colleagues, and the literature.

Erik Spence (SciNet HPC Consortium) Neural networks 28 April 2023 37 / 84



Other topics

This workshop is short. There is not time to cover every topic. Some topics you should look
into further, if you’re going to use NNs in your research:

preprocessing data: remove unnecessary degrees of freedom, scale and centre the data.

parameter initialization: how the weights and biases are initialized sometimes matters.

activation functions: there are several activation functions which are used in specific areas
of neural networks. Learn which ones are used in your field.

more cost functions: there are other cost functions which are used in specific applications.

training failures: the disappearing gradient problem, the exploding gradient problem.

But at this point we have covered enough of the very basics to get you started.

Erik Spence (SciNet HPC Consortium) Neural networks 28 April 2023 38 / 84



What next?

What we’ve done so far is pretty good, but it’s not going to scale well.

These are small images, and only black-and-white.

Imagine we had a more-typical image size (200 x 200) and 3 colours? Now we’re up to
120,000 input parameters.

We need an approach that is more efficient.

A good place to start would be an approach that doesn’t throw away all of the spatial
information.

The data is (28 x 28), not (1 x 784).

We should redesign our network to account for the spatial information. How do we do
that?

The first step called a Convolutional Layer. This is the bread-and-butter of all neural
network image analysis.

Erik Spence (SciNet HPC Consortium) Neural networks 28 April 2023 39 / 84



Convolutional layers: feature maps
Create a set of neurons that, instead of using all of the data as input, only takes input from a
small area of the image. This set of neurons is called a ”feature map”.

input layer

feature map

Erik Spence (SciNet HPC Consortium) Neural networks 28 April 2023 40 / 84



Feature maps

Some notes about feature maps.

Notice that the feature map is smaller (24 x 24) than the input layer (28 x 28).

The size of the feature map is partially set by the ’stride’, meaning the number of pixels
we shift to use as the input to the next neuron. In this case I’ve used a stride of 1.

The weights and biases are shared by all the neurons in the feature map.

Why? The goal is to train the feature map to recognize a single feature in the input,
regardless of its location in the image.

Consequently, it makes no sense to have a single feature map as the first hidden layer.
Rather, multiple feature maps are used as the first layer.

Feature maps are also called ”filters” and ”kernels”.

Erik Spence (SciNet HPC Consortium) Neural networks 28 April 2023 41 / 84



Convolutional layers, continued more
The first hidden layer, a ”convolutional layer”, consists of multiple feature maps. The same
inputs are fed to the neurons in different feature maps.

input layer

first hidden layer

Erik Spence (SciNet HPC Consortium) Neural networks 28 April 2023 42 / 84



Pooling layers

Each feature map is often followed by a ”pooling layer”.

input layer
feature map

pooling layer

In this case, 2 x 2 feature map neurons are mapped to a single pooling layer neuron.

Erik Spence (SciNet HPC Consortium) Neural networks 28 April 2023 43 / 84



Pooling layers, continued

Some notes about pooling layers.

The purpose of a pooling layer is to reduce the size of the data, and thus the number of
free parameters in the network.

The reduction in data also helps with over-fitting.

Rather than use one of the activation functions we’ve already discussed, pooling layers
use other functions.

These functions do not have free parameters (weights and biases) in them which need to
be fit. They are merely functions which operate on the input.

The most common function used is ’max’, simply taking the maximum input value.

Other functions are sometimes used, average pooling, L2-norm pooling.

Erik Spence (SciNet HPC Consortium) Neural networks 28 April 2023 44 / 84



Re-prepping the data

First let us gather the data
again, so that the data is once
again 28 x 28 pixels.

We also confirm that the
target data is
one-hot-encoded.

In [24]:

In [24]: x train, x test, y train, y test = get mnist.get data()

In [25]:

In [25]: x train.shape

Out[25]: (60000, 28, 28)

In [26]:

In [26]: y train.shape

Out[26]: (60000, 10)

In [27]:

Erik Spence (SciNet HPC Consortium) Neural networks 28 April 2023 45 / 84



2D data formatting

Generally, 2D images are actually
3D, to deal with colours. We need to
add this third dimension to the data,
since the Convolutional layers are
expecting it.

Where the third dimension (the
”channels”) shows up in the
dimensionality is given by the
”image data format” function, which
is part of keras.backend.

Having the channels at the end
seems to have become standard.

In [27]:

In [27]: import tensorflow.keras.backend as K

In [28]:

In [28]: K.image data format()

Out[28]: ’channels last’

In [29]:

In [29]: x train.shape

Out[29]: (60000, 28, 28)

In [30]:

In [30]: x train = x train.reshape(60000, 28, 28, 1)

In [31]: x test = x test.reshape(10000, 28, 28, 1)

In [32]:

In [32]: x train.shape

Out[32]: (60000, 28, 28, 1)

In [33]:

Erik Spence (SciNet HPC Consortium) Neural networks 28 April 2023 46 / 84



Our network, latest version

input layer

convolutional layer
max pooling

fully-connected

output

Erik Spence (SciNet HPC Consortium) Neural networks 28 April 2023 47 / 84



Our network, latest version

input layer

convolutional layer
max pooling

fully-connected

output

Erik Spence (SciNet HPC Consortium) Neural networks 28 April 2023 48 / 84



Our network revisited again
We specify the ’kernel’ of the
convolutional layer, as well as the
number of feature maps. A default
’stride’ of 1 is used.

We also specify the pooling layer’s
’pool size’, which is like the kernel
for the convolutional layer.

The ”Flatten” layer converts the 2D
output to 1D, so that the
fully-connected layer can handle it.

# model3.py

import tensorflow.keras.models as km

import tensorflow.keras.layers as kl

def build model(numfm, numnodes):

model = km.Sequential()

model.add(kl.Conv2D(numfm, kernel size = (5, 5),

input shape = (28, 28, 1),

activation = ’relu’))

model.add(kl.MaxPooling2D(pool size = (2, 2),

strides = (2, 2)))

model.add(kl.Flatten())

model.add(kl.Dense(numnodes, activation = ’tanh’))

model.add(kl.Dense(10, activation = ’softmax’))

return model

Erik Spence (SciNet HPC Consortium) Neural networks 28 April 2023 49 / 84



Our network revisited again, continued
In [33]: import model3

In [34]: model = model3.build model(20, 100)

In [35]: model.summary()

Layer (type) Output Shape Param #

=================================================================

conv2d 1 (Conv2D) (None, 24, 24, 20) 520

-----------------------------------------------------------------

max pooling2d 1 (MaxPooling2 (None, 12, 12, 20) 0

-----------------------------------------------------------------

flatten 1 (Flatten) (None, 2880) 0

-----------------------------------------------------------------

dense 1 (Dense) (None, 100) 288100

-----------------------------------------------------------------

dense 2 (Dense) (None, 10) 1010

=================================================================

Total params: 289,630

Trainable params: 289,630

Non-trainable params: 0

Erik Spence (SciNet HPC Consortium) Neural networks 28 April 2023 50 / 84



Our network revisited again, more

In [36]:

In [36]: model.compile(loss = "categorical crossentropy", optimizer = "sgd",

...: metrics = [’accuracy’])

In [37]:

In [37]: fit = model.fit(x train, y train, epochs = 30, batch size = 128, verbose = 2)

Epoch 1/30

25s - loss: 0.4992 - acc: 0.8638

Epoch 2/30

25s - loss: 0.1973 - acc: 0.9466
.
.
.

Epoch 30/30

24s - loss: 0.0321 - acc: 0.9911

In [38]:

Erik Spence (SciNet HPC Consortium) Neural networks 28 April 2023 51 / 84



Our network revisited again, some more

Now check against the test data.

98.35%! Only 165 / 10000 wrong!

Not bad!

You can improve this even more by
adding another convolutional
layer-max pooling layer after the first
pair.

In [38]:

In [38]: score = model.evaluate(x test, y test)

In [39]:

In [39]: score

Out[39]: [0.053592409740015862, 0.98350000000000004]

In [40]:

Erik Spence (SciNet HPC Consortium) Neural networks 28 April 2023 52 / 84



Notes on Convolutional Networks

The previous network is called a Convolutional Neural Network (CNN), and is quite common
in image analysis.

Often more than a single convolutional layer-pooling layer combination will be used.

This will lead to improved performance, in this case.

In practice people come up with all manner of combinations of convolutional, pooling and
fully-connected layers in their networks.

Trial-and-error is a good starting point. Again, hyperparameter optimization techniques
should be considered. Reviewing the literature, you will find themes, but also much art.

Erik Spence (SciNet HPC Consortium) Neural networks 28 April 2023 53 / 84



Our latest network, version 2

input layer

convolutional layer
max pooling

convolutional
layer

max pooling

fully-connected

output

Erik Spence (SciNet HPC Consortium) Neural networks 28 April 2023 54 / 84



Our network, version 2, continued
# model4.py

import tensorflow.keras.models as km, tensorflow.keras.layers as kl

def build model(numfm, numnodes):

model = km.Sequential()

model.add(kl.Conv2D(numfm, kernel size = (5, 5), input shape = (28, 28, 1),

activation = ’relu’))

model.add(kl.MaxPooling2D(pool size = (2, 2), strides = (2, 2)))

model.add(kl.Conv2D(2 * numfm, kernel size = (3, 3), activation = ’relu’))

model.add(kl.MaxPooling2D(pool size = (2, 2), strides = (2, 2)))

model.add(kl.Flatten())

model.add(kl.Dense(numnodes, activation = ’tanh’))

model.add(kl.Dense(10, activation = ’softmax’))

return model

Erik Spence (SciNet HPC Consortium) Neural networks 28 April 2023 55 / 84



Our latest network, version 2, summary

In [40]: import model4

In [41]: model = model4.build model(20, 100)

In [42]: model.summary()

-----------------------------------------------------------------

Layer (type) Output Shape Param #

=================================================================

conv2d 1 (Conv2D) (None, 24, 24, 20) 520

max pooling2d 1 (MaxPooling2 (None, 12, 12, 20) 0

conv2d 2 (Conv2D) (None, 10, 10, 40) 7240

max pooling2d 2 (MaxPooling2 (None, 5, 5, 40) 0

flatten 1 (Flatten) (None, 1000) 0

dense 1 (Dense) (None, 100) 100100

dense 2 (Dense) (None, 10) 1010

=================================================================

Total params: 108,870

Trainable params: 108,870

Non-trainable params: 0

Erik Spence (SciNet HPC Consortium) Neural networks 28 April 2023 56 / 84



Understanding successive Convolutional Layers

As you noticed, we previously had to change the input data to have dimension (28, 28, 1)
rather than (28, 28).

All convolutional layers assume that its input has a ’channel’, which is a third dimension.

For colour images the three colours of the image (RGB) are the three channels.

The channel is usually put in the third dimension, though sometimes in the first.

When the output of one convolutional layer is fed into another layer, the feature maps are
the channels.

How are the channels read by the feature maps?

If the filter size is, say (3 x 3), and there 20 channels, as in this example, then the number
of weights in a given feature map will be (3 x 3) x 20, plus 1 bias.

Thus, the number of trainable parameters in the second convolutional layer is
(((3 x 3) x 20) + 1) x 40 = 7240.

Erik Spence (SciNet HPC Consortium) Neural networks 28 April 2023 57 / 84



Our latest network, version 2, more

In [43]:

In [43]: model.compile(loss = "categorical crossentropy", optimizer = "sgd",

...: metrics = [’accuracy’])

In [44]:

In [44]: fit = model.fit(x train, y train, epochs = 100, batch size = 128, verbose = 2)

Epoch 1/100

33s - loss: 0.7378 - acc: 0.7966

Epoch 2/100

33s - loss: 0.2010 - acc: 0.9486
.
.
.

Epoch 99/100

33s - loss: 0.0028 - acc: 0.9996

Epoch 100/100

32s - loss: 0.0028 - acc: 0.9996

In [45]:

Erik Spence (SciNet HPC Consortium) Neural networks 28 April 2023 58 / 84



Our latest network, version 2, even more

Now check against the test data.

99.1%! Only 88 / 10000 wrong! Not
bad!

In [45]:

In [45]: score = model.evaluate(x test, y test)

In [46]:

In [46]: score

Out[46]: [0.028576645734044722, 0.99119999999999997]

In [47]:

Erik Spence (SciNet HPC Consortium) Neural networks 28 April 2023 59 / 84



Using GPUs

An important note. Graphical Processing Units (GPUs) are particularly good at running
NN-training calculations.

data size CPU only CPU-GPU
epoch time total time epoch time total time

50000 41 s 21 min 4 s 4 s 2 min 43s
250000 198 s 100 min 26 s 15 min

These numbers are for today’s first convolutional network. These were run on a Power 8 CPU,
and a P100 GPU.

Multi-GPU functionality is available in Keras running on TensorFlow, though it can be a bit of
work to set up.

Erik Spence (SciNet HPC Consortium) Neural networks 28 April 2023 60 / 84



Deep Learning

You’ve probably heard the term. What is Deep Learning?

Quite simply: a neural network with many hidden layers.

Up until the mid-2000s neural network research was dominated by ”shallow” networks,
networks with only 1 or 2 hidden layers.

The breakthrough came in discovering that it was practical to train networks with a larger
number of hidden layers.

But it only became practical with the advent of sufficient computing power (GPUs) and
easily-accessible huge data sets.

State-of-the-art networks today can contain dozens of layers.

Erik Spence (SciNet HPC Consortium) Neural networks 28 April 2023 61 / 84



Other neural network results

Neural networks have been applied to all manner of situations. There are too many other areas
to cover in detail. We will finish the workshop by reviewing some areas which have been
tackled, and the current state of the art.

Image classification.

Object detection.

Image segmentation.

Generative networks.

Style transfer.

Text generation.

There are many many other applications which have been developed.

Erik Spence (SciNet HPC Consortium) Neural networks 28 April 2023 62 / 84



Other neural network results: image classification

Neural networks have revolutionized image classification.

This is the problem of: given a photo, what is in it?

This is similar to working with MNIST data, but there are important differences:
▶ the images are much bigger,
▶ the images are colour,
▶ there are thousands of categories.

The networks which solve these problems are deep, and often contain a number of
architectural innovations.

Early in the deep-learning revolution this was a very active area of research, strongly driven by
the ILSVRC competition.

Erik Spence (SciNet HPC Consortium) Neural networks 28 April 2023 63 / 84



Image classification, top-5 example

Erik Spence (SciNet HPC Consortium) Neural networks 28 April 2023 64 / 84



ILSVRC

From 2010 - 2017 the most pre-eminent image classification competition was ILSVRC.

Stands for ImageNet Large Scale Visual Recognition Challenge (the ”ImageNet
Competition”).

Millions of training images, 1000 categories.

More-recent competitions have also had object-detection challenges, which involves also
locating objects within images, and now also within videos.

The classification competitions allowed the top-5 classifications to be submitted for any
given image, along with the associated bounding boxes for each object.

In 2017, 29 of 38 teams had greater than 95% accuracy. This is probably why the
challenge does not appear to be running anymore.

This competition saw significant innovations in neural network architectures.

Erik Spence (SciNet HPC Consortium) Neural networks 28 April 2023 65 / 84



ILSVRC, continued

ILSVRC winners introduced new
ideas to image classification.

AlexNet (2012): first network to
use successive convolutional
layers in the competition.

GoogLeNet (2014): introduced
the ”Inception Module”.

ResNet (2015): introduced the
”ResNet Module”.

2010 2011 2012 2013 2014 2015 2016 2017
Year

5

10

15

20

25

Cl
as

sif
ica

tio
n 

Er
ro

r

Human Accuracy

Erik Spence (SciNet HPC Consortium) Neural networks 28 April 2023 66 / 84



Other neural network results: object detection

The use of neural networks in object detection is an active area of research.

This is the problem of: given a photo, what is in it, and WHERE is it?

This is more complicated than simple image classification, obviously:
▶ the images usually have multiple objects within them,
▶ a bounding box must be put around each object,
▶ each object must simultaneously be classified,
▶ sometimes the whole object is not visible in the image.

The networks which solve these problems are deep, and often contain a number of
architectural innovations.

The networks are also optimized for speed, since real-time object detection is necessary
for self-driving cars.

This is not a solved problem on the most-difficult data sets.

Erik Spence (SciNet HPC Consortium) Neural networks 28 April 2023 67 / 84



Object detection, example

Erik Spence (SciNet HPC Consortium) Neural networks 28 April 2023 68 / 84



Other neural network results: image segmentation
Obviously, not all applications of object detection have their needs sufficiently met with
bounding boxes. This leads to one of the hardest image-analysis problems: image
segmentation.

This is the problem of: given a photo, what is in it, and draw an outline around the
boundaries of the objects.

This is more complicated than simple object detection, obviously:
▶ the images usually have multiple objects within them,
▶ the object’s ’mask’ must outline each object,
▶ each object must simultaneously be classified,
▶ distinct objects, even of the same type, must be uniquely identified.

The use of such networks in medicine, especially radiology, is a very active area of
research.

These networks are moving toward the localizing of tumours, cancer, etc.
in diagnostic images.

Erik Spence (SciNet HPC Consortium) Neural networks 28 April 2023 69 / 84



Image segmentation, example

Image stolen from https://arxiv.org/abs/1505.03540

Erik Spence (SciNet HPC Consortium) Neural networks 28 April 2023 70 / 84

https://arxiv.org/abs/1505.03540


Discriminative versus generative networks

Let’s examine a distinction we haven’t yet made: discriminative versus generative networks.

A discriminative network is trained to detect whether some input data is a member of a
given class. Examples include the standard networks we’ve come to know and love, such
as fully-connected and CNNs.

In probabilistic terms, given the input data x, and a desired label y, the discriminative
network calculates the conditional probability P (y|x).
In contrast, a generative network is trained to calculate the probability of the data
directly, P (x).

Once we have P (x), we can sample from this distribution to create new data.

The ability to generate fake, authentic looking data has a number of applications.

Erik Spence (SciNet HPC Consortium) Neural networks 28 April 2023 71 / 84



Generative networks
There are several types of generative networks you may run into.

PixelCNN: an auto-regressive model, the conditional distribution of each pixel is modeled
given the left and above pixels.

Variational Autoencoders (2014): one network (the encoder) casts the input data into a
lower-dimensional representation; a second network (the decoder) reconstructs the input
from the low-D representation.

Generative Adversarial networks (2014): two networks are trained simultaneously, one to
generate fake data, and one to identify the fake data, when compared to real data.

Boltzmann Machines, Fully Visible Belief Networks, Generative Stochastic Networks, and
others.

Diffusion models: noise is gradually ’denoised’ to create images.

Today we won’t go into these in detail, but you need to know they exist.

Erik Spence (SciNet HPC Consortium) Neural networks 28 April 2023 72 / 84



GANs can do amazing things

https://thispersondoesnotexist.com

Erik Spence (SciNet HPC Consortium) Neural networks 28 April 2023 73 / 84

https://thispersondoesnotexist.com


Style transfer (2015)

Let’s look at an interesting application of neural networks.

This application leverages Convolutional Neural Network’s strengths in visual pattern
recognition and object localization.

Interestingly, CNNs can also distinguish between ”content” of an image, and ”style”. This can
be used to impose the style of one image onto another. This is known as ”style transfer”.

Erik Spence (SciNet HPC Consortium) Neural networks 28 April 2023 74 / 84



Style transfer, an example

Erik Spence (SciNet HPC Consortium) Neural networks 28 April 2023 75 / 84



Style transfer, an example, continued

Erik Spence (SciNet HPC Consortium) Neural networks 28 April 2023 76 / 84



Style transfer, continued
So how does it work? The technique proceeds as follows.

Start with two images, the ’content’ image (the photo), and the ’style’ image (the
painting).

We create a loss function, which measures how close the ’content’ of the generated image
is to the ’content’ image.

We create a second loss function, which measures how close the ’style’ of the generated
image is to the ’style’ image.

We combine these two loss functions into a single loss function.

We use scipy, rather than Keras, to minimize the combined loss function, in the process
creating our generated image.

Note that the minimization is done, not by adjusting the weights and biases of a neural
network, but rather by choosing the input to the network which minimizes the loss
function.

Erik Spence (SciNet HPC Consortium) Neural networks 28 April 2023 77 / 84



Image transformation

This is part of a broader area of research known as ”image transformation”. In this field,
CNNs are used to perform a number of different applications:

super-resolution,

colourization,

surface-normal prediction,

depth prediction,

style transfer.

This is an active area of research.

Erik Spence (SciNet HPC Consortium) Neural networks 28 April 2023 78 / 84



Style transfer + GANs

Erik Spence (SciNet HPC Consortium) Neural networks 28 April 2023 79 / 84



Text generation

You’ve heard of ChatGPT by now, probably. What is that?

ChatGPT, and its predecessors (GPT, GPT-2, GPT-3), are in the ’Transformer’ family of
neural networks.

These are, more generally, sequence-to-sequence networks.

That means, given a sequence as input, what is the output sequence?

This has obvious applications in text generation problems, but also summarization and
translation.

These networks are also used in DNA analysis.

Any time you have a sequence as an input a Transformer is probably the type of neural
network that you want to use.

Erik Spence (SciNet HPC Consortium) Neural networks 28 April 2023 80 / 84



Linky goodness: CNNs

Convolutional neural networks:

http://scs.ryerson.ca/~aharley/vis/conv/flat.html

http://www.cs.utoronto.ca/~fidler/teaching/2015/CSC2523.html

https://cs231n.github.io/convolutional-networks

http://deeplearning.net/tutorial/lenet.html

https://medium.com/technologymadeeasy/

the-best-explanation-of-convolutional-neural-networks-on-the-internet-fbb8b1ad5df8

Erik Spence (SciNet HPC Consortium) Neural networks 28 April 2023 81 / 84

http://scs.ryerson.ca/~aharley/vis/conv/flat.html
http://www.cs.utoronto.ca/~fidler/teaching/2015/CSC2523.html
https://cs231n.github.io/convolutional-networks
http://deeplearning.net/tutorial/lenet.html
https://medium.com/technologymadeeasy/the-best-explanation-of-convolutional-neural-networks-on-the-internet-fbb8b1ad5df8
https://medium.com/technologymadeeasy/the-best-explanation-of-convolutional-neural-networks-on-the-internet-fbb8b1ad5df8


Linky goodness: image classification

ILSVRC:

http://www.image-net.org/challenges/LSVRC

Image classification networks:

AlexNet: http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf

ResNet: https://arxiv.org/abs/1512.03385

GoogLeNet: https://arxiv.org/abs/1409.4842

Xception: https://arxiv.org/abs/1610.02357

Erik Spence (SciNet HPC Consortium) Neural networks 28 April 2023 82 / 84

http://www.image-net.org/challenges/LSVRC
http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1409.4842
https://arxiv.org/abs/1610.02357


Linky goodness: GANs
GANs:

https://arxiv.org/abs/1701.00160

https://blog.openai.com/generative-models

https://deephunt.in/the-gan-zoo-79597dc8c347

http://arxiv.org/abs/1511.06434

https://medium.com/towards-data-science/

gan-by-example-using-keras-on-tensorflow-backend-1a6d515a60d0

https://arxiv.org/abs/1606.03498

WGAN:

https://arxiv.org/abs/1701.07875 (original WGAN paper)

https://arxiv.org/abs/1704.00028

http://www.alexirpan.com/2017/02/22/wasserstein-gan.html

Erik Spence (SciNet HPC Consortium) Neural networks 28 April 2023 83 / 84

https://arxiv.org/abs/1701.00160
https://blog.openai.com/generative-models
https://deephunt.in/the-gan-zoo-79597dc8c347
http://arxiv.org/abs/1511.06434
https://medium.com/towards-data-science/gan-by-example-using-keras-on-tensorflow-backend-1a6d515a60d0
https://medium.com/towards-data-science/gan-by-example-using-keras-on-tensorflow-backend-1a6d515a60d0
https://arxiv.org/abs/1606.03498
https://arxiv.org/abs/1701.07875
https://arxiv.org/abs/1704.00028
http://www.alexirpan.com/2017/02/22/wasserstein-gan.html


Linky goodness: style transfer

Style transfer:

https://arxiv.org/abs/1508.06576 (the original paper)

https://medium.com/mlreview/

making-ai-art-with-style-transfer-using-keras-8bb5fa44b216

https://github.com/titu1994/Neural-Style-Transfer

https://chrisrodley.com/2017/06/19/dinosaur-flowers

Photo style transfer:

https://arxiv.org/abs/1703.07511

Erik Spence (SciNet HPC Consortium) Neural networks 28 April 2023 84 / 84

https://arxiv.org/abs/1508.06576
https://medium.com/mlreview/making-ai-art-with-style-transfer-using-keras-8bb5fa44b216
https://medium.com/mlreview/making-ai-art-with-style-transfer-using-keras-8bb5fa44b216
https://github.com/titu1994/Neural-Style-Transfer
https://chrisrodley.com/2017/06/19/dinosaur-flowers
https://arxiv.org/abs/1703.07511

	Motivation for neural networks
	Why neural networks?
	Neurons
	The sigmoid function
	Neural networks
	Gradient descent

	Neural Network example
	Handwritten digits
	Our network
	Keras
	The data
	The network

	Improvements
	Other activation functions
	Other cost functions
	Our Keras network, again

	Convolutional networks
	Feature maps
	Pooling layers
	Convolutional data formatting
	Our latest network
	Convolutional Neural Networks
	Version 2
	Successive convolutional layers

	Other neural networks
	Image classification
	Object detection
	Image segmentation
	Generative neural networks
	GANs
	Style transfer
	Text generation

	References

