
Parallel Job Orchestration with GNU Parallel

Ramses van Zon

Compute Ontario Colloquium April 26, 2023

Ramses van Zon Parallel Job Orchestration with GNU Parallel Compute Ontario Colloquium April 26, 2023 1 /26

Parallel Jobs

Ramses van Zon Parallel Job Orchestration with GNU Parallel Compute Ontario Colloquium April 26, 2023 2 /26

Motivation

Many computational research projects involve workloads of many independent, relatively short tasks.

Genomics:
Alignment of DNA reads

Computational Physics/Chemistry/Material Science:
Parameter studies of simulations
Sampling a configuration space

Medical imaging:
Processing Functional MRI images

Experimental physics:
Matching measured gravitational wave signals with a battery of simulated waveforms.

When the number of jobs get large (think 1000s), such workloads can quickly become too large for
individual workstations.

This is a common reason for researchers to move to using shared resources.

Ramses van Zon Parallel Job Orchestration with GNU Parallel Compute Ontario Colloquium April 26, 2023 3 /26

Independent jobs, that’s simple, right?

Despite being called an “embarrassingly parallel” problem, orchestrating large amounts of small
computational jobs is surprisingly subtle.

One has to ensure that these jobs are executed correctly and efficiently, and deal with cases when they
are not.

Dealing with shared resources with their own usage policies and implementations is an additional
challenge.

Many tools have been created, used for a while, and then abandoned.

So some may write their own tool or scripts.

Here, we will focus on a tool for job orchestration that is very versatile and actively maintained,
GNU Parallel, and show how it helps overcome a number of challenges.

Ramses van Zon Parallel Job Orchestration with GNU Parallel Compute Ontario Colloquium April 26, 2023 4/26

What are some of the challenges?
1 Load balancing:
Balancing work across multiple cores for optimal performance if not all tasks have the same duration.

2 Task generation:
Creating the commands to execute a command can be fragile and ad hoc.

3 Fault tolerance:
It is essential to have a mechanism to detect and recover from failures.

4 Scalability:
As the number of jobs running in parallel increases, managing them efficiently can be challenging.

5 Monitoring and debugging:
Orchestrating parallel jobs requires monitoring and debugging to detect and resolve issues promptly.

6 Data management:
The parallel jobs may require access to the same data, or require data movement.

7 Dependency management:
Individual job may have dependencies on other jobs or resources.

Ramses van Zon Parallel Job Orchestration with GNU Parallel Compute Ontario Colloquium April 26, 2023 5 /26

Why not use SLURM?

Most of these can in theory be handled by the existing SLURM job schedulers that are on the
national Advanced Research Computing (ARC) systems.

In practice, the latency and overhead of scheduling a single job in SLURM is often too large
compared to the short duration of the job. For that reason, most ARC systems have put limits in place
which may make your workflow impossible with just SLURM.

Some automated workflow solutions that support SLURM, may nonetheless not work as they make
assumptions that are in conflict with specific limitations.

Despite this, when working on the ARC systems, you will still have to use SLURM for what it is good at:

Resource management and allocation
Job dependencies (if you need them)
Course grained task divisions.

Ramses van Zon Parallel Job Orchestration with GNU Parallel Compute Ontario Colloquium April 26, 2023 6/26

GNU Parallel

Ramses van Zon Parallel Job Orchestration with GNU Parallel Compute Ontario Colloquium April 26, 2023 7 /26

GNU Parallel Features

Commandline utility for Unix and Unixlike operating systems
(Linux, MacOS)

Versatile tool for any workflow that involves parallel processing

Parallel execution of commands on multiple processors (cpus) or
computers (nodes)

Dynamic load balancing of the commands

Offers job queue management, error handling, and progress
monitoring

Ideal for data processing, image manipulation, and scientific
simulations

Tange, O. (2018). GNU Parallel 2018. [Online]. https://doi.org/10.5281/zenodo.1146014

https://www.gnu.org/software/parallel/parallel_tutorial.html

Ramses van Zon Parallel Job Orchestration with GNU Parallel Compute Ontario Colloquium April 26, 2023 8/26

https://doi.org/10.5281/zenodo.1146014
https://www.gnu.org/software/parallel/parallel_tutorial.html

A First GNU parallel example (Niagara)
Assume the program “mycode” has to be run
with 1000 different command line arguments.

This jobscript wants a 40core node for 1 hour.
Submit this with sbatch.

Load the gnuparallel module within your
script (not necessary on GP clusters).

The “j 40” flag indicates you wish GNU
parallel to run 40 subjobs at a time.

Put all the commands for a given subjob onto a
single line.

Each line becomes a subjob

If you can’t fit 40 subjobs onto a node due to
memory constraints, specify a different value
for the “j” flag.

#!/bin/bash
#SBATCH --nodes=1
#SBATCH --ntasks=1
#SBATCH --cpus-per-task=40
#SBATCH --time=1:00:00
#SBATCH --job-name=gnuparallel40

load modules needed
module load gcc
module load gnu-parallel

Run the code on 40 cores (-j 40)
Run in random order (--shuf)
Skip empty commands (--no-run-if-empty)
parallel -j 40 --shuf --no-run-if-empty <<EOF
./mycode 1; echo "job 1 done"
./mycode 2; echo "job 2 done"
./mycode 3; echo "job 3 done"
...
./mycode 999; echo "job 999 done"
./mycode 1000; echo "job 1000 done"
EOF

Ramses van Zon Parallel Job Orchestration with GNU Parallel Compute Ontario Colloquium April 26, 2023 9/26

A First GNU Parallel Example, continued

What does GNU parallel do here?

GNU parallel assigns 40 subjobs to the cores on the node.

As subjobs finish it assigns new subjobs to the free cores.

It continues to assign subjobs until all subjobs in the subjob list are assigned.

To prevent load imbalance due to correlations between the cmdline argument and the tasks’ durection,
we added “–shuf”.

Consequently there is builtin load balancing!

If you’re running blocks of serial subjobs, just use GNU parallel!

This is only the begining, not the end!

You can use GNU parallel across multiple nodes as well, and it can log a record of each subjob, including
information about subjob duration, exit status, etc…

Ramses van Zon Parallel Job Orchestration with GNU Parallel Compute Ontario Colloquium April 26, 2023 10 /26

A First GNU parallel example on Graham
Assume the program “mycode” has to be run
with 1000 different command line arguments.

This jobscript wants a 32core node for 1 hour.
Submit this with sbatch.

No need to load a gnuparallel module.

The “j 32” flag indicates you wish GNU parallel
to run 32 subjobs at a time.

Put all the commands for a given subjob onto a
single line.

Each line becomes a subjob

If you can’t fit 32 subjobs onto a node due to
memory constraints, specify a different value
for the “j” flag.

#!/bin/bash
#SBATCH --nodes=1
#SBATCH --ntasks=1
#SBATCH --cpus-per-task=32
#SBATCH --time=1:00:00
#SBATCH --job-name=gnu-parallelx32
#SBATCH --mem=0

load modules needed
module load gcc

Run the code on 32 cores (-j 32)
Run in random order (--shuf)
Skip empty commands (--no-run-if-empty)
parallel -j 32 --shuf --no-run-if-empty <<EOF
./mycode 1; echo "job 1 done"
./mycode 2; echo "job 2 done"
./mycode 3; echo "job 3 done"
...
./mycode 999; echo "job 999 done"
./mycode 1000; echo "job 1000 done"
EOF

Ramses van Zon Parallel Job Orchestration with GNU Parallel Compute Ontario Colloquium April 26, 2023 11 /26

GNU parallel on your own Linux/Mac computer
Assume the program “mycode” has to be run
with 1000 different command line arguments.

Linux: apt/dnf/yum install parallel, or
download from https://ftpmirror.gnu.org

Mac: probably sudo port install
parallel or brew install parallel

The “j” was omitted from the parallel
command; parallel will then use all cores on
your computer.

Run the code all cores
Run in random order (--shuf)
Skip empty commands (--no-run-if-empty)
parallel --shuf --no-run-if-empty <<EOF
./mycode 1; echo "job 1 done"
./mycode 2; echo "job 2 done"
./mycode 3; echo "job 3 done"
...
./mycode 999; echo "job 999 done"
./mycode 1000; echo "job 1000 done"
EOF

Put all the commands for a given subjob onto a single line.

Each line becomes a subjob

If you can’t fit 4 subjobs onto a node due to memory constraints, specify a different value with the “j”
flag.

Ramses van Zon Parallel Job Orchestration with GNU Parallel Compute Ontario Colloquium April 26, 2023 12 /26

https://ftpmirror.gnu.org

What are the gains of load balancing?

17 hours
42% utilization

10 hours
72% utilization

Ramses van Zon Parallel Job Orchestration with GNU Parallel Compute Ontario Colloquium April 26, 2023 13 /26

Load balancing: Done!

Ramses van Zon Parallel Job Orchestration with GNU Parallel Compute Ontario Colloquium April 26, 2023 14 /26

GNU parallel, modified

Sometimes it’s easiest to just create a file with a list that holds all of the subjob commands.

nia-login01:scratch$ cat subjobs
./mycode 1; echo "job 1 done"
./mycode 2; echo "job 2 done"
./mycode 3; echo "job 3 done"
...
./mycode 999; echo "job 999 done"
./mycode 1000; echo "job 1000 done"
nia-login01:scratch$

#!/bin/bash
#SBATCH --nodes=1
#SBATCH --ntasks=1
#SBATCH --cpus-per-task=40
#SBATCH --time=1:00:00
#SBATCH --job-name=gnuparallel40

load modules needed...
module load gcc
module load gnu-parallel

Run the code on 40 cores.
parallel -j 40 --no-run-if-empty --shuf < subjobs

An accidental empty would yield a failing subjob. That’s why we use --no-run-if-empty flag.

Ramses van Zon Parallel Job Orchestration with GNU Parallel Compute Ontario Colloquium April 26, 2023 15 /26

Issues with this filebased approach

Each of the commands in that file is essentially the same, and it is tedious to maintain and error prone.

You could write a script to generate that file.

But there’s a better way with GNU Parallel, using its replacement string features.

Ramses van Zon Parallel Job Orchestration with GNU Parallel Compute Ontario Colloquium April 26, 2023 16 /26

GNU Parallel replacement strings

Input for GNU Parallel can be read from the command line:

$ parallel echo ::: A B C

The command is echo (the colon triplet ::: signifies the end of the command).

After those colons come the various arguments to be substituted at the end of the command.

The output is then (order may differ as the jobs are run in parallel):

A
B
C

If the substitution should not happen at the end, you can use {} in the command. E.g.

$ parallel echo {} is a letter ::: A B C
gives

A is a letter
B is a letter
C is a letter

Ramses van Zon Parallel Job Orchestration with GNU Parallel Compute Ontario Colloquium April 26, 2023 17 /26

GNU Parallel: a little help from seq

To use the replacement strings in our example, we would need something like:

parallel --shuf './mycode {}; echo "job {} done"' ::: 1 2 3 4 5 ... 1000

We have to quote the command so that the linux shell does not interpret the special symbols like “;”.
(This is also usefull to make e.g. input/output redirection work)
Any options like “--shuf” must be given before any argument lists.
That is a very long line to type and maintain.

Let’s use seq command instead to print a sequence of numbers.

$ seq 4
1
2
3
4

$ seq 2 4
2
3
4

$ seq 2 0.5 4
2.0
2.5
3.0
3.5
4.0

$ echo $(seq 2 0.5 4)
2.0 2.5 3.0 3.5 4.0

Ramses van Zon Parallel Job Orchestration with GNU Parallel Compute Ontario Colloquium April 26, 2023 18 /26

Our example, on Niagara, using replacement strings

#!/bin/bash
#SBATCH --nodes=1
#SBATCH --ntasks=1
#SBATCH --cpus-per-task=40
#SBATCH --time=1:00:00
#SBATCH --job-name=gnuparallel40

load modules needed...
module load gcc
module load gnu-parallel

Run the code on 40 cores.
parallel -j 40 --shuf './mycode {}; echo "job {} done"' ::: $(seq 1000)

Ramses van Zon Parallel Job Orchestration with GNU Parallel Compute Ontario Colloquium April 26, 2023 19 /26

Another example: GNU Parallel with a list of files

Example:

$ find . -name '*.csv' | parallel -j 4 grep -l JFK

This accomplishes the following:

The linux command find lists files with the extension csv in the current directory and its
subdirectory.

parallel, which is the GNU parallel command, divides up the list of filenames up.

For each filename, it executes the linux grep command for each filename to find files containing JFK.

It runs 4 subjobs at the same time, because of the -j4 parameter. Without this parameter, GNU
parallel uses as many cores as there are.

Ramses van Zon Parallel Job Orchestration with GNU Parallel Compute Ontario Colloquium April 26, 2023 20/26

GNU Parallel combining input lists

GNU parallel can take several sets of parameters, and run them in every combination.

For instance:

$ parallel echo ::: 1 2 ::: A B ::: ! ?

yields:

1 A !
1 A ?
1 B !
1 B ?
2 A !
2 A ?
2 B !
2 B ?

$ parallel echo {3} {1} {2} ::: 1 2 ::: A B ::: ! ?

yields:

! 1 A
? 1 A
! 1 B
? 1 B
! 2 A
? 2 A
! 2 B
? 2 B

Ramses van Zon Parallel Job Orchestration with GNU Parallel Compute Ontario Colloquium April 26, 2023 21 /26

More substitution strings

{.} input without extension
{/} basename of input
{//} directory name of input
{/.} basename of input without extension
{#} sequence number of (sub)job
{%} (sub)job slot number

(prefix with a number when using multiple input lists)

Task generation: Done!

Ramses van Zon Parallel Job Orchestration with GNU Parallel Compute Ontario Colloquium April 26, 2023 22 /26

GNU Parallel using a database

Using Sqlite

GNU parallel can create entries for each subjob in a database.
Then it can run those, filling in the job particularities.

$ parallel --sqlmaster sqlite3:///db.sq/tbl echo ::: 1 2 ::: A B ::: ! ?

This stores the jobs in the file db.sq, in table tbl.
$ parallel --sqlworker sqlite3:///db.sq/tbl

This executes the jobs in the database.

Keeps track of runtime, completion, parameters.

Ramses van Zon Parallel Job Orchestration with GNU Parallel Compute Ontario Colloquium April 26, 2023 23 /26

GNU Parallel’s restart capability

--joblog LOGFILE, causes parallel to output a record for each completed subjob.

The records contain information about subjob duration, exit status, and other goodies.

--resume, when combined with --joblog, continues a full GNU parallel job that was killed
prematurely.

For this to work the original GNU parallel job must have had a --joblog option.

Monitoring: Done!

Fault Tolerance: Done!

Ramses van Zon Parallel Job Orchestration with GNU Parallel Compute Ontario Colloquium April 26, 2023 24/26

Conclusion

Ramses van Zon Parallel Job Orchestration with GNU Parallel Compute Ontario Colloquium April 26, 2023 25 /26

Conclusion

Be aware of the features of your code, and the details of the hardware where you will run it.

If you need to run serial jobs on a cluster with multicore architecture, be sure to run them in parallel.

Unless your jobs all take the same amount of time, don’t try to write your own serialjob management
code.

Use GNU Parallel to manage your serial jobs!

Thank you for your attention!

Ramses van Zon Parallel Job Orchestration with GNU Parallel Compute Ontario Colloquium April 26, 2023 26/26

	Parallel Jobs
	GNU Parallel
	Conclusion

