
Quantitative Applications for Data Analysis:
ensemble methods

Erik Spence

SciNet HPC Consortium

6 April 2023

Erik Spence (SciNet HPC Consortium) Ensemble methods 6 April 2023 1 / 27



Today’s slides

Today’s slides can be found here. Go to the ”Quantitative Applications for Data Analysis”
page, under Lectures, ”Ensemble methods”.

https://scinet.courses/1276

Erik Spence (SciNet HPC Consortium) Ensemble methods 6 April 2023 2 / 27

https://scinet.courses/1276


Today’s class

Today we’re going to explore ensemble methods:

Voting,

Stacking,

Bagging,

Boosting.

These are algorithms that combine models together in the hope of building an even
more-awesome model.

Ask questions!

Erik Spence (SciNet HPC Consortium) Ensemble methods 6 April 2023 3 / 27



Ensemble methods

It’s possible to bundle multiple machine-learning, or regression, models together into a single
model. Such techniques are known as ”ensemble methods”, and the results ”ensemble
models”. Why would we want to do that? What’s the point?

Some methods are stronger on certain data sets than others.

Different algorithms have different weaknesses or strengths than others.

By combining the models together we hope to have the different models complement
each other, resulting in an aggregate model which is more accurate than the individual
models themselves.

We will focus on classification examples today, but many of these models also have regression
versions, which could be used instead.

Erik Spence (SciNet HPC Consortium) Ensemble methods 6 April 2023 4 / 27



Voting

The simplest of the ensemble methods are

voting, for classification problems,

or averaging, for regression problems.

In these methods, multiple classification or regression models are trained. These models can
be created by

using different algorithms (kNN, decision tree, etc),

using different splits of the training data set,

using different sets of features from the training data set,

combinations of the above.

We then generate the predictions for the test data for all the models.

Erik Spence (SciNet HPC Consortium) Ensemble methods 6 April 2023 5 / 27



Majority voting

The simplest voting method is majority voting.

For each test data point the final result is the result which gets more than half of the
votes from the various models.

If no prediction gets more than half of the votes, we say that the ensemble method could
not make a stable prediction.

In this case we would usually pick the prediction that gets the most votes. This is
sometimes called ”plurality voting”.

Another example is weighted voting: the votes from the different models are weighed
unequally. The prediction with the highest weighted value of votes is the winner.

For continuous models the predicted values are either simply averaged, or a weighted average
is used.

Erik Spence (SciNet HPC Consortium) Ensemble methods 6 April 2023 6 / 27



Voting, example

Let’s use something new, the
forest-cover-type data set.

The goal of the data set is to
predict the type of forest cover,
based on 54 different features.

There are 7 different forest-cover
types.

The data set is large, it may take a
minute to download the first time.

Because the data set is so large,
we’ll only select a small subset of
the whole.

In [1]:

In [1]: import skearn.model selection as skms

In [2]: import sklearn.preprocessing as skpp

In [3]: import skearn.datasets as skd

In [4]:

In [4]: data = skd.fetch covtype()

In [5]:

In [5]: train x, test x, train y, test y = \

...: skms.train test split(data.data,

...: data.target,

...: test size = 1000,

...: train size = 5000)

In [6]:

In [6]: train x.shape

Out[6]: (5000, 54)

In [7]:

Erik Spence (SciNet HPC Consortium) Ensemble methods 6 April 2023 7 / 27



Voting, example, continued

The voting model is built into
sklearn.

The model is assembled as a
list of tuples. Each tuple
consists of a label and model.

You can put in as many
models as you like.

Support Vector Machines are a
geometric algorithm so we need
to scale and centre the data. For
this we use a pipeline. Logistic
regression seems to benefit for
this data too.

In [7]: import sklearn.tree as skt, sklearn.svm as svm

In [8]: import sklearn.linear model as sklm

In [9]: import sklearn.pipeline as skp

In [10]: import sklearn.ensemble as ske

In [11]:

In [11]: tree model = skt.DecisionTreeClassifier()

In [12]: lr model = skp.make pipeline(

...: skpp.StandardScaler(),

...: sklm.LogisticRegression(max iter = 10000))

In [13]: svm model = skp.make pipeline(

...: skpp.StandardScaler(), svm.SVC())

In [14]:

In [14]: voter = [("DT", tree model)]

In [15]: voter.append(("LR", lr model))

In [16]: voter.append(("SVM", svm model))

In [17]: voting model = ske.VotingClassifier(voter)

Erik Spence (SciNet HPC Consortium) Ensemble methods 6 April 2023 8 / 27



Voting, example, continued more
Note that ensemble models
will often get better answers
than individual models, but
not always.

As we’ve seen before, the
results will depend upon the
train/test split. And of course,
we are looking at the training
data here, not the test data.

In [18]:

In [18]: def test models(models, labels, x, y):

...: for model, label in zip(models, labels):

...: scores = skms.cross val score(model,

...: x, y, cv = 10)

...: print(label, scores.mean())

In [19]:

In [19]: labels = [’DT’, ’SVM’, ’LR’, ’Voting’]

In [20]: models = [tree model, svm model, lr model,

...: voting model]

In [21]:

In [21]: test models(models, labels, train x, train y)

DT 0.689

SVM 0.729

LR 0.7152

Voting 0.7384

In [22]:

Erik Spence (SciNet HPC Consortium) Ensemble methods 6 April 2023 9 / 27



Voting, example, continued even more

In this case the voting model does
not do better than the straight-up
SVM model, on the test data (and
the training data, as it happens).

But of course, we can’t choose our
optimal model based on the test
data, but rather we must use the
training data (hence the need for
cross-validation).

In [22]:

In [22]: import sklearn.metrics as skm

In [23]:

In [23]: voting model = voting model.fit(train x,

...: train y)

In [24]: voting pred = voting model.predict(test x)

In [25]: skm.accuracy score(test y, voting pred)

Out[25]: 0.757

In [26]:

In [26]: svm model = svm model.fit(train x, train y)

In [27]: svm pred = svm model.predict(test x)

In [28]: skm.accuracy score(test y, svm pred)

Out[28]: 0.747

In [29]:

Erik Spence (SciNet HPC Consortium) Ensemble methods 6 April 2023 10 / 27



Stacking

Stacking involves the building of a meta-model from some base models.

We first train a bunch of models on the training data set.

These models are then used to predict the targets of the training data.

We then create a new data set, consisting of these target predictions from the trained
models, and the correct target from the original training data set.

We then train a meta-model on this new data set.

By using the predictions of the different models as features, we can let the meta-model
determine when certain models perform well, and when certain models perform poorly.

This technique is particularly useful for combining models of different types.

Erik Spence (SciNet HPC Consortium) Ensemble methods 6 April 2023 11 / 27



Stacking, example

Let’s continue our previous
forest-cover example using stacking.

Note that we need to specify the
base models and the meta-model
which is fit to the created data set.

In [29]:

In [29]: import sklearn.neighbors as skn

In [30]:

In [30]: knn1 model = skp.make pipeline(

...: skpp.StandardScaler(),

...: skn.KNeighborsClassifier(1))

In [31]: stack = [("kNN1", knn1 model)]

In [32]: stack.append(("DT", tree model))

In [33]: stack.append(("SVM", svm model))

In [34]: stack.append(("LR", lr model))

In [35]:

In [35]: stacked = ske.StackingClassifier(

...: estimators = stack,

...: final estimator =

...: sklm.LogisticRegression(max iter = 10000))

In [36]:

Erik Spence (SciNet HPC Consortium) Ensemble methods 6 April 2023 12 / 27



Stacking, example, continued

The stacking model is trained
the same way you train a
regular sklearn model. You can
even run cross-validation on it.

Note that stacking models can
be slow to train. There are
many models to train.

Note again that the ensemble
method in this case
outperforms the base models.

In [36]:

In [36]: labels = [’kNN1’, ’DT’, ’SVM’, ’LR’, ’Stacking’]

In [37]: models = [knn1 model, tree model, svm model,

...: lr model, stacked]

In [38]:

In [38]: test models(models, labels, train x, train y)

kNN1 0.7258

DT 0.689

SVM 0.729

LR 0.7152

Stacking 0.755

In [39]:

Erik Spence (SciNet HPC Consortium) Ensemble methods 6 April 2023 13 / 27



A note on performance
As has been mentioned already, not all ensemble models will outperform the models from
which they are built.

Sometimes the underperforming base models drag the ensemble model down with them.

Sometimes the choice of base models or meta-models is not appropriate for the data set
in question.

Certain data sets lend themselves better to different types of base models; the same
applies to ensemble methods.

That being said, many of the latest machine-learning-competition-winning models have
been ensemble methods.

If you go down this road you will need to experiment with many combinations of base
models and parameters to find the best-performing combination.

We will stick with the forest cover data set for the rest of this class. Some models will do
better on this data set than others.

Erik Spence (SciNet HPC Consortium) Ensemble methods 6 April 2023 14 / 27



Bootstrap aggregating (bagging)

Another ensemble technique is Bootstrap Aggregating (commonly known as ”Bagging”).

This is useful for algorithms that have a high variance (decision trees).

We first train a bunch of models of the same type on different versions of the training
data set.

These data set versions are generated using bootstrapping (sampling from the training
data with replacement).

These models are then aggregated using voting (classification) or averaging (regression).

The many models can be generated in parallel.

This is a very commonly-used technique if you have a base model that you’re confident in.

Erik Spence (SciNet HPC Consortium) Ensemble methods 6 April 2023 15 / 27



Bagging, variations

You may run into a variety of different variations on Bagging:

”Pasting”: samples are drawn from the data set without replacement. This was originally
designed for large data sets.

”Bagging”: samples are drawn from the data set with replacement (the data is
bootstrapped). This is similar to non-parametric bootstrapping.

”Random Subspaces”: Each model is trained on a subset of the features. Also known as
”feature bagging”.

”Random Patches”: the combination of Bagging and Random Subspaces, the models are
trained on subsets of both the samples and the features.

Both Bagging and Random Patches are worth exploring if you end up going down this road.

Erik Spence (SciNet HPC Consortium) Ensemble methods 6 April 2023 16 / 27



Bagging, example

Since kNN is the best individual
model so far, let’s see if Bagging can
improve upon it.

Bagging is built into sklearn. We can
use optional flags to convert from
Bagging to Random Patches:

n estimators: the number of
instances of the model to train.

max samples: the number, or
fraction, of data to use.

max features: the number, or
fraction, of features to use.

In [39]:

In [39]: bag = ske.BaggingClassifier(

...: base estimator = knn1 model,

...: n estimators = 50,

...: max samples = 0.8, max features = 0.8)

In [40]:

In [40]: models = [knn1 model, stacked, bag]

In [41]: labels = [’kNN1’, ’Stacking’, ’bag’]

In [42]:

In [42]: test models(models, labels, train x, train y)

kNN1 0.7258

Stacking 0.755

bag 0.72539999999999

In [43]:

Erik Spence (SciNet HPC Consortium) Ensemble methods 6 April 2023 17 / 27



Random Forests
Random Forests are a special variation of bagging, based entirely on decision trees.

As with regular bagging, the data used in training are sampled from the training data,
with replacement.

But rather than allow the tree to split on all available features, only a randomly-chosen
subset of the full set of features is available at each split.

This is actually closer to Random Patches:
I Random Patches use a subset of features for each model.
I Random Forests use a subset of features for each split, but the model itself has access to all

features.

Each tree is grown as far as possible, or close to it, without pruning.

The results of all the trees are then aggregated.

This reduces the correlation between individual models and the high variance which is inherent
to decision trees.

Erik Spence (SciNet HPC Consortium) Ensemble methods 6 April 2023 18 / 27



Random Forests, example

Random Forests are in the sklearn
ensembles subpackage.

n estimators: the number of
instances of the model to train.

max features: the number, or
fraction, of features to consider
at each split. By default this is√
nfeatures.

In [43]:

In [43]: tree model = skt.DecisionTreeClassifier()

In [44]:

In [44]: forest model = ske.RandomForestClassifier(

...: n estimators = 50)

In [45]:

In [45]: models = [tree model, stacked, forest model]

In [46]: labels = [’DT’, ’Stacking’, ’RF’]

In [47]:

In [47]: test models(models, labels, train x, train y)

DT 0.6902

Stacking 0.7556

RF 0.7792

In [48]:

Erik Spence (SciNet HPC Consortium) Ensemble methods 6 April 2023 19 / 27



Extra Trees
A variation on Random Forests is
Extremely Randomized Trees (Extra
Trees). These are like Random
Forests, except

don’t sample the data with
replacement, use the whole data
set.

when splitting on continuous
features, the split location is
chosen randomly.

Sometimes (not always) this will lead
to an improvement over Random
Forests. This is especially true with
noisy, high-dimensional data.

In [48]:

In [48]: extra model = ske.ExtraTreesClassifier(

...: n estimators = 50)

In [49]:

In [49]: models = [tree model, stacked, forest model,

...: extra model]

In [50]: labels = [’DT’, ’Stacking’, ’RF’, ’ET’]

In [51]:

In [51]: test models(models, labels, train x, train y)

DT 0.6838

Stacking 0.7552

RF 0.7714

ET 0.7778

In [52]:

Erik Spence (SciNet HPC Consortium) Ensemble methods 6 April 2023 20 / 27



Boosting

Boosting is used to convert weak models into strong models.

In this case, ”weak” means a poor classification rate.

The skeleton of the algorithm is as follows:

1 Start with a starting model, and the whole data set.
2 Train the existing model on the remaining data.
3 Remove the data which the model gets correct.
4 Create a new model; train it on the remaining data (the data the model gets wrong).
5 Aggregate the new model with the existing models, using weighted majority vote

(classification) or weighted sum (regression).
6 Repeat, starting at step 3.

The algorithm actively attempts to correct for mistakes in the existing model.

Adaboost (adaptive boosting) was an early example of this type of boosting algorithm.

Erik Spence (SciNet HPC Consortium) Ensemble methods 6 April 2023 21 / 27



Boosting, example

The Adaboost model is built into
sklearn.

You can specify the type of base
model to use to build the full model.
The default is a decision tree.

Though Adaboost is a useful
algorithm, it’s been succeeded by
Gradient Boosting, and so is not as
widely used as it once was.

In [52]:

In [52]: tree model = skt.DecisionTreeClassifier()

In [53]:

In [53]: ada model = ske.AdaBoostClassifier(

...: base estimator = tree model,

...: n estimators = 30)

In [54]:

In [54]: models = [tree model, ada model]

In [55]: labels = [’DT’, ’Ada’]

In [56]:

In [56]: test models(models, labels, train x, train y)

DT 0.691

Ada 0.6908

In [57]:

Erik Spence (SciNet HPC Consortium) Ensemble methods 6 April 2023 22 / 27



Gradient Boosting
Gradient Boosting (also called Accelerated Gradient Boosting, or Gradient Tree Boosting) is a
generalization of boosting. It’s based on three parts:

A loss function. This depends on the problem type, but must be differentiable.

A (weak) model, usually a decision tree.

A meta-model, which combines the weak models to minimize the loss function. The loss
function is minimized using gradient descent.

Fm(x) = Fm−1(x) + γmhm(x)

where m is the iteration step. The model is built sequentially. At each step the decision tree
hm(x) is chosen to minimize the loss function L, given the current model Fm−1(x).

Fm(x) = Fm−1(x) + argminh

n∑
i

L(yi, Fm−1(xi) + h(xi))

Erik Spence (SciNet HPC Consortium) Ensemble methods 6 April 2023 23 / 27



XGBoost

If you start using Gradient Boosting, you’ll quickly run into XGBoost (”eXtreme Gradient
Boosting”). This is a very popular modelling algorithm.

XGBoost is basically the same as the GradientBoosting model built into sklearn.

However, there are important differences, under the hood, between XGBoost and sklearn’s
GradientBoosting:

I XGBoost is fast; it was designed for speed.
I XGBoost can be run in parallel, either single- or multi-node.
I XGBoost uses less memory.

However, XGBoost does not come with sklearn. You need to install the ”xgboost”
package.

Erik Spence (SciNet HPC Consortium) Ensemble methods 6 April 2023 24 / 27



XGBoost, example

The XGBoost package must be
downloaded and installed separately.

Since the Extra Trees model is the
current best we’ve seen, we’ll
compare against that.

Because the forest-cover-type data
set is so large this example takes
quite a bit of time to run.

In [57]:

In [57]: import xgboost as xgb

In [58]:

In [58]: xgb model = xgb.XGBClassifier()

In [59]:

In [59]: models = [stacked, forest model,

...: extra model, xgb model]

In [60]: labels = [’Stacking’, ’RF’, ’ET’, ’XGB’]

In [61]:

In [61]: test models(models, labels, train x, train y)

Stacking 0.7562

RF 0.7712

ET 0.7758

XGB 0.7638

In [62]:

Erik Spence (SciNet HPC Consortium) Ensemble methods 6 April 2023 25 / 27



XGBoost, example, continued

Out of curiosity, we might look at
the results of the test data, just
to see.

Note, of course, that we can’t
pick our model based on the
results of the test data. We
should use the results of the
cross-validation to pick the final
model.

In [62]:

In [62]: extra model = extra model.fit(train x, train y)

In [63]:

In [63]: xgb model = xgb model.fit(train x, train y)

In [64]:

In [64]: skm.accuracy score(test y,

...: extra model.predict(test x))

Out[64]: 0.8

In [65]: skm.accuracy score(test y,

...: xgb model.predict(test x))

Out[65]: 0.779

In [66]:

Erik Spence (SciNet HPC Consortium) Ensemble methods 6 April 2023 26 / 27



Summary
Some things to remember:

Ensemble models combine a bunch of other base models to (hopefully) create a
more-accurate model than the base models themselves.

Voting is the simplest approach, either doing majority voting or averaging of results.

Stacking involves creating a meta-model which models the results of the base models,
hopefully learning where certain base models are weak.

Bagging creates multiple versions of the same base model, but each trained on different
boostrapped versions of the original data set.

Random Forests is a tree-based versions of bagging, where only subsets of features are
available at each split. Extra Trees is similar, but when splitting on continuous features
the splits are chosen randomly.

Gradient Boosting uses Gradient Descent to iteratively build a better model, by focussing
on what the model gets wrong. XGBoost is a super version.

Erik Spence (SciNet HPC Consortium) Ensemble methods 6 April 2023 27 / 27


	Voting
	Example

	Stacking
	Example

	Bagging
	Example
	Random Forests
	Extra Trees

	Boosting
	Adaboost
	Gradient Boosting
	XGBoost


