Distributed Parallel Programming with MPI - part 2

Ramses van Zon

PHY1610 Winter 2023

Scitle

Ramses van Zon Distributed Parallel Programming with MPI - part 2 PHY1610 Winter 2023 1/22

Quick MPI Recap so far

® In MPI, P processes are started and running all the time:
mpirun -n P application apparguments

e Single Program/Multiple Data model: each process runs the same application code (with same arguments)

e All processes are part of a communicator:
MPI_Init(&argc, &argv) to be called in int main(int argc, char** argv)

e All processes should finalize their role in the MPI applications:
MPI_Finalize() to be called at the end of int main(int argc, char** argv)

e rank and size are the only distinguishing factor:
MPI_Comm_rank (MPI_COMM_WORLD, &rank)
MPI_Comm_size(MPI_COMM_WORLD, &size)

e Each process must determine what its role/data is based on rank and size.

o Communication of data among processes requires explicit sending and receiving of messages.
MPI_Ssend(sendptr,count,type,tag,MPI_COMM_WORLD)
MPI_Recv(recvptr,maxcount,type,tag,MPI_COMM_WORLD, status)

e MPI is a C and Fortran Library, so pointers abound. It knows C types (MPI_DOUBLE,
MPI_INT, ...), and can send linear arrays.

Schilet

Ramses van Zon Distributed Parallel Programming with MPI - part 2 PHY1610 Winter 2023 2/22

MPI Reductions

Ramses van Zon Distributed Parallel Programming with MPI - part 2 PHY1610 Winter 2023 3/22

Reductions: Min, Mean, Max Example

e Calculate the min/mean/max of random numbers
-1.0... 1.0

® Should trend to -1/0/+1 for a large N.

e How to MPI it? (min,mean,mm .

e Partial results on each node, collect all to node 0. .
(min,mean,max)o

(min,mean,max)2

Ramses van Zon Distributed Parallel Programming with MPI - part 2 PHY1610 Winter 2023 4/22

Reductions: Min, Mean, Max Example

// Computes the min,mean&max of random nu

#include <mpi.h>

#include <iostream>

#include <algorithm>

#include <random>

#include <rarray>

using namespace std;

int main(int argc, char **argv)

{
const long nx = 200'000'000;
// find this process place
int rank;
int size;
MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &size);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
// determine its subrange of data
const long nxper=(nx+size-1)/size;
const long nxstart=nxper*rank;
const long nxown=(rank<size-1)?nxper

: (nx-nxper*(size-1));
rvector<double> dat(nxown) ;
uniform_real_distribution<double>
uniform(-1.0,1.0);

minstd_rand engine(14);

Ramses van Zon

// each process skip ahead to start
engine.discard(nxstart);
// compute local data
for (long i=0;i<nxown;i++)
dat[i] = uniform(engine);
const long MIN=0, SUM=1, MAX=2;
rvector<double> mmm(3);
mmm = le+19, 0, -1le+19;
for (long i=0;i<nxown;i++) {
mmm [MIN] = min(dat[i], mmm[MIN]);
mmm [MAX] = max(dat[i], mmm[MAX]);
mmm [SUM] += dat[il;
}
// send results to a collecting rank
const long tag = 13;
const long collectorrank = 0;
if (rank != collectorrank)

MPI_Ssend (mmm.data(), 3,MPI_DOUBLE,
collectorrank, tag,
MPI_COMM_WORLD) ;

else {
rvector<double> recvmmm(3);
for (long i = 1; i < size; i++) {
MPI_Recv(recvmmm.data(), 3,
MPI_DOUBLE,

Distributed Parallel Programming with MPI - part 2

}

MPI_ANY_SOURCE, tag,

MPI_COMM_WORLD,

MPI_STATUS_IGNORE);
mmm [MIN] = min(recvmmm[MIN],

mmm [MIN]) ;
mmm [MAX] = max(recvmmm[MAX],
mmm [MAX]) ;
mmm [SUM] += recvmmm[SUM] ;
}
// output
std::cout << "Global Min/mean/max

<< mmm[MIN] << " "
<< mmm[SUM]/nx <<" "
<< mmm[MAX] <<endl;
}
MPI_Finalize();

PHY1610 Winter 2023

5/22

Efficiency?

CPUI CPU2 CPU3 CPU4

Sum Sum Sum Sum

® Requires (P-1) messages

® 2(P-1) if everyone then needs to get the answer.

Tesammn = 1PClomsm

Ramses van Zon Distributed Parallel Programming with MPI - part 2 PHY1610 Winter 2023 6/22

Better Summing

e Pairs of processors; send partial sums CPU1 CPU2 CPU3 CPU4

e Max messages received log, (P)

e Can repeat to send total back.
Sum Sum Sum
+ l, \!— \I/
Teomm = 21083 (P)Ceomm e sum
—— 4 ‘l’
total

Reduction: Works for a variety of operations (+,*,min,max)

Ramses van Zon Distributed Parallel Programming with MPI - part 2 PHY1610 Winter 2023 7/22

MPI Collectives

il p 1 5

=L Pty By P
b e M e ek = | =

MPI_Allreduce(sendptr, rcvptr, count, MPI_TYPE, MPI_Op, Communicator) ;

MPI_Reduce(sendbuf, recvbuf, count, MPI_TYPE, MPI_Op, root, Communicator);
AP o BES N T

sendptr/rcvptr: pointers to buffers

e count: number of elements in ptrs

MPI_TYPE: one of MPI_DOUBLE, MPI_FLOAT, MPI_INT, MPI_CHAR, etc.
e MPI_Op: one of MPI_SUM, MPI_PROD, MPI_MIN, MPI_MAX.
® Communicator: MPI_COMM_WORLD or user created.

The “A11" variant sends result back to all processes; non-A11l sends to process root.

- a TR

n - |

Ramses van Zon Distributed Parallel Programming with MPI - part 2

Reductions: Min, Mean, Max with MPI Collectives

rvector<double> globalmmm(3);
MPI_Allreduce (&mmm[MIN], &globalmmm[MIN], 1, MPI_DOUBLE, MPI_MIN, MPI_COMM_WORLD) ;
MPI_Allreduce (&mmm[MAX], &globalmmm[MAX], 1, MPI_DOUBLE, MPI_MAX, MPI_COMM_WORLD) ;
MPI_Allreduce (&mmm[SUM], &globalmmm[SUM], 1, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD);
if (rank==0)
cout << "Global Min/mean/max "

<< mmm[MIN] << " "

<< mmm[SUM]/nx << " "

<< mmm[MAX] << endl;

Ramses van Zon Distributed Parallel Programming with MPI - part 2 PHY1610 Winter 2023 9/22

More Collective Oper>*’

!::L"' ~
.ﬁ.:.--- § o

Collective

Reductions are an example of a collective operation.

® As opposed to the pairwise messages we've seen before

All processes in the communicator must participate.
Cannot proceed until all have participated.

* Don't necessarity know what's ‘under the hood'.

LS ST, g
Other MPI Collectives
Broadcast Scatter Gather
MPI_Bcast MPI_Scatter MPI_Gather » File 1/0

©- © == @0 @ (@0 (@)
OLNOLNOLNOLNOLNOLNOLNO W—

Ramses van Zon Distributed Parallel Programming with MPI - part 2 PHY1610 Winter 2023 10/22

* Barriers (avoid!)

e All-to-all ...

MPI Domain decomposition

Ramses van Zon Distributed Parallel Programming with MPI - part 2 PHY1610 Winter 2023 11/22

Solving the diffusion equation with MPI

Consider a diffusion equation with an explicit finite-difference, time-marching method.

Imagine the problem is too large to fit in the memory of one node, so we need to do domain decomposition, and
use VIPI.

ETHELCRTER AT Distributed Parallel Programming with MPI - part 2 PHY1610 Winter 2023 12/22

Discretizing Derivatives

e Partial Differential Equations like the diffusion 92T Tiv1 — 2T +Tia
equation 0n2 = A2

o

are usually numerically solved by finite differencing
the discretized values.

e Implicitly or explicitly involves interpolating data

and taking the derivative of the interpolant. . . .

e Larger ‘stencils’ — More accuracy.

Ramses van Zon Distributed Parallel Programming with MPI - part 2 PHY1610 Winter 2023 13/22

Diffusion equation in higher dimensions
Spatial grid separation: Axz. Time step At.

Grid indices: ¢, j. Time step index: (n)
at |, At
" n " +1 -2 +1
| T -2 + 1)
9z2 |, = Ax?
+ n) (n—1)
: or) T, — T
ot |. . At
2vJ
(n) (n) (n) (n) (n)
T TN Toa +Tma 4Ty + T, + Tt
i g 4] 9z~ 9y /|, . Ax?
"y

Ramses van Zon Distributed Parallel Programming with MPI - part 2 PHY1610 Winter 2023 14 /22

Stencils and Boundaries

e How do you deal with
boundaries?

e The stencil juts out, you need
info on cells beyond those you're
updating.

® Number of guard cells ng =1

e Loop fromi =mny, ...

o Common solution: Guard cells: N —2n,.

> Pad domain with these guard
celss so that stencil works even
for the first point in domain.

> Fill guard cells with values
such that the required
boundary conditions are met.

Ramses van Zon Distributed Parallel Programming with MPI - part 2 PHY1610 Winter 2023 15/22

Domain decomposition

e A very common approach to
parallelizing on distributed
memory computers.

e Subdivide the domain into
contiguous subdomains.

® Give each subdomain to a
different MPI process.

e No process contains the full
data!

e Maintains locality.

e Need mostly local data, ie., only
data at the boundary of each
subdomain will need to be sent
between processes.

Ramses van Zon Distributed mming with MPI - part 2 "BRY1610 Winted 3b23

Guard cell exchange

® In the domain decomposition, the stencils will jut
out into a neighbouring subdomain.
® Much like the boundary condition.
® One uses guard cells for domain decomposition too.
e If we managed to fill the guard cell with values
from neighbouring domains, we can treat each

coupled subdomain as an isolated domain with
changing boundary conditions.

e Could use even/odd trick, or sendrecv.

Scite

Ramses van Zon Distributed Parallel Programming with MPI - part 2 PHY1610 Winter 2023 17 /22

1D diffusion with MPI

Before MPI

a = 0.25%dt/pow(dx,2);
guardleft = 0;
guardright = n+1;
for (int t=0;t<maxt;t++) {
T[guardleft] = 0.0;
T[guardright] = 0.0;
for (int i=1; i<=n; i++)
newT[i] = T[i] + ax(T[i+1]+T[i-1]1-2%T[il);
for (int i=1; i<=n; i++)
T[i] = newT[i];
}

Note:

e the for-loop over i could also have been a call to
dgemv for a submatrix.

e the for-loop over i could also easily be parallelized
with OpenMP

(= hybrid MPI-OpenMP code).

Ramses van Zon

Distributed Parallel Programming with MPI - part 2

After MPI

MPI_Init (&argc,&argv) ;

MPI_Comm_rank (MPI_COMM_WORLD,&rank) ;
MPI_Comm_size (MPI_COMM_WORLD,&size) ;
left = rank-1; if(left<0)left=MPI_PROC_NULL;
right = rank+1; if(right>=size)right=MPI_PROC_NULL;
localn = n/size;

a = 0.25*dt/pow(dx,2);

guardleft = 0;

guardright = localn+1;

for (int t=0;t<maxt;t++) {

MPI_Sendrecv(&T[1], 1,MPI_DOUBLE,left, 11,
&T[guardright] ,1,MPI_DOUBLE,right,11,
MPI_COMM_WORLD,MPI_STATUS_IGNORE) ;

MPI_Sendrecv(&T[nlocall, 1,MPI_DOUBLE,right,11,
&T[guardleft], 1,MPI_DOUBLE,left, 11,
MPI_COMM_WORLD,MPI_STATUS_IGNORE) ;

if (rank==0) T[guardleft] = 0.0;

if (rank==size-1) T[guardright] = 0.0;

for (int i=1; i<=localn; i++)

newT[i] = T[i] + a*(T[i+1]+T[i-1]1-2*T[i]);
for (int i=1; i<=n; i++)
T[i] = newT[i];
¥
MPI_Finalize();

18/22

PHY1610 Winter 2023

2D diffusion with MPI

How to divide the work in 2d?

® Less communication (18 edges). e Easier to code, similar to 1d, but with contiguous
guard cells to send up and down.

e Harder to program, non-contiguous data to send,
left, right, up and down. e More communication (30 edges).

Ramses van Zon Distributed Parallel Programming with MPI - part 2 PHY1610

Let’s look at the easiest domain decomposition.
Serial:
HEEEEEEE
YRR
] [
EEEEEEEE

Communication pattern:

e Copy upper stripe to upper neighbour bottom guard cell.
e Copy lower stripe to lower neighbout top guard cell.

e Contiguous cells: can use count in MPI_Sendrecv.

e Similar to 1d diffusion.

Parallel (P = 3):

Ramses van Zon Distril Parallel P ing with MPI - part 2 PHY1610

Hybrid MPI4+OpenMP

Schilet

ETHELCRTER AT Distributed Parallel Programming with MPI - part 2 PHY1610 Winter 2023 21/22

Hybrid MPI+OpenMP
You can mix MPI and OpenMP.

This can be beneficial: pure MPI requires more communications and more memory overhead.
Coding

As far as coding is involved, that's easy: use MPI calls and OpenMP directives.

Usually, the MPI part is the trickiest: do that first.

Running

As far as running hybrid code, that can be tricky too. You want to avoid running one mpi process per core, and
then overloading that core with multiple threads.

The scheduler can help in this respect. E.g. with SLURM, with 16-core nodes, you can say

#SBATCH --nodes=3

#SBATCH --ntaskspernode=2

#SBATCH --cpuspertask=8

module load gcc openmpi

export OMP_NUM_THREADS=8

mpirun ./hybridcode # can use srun instead of mpirun too.

to get 6 mpi processes spread over 3 nodes, each runnin§"8 threads.)
Ramses van Zon Distributed Parallel Programming with MPI - part 2 PHY1610 Winter 2023 22/22

	MPI Reductions
	MPI Domain decomposition
	Hybrid MPI+OpenMP

