
High Performance Scientific Computing with OpenMP, part 2

Ramses van Zon

PHY1610 Winter 2023

Ramses van Zon High Performance Scientific Computing with OpenMP, part 2 PHY1610 Winter 2023 1 / 29

Reductions

Ramses van Zon High Performance Scientific Computing with OpenMP, part 2 PHY1610 Winter 2023 2 / 29

Dot Product

Dot product of two vectors

Start from a serial implementation, then will
add OpenMP

Program tells answer, correct answer, time.

n = ~x · ~y =
∑

i

xi yi

Ramses van Zon High Performance Scientific Computing with OpenMP, part 2 PHY1610 Winter 2023 3 / 29

Dot Product Code
// ndot_main.cc
#include <iostream>
#include <rarray>
#include "ticktock.h"
double ndot(const rarray<double,1>& x,

const rarray<double,1>& y);
int main()
{

int n = 20'000'000;
rarray<double,1> x(n), y(n);
for (int i=0; i<n; i++)

x[i]=y[i]=i;
double nn = n;
double ans = (nn-1)*nn*(2*nn-1)/6;
TickTock tt;
tt.tick();
double dot = ndot(x,y);
std::cout << "Dot product: " << dot << "\n"

<< "Exact answer: " << ans << "\n";
tt.tock("Took");

}

// serial_ndot.cc
#include <rarray>
#include <algorithm>
double ndot(const rarray<double,1>& x,

const rarray<double,1>& y)
{

int n = std::min(x.size(), y.size());
double tot=0;
for (int i=0; i<n; i++)

tot += x[i] * y[i];
return tot;

}

$ make serial_ndot
$./serial_ndot
Dot product: 2.66667e+21
Exact answer: 2.66667e+21
Took 0.1055 sec
$

Ramses van Zon High Performance Scientific Computing with OpenMP, part 2 PHY1610 Winter 2023 4 / 29

Towards A Parallel Dot Product
We could clearly parallelize the loop.

We could make tot shared, then all threads can add to it.

// omp_ndot_race.cc
#include <rarray>
#include <algorithm>
double ndot(const rarray<double,1>& x,

const rarray<double,1>& y) {
int n = std::min(x.size(), y.size());
double tot=0;
#pragma omp parallel for default(none) shared(n,tot,x,y)
for (int i=0; i<n; i++)

tot += x[i] * y[i];
return tot;

}

$ make omp_ndot_race
$ export OMP_NUM_THREADS=16
$./omp_ndot_race
Dot product: 2.64925e+20
Exact answer: 2.66667e+21
Took 0.5431 sec
$./omp_ndot_race
Dot product: 2.62621e+20
Exact answer: 2.66667e+21
Took 0.5383 sec

Wrong answer!

Answer varies!

Slower computation!

Ramses van Zon High Performance Scientific Computing with OpenMP, part 2 PHY1610 Winter 2023 5 / 29

Our very first race condition!

Can be very subtle, and only appear intermittently.

Your program can have a bug but not display any symptoms for small runs!

Primarily a problem with shared memory.

Classical parallel bug.

Multiple writers to some shared resource.

Ramses van Zon High Performance Scientific Computing with OpenMP, part 2 PHY1610 Winter 2023 6 / 29

Race Condition Example
Say, initially, tot=0, and one threads want to add 1 to it while a second thread want to add 2 at the
same time.

The correct answer for tot is, clearly, three.

However, we may see any of the answers 1, 2, or 3.

How does this issue arise?

Non-atomic adding and updating

Thread 0: add 1 Thread 1: add 2
read tot=0 to reg0 .
reg0 = reg0+1 read tot=0 to reg1
store reg0(=1) in tot reg1 = reg1 + 2
. store reg1(=2) in tot

Ramses van Zon High Performance Scientific Computing with OpenMP, part 2 PHY1610 Winter 2023 7 / 29

So it’s wrong, but why is it slower?

You might thing the parallel version should at least still be faster, though it may be wrong. But even
that’s not the case.

Here, multiple cores repeatedly try to read, access and store the same variable in memory.

This means the shared variable that is updated in a register, cannot stay in register: It has to be
copied back to main memory, so the other threads see it correctly.

The other threads then have to re-read the variable.

This write-back would not be necessary if the variable was shared but not written to.

Ramses van Zon High Performance Scientific Computing with OpenMP, part 2 PHY1610 Winter 2023 8 / 29

Memory hierarchy
Memory is layered: between registers and
shared main memory there are further layers
called caches.

Caches are faster but more expensive and
therefore smaller. They are like private
memory for each core.

Main memory is the slowest part of the
memory.

Caches are automatically kept coherent
between cores.

Ramses van Zon High Performance Scientific Computing with OpenMP, part 2 PHY1610 Winter 2023 9 / 29

Fixing the race condition

Ramses van Zon High Performance Scientific Computing with OpenMP, part 2 PHY1610 Winter 2023 10 / 29

OpenMP critical construct
Our code get it wrong because different threads are updating the tot variable at the same time.

The critical construct:

Defines a critical region.
Only one thread can be operating within this region at a time.
Keeps modifications to shared resources safe.

// omp_ndot_critical.cc
#include <rarray>
#include <algorithm>
double ndot(const rarray<double,1>& x,

const rarray<double,1>& y)
{

int n = std::min(x.size(), y.size());
double tot=0;
#pragma omp parallel for default(none) shared(n,tot,x,y)
for (int i=0; i<n; i++)

#pragma omp critical
tot += x[i] * y[i];

return tot;
}

Ramses van Zon High Performance Scientific Computing with OpenMP, part 2 PHY1610 Winter 2023 11 / 29

Critical Construct Timing
// omp_ndot_critical.cc
#include <rarray>
#include <algorithm>
double ndot(const rarray<double,1>& x,

const rarray<double,1>& y)
{

int n = std::min(x.size(), y.size());
double tot=0;
#pragma omp parallel for default(none) shared(n,tot,x,y)
for (int i=0; i<n; i++)

#pragma omp critical
tot += x[i] * y[i];

return tot;
}

$ make omp_ndot_critical
$ export OMP_NUM_THREADS=16
$./omp_ndot_critical
Dot product: 2.66667e+21
Exact answer: 2.66667e+21
Took 4.6697 sec

Correct, but 44× slower than serial version!

Ramses van Zon High Performance Scientific Computing with OpenMP, part 2 PHY1610 Winter 2023 12 / 29

OpenMP atomic construct
Most hardware has support for atomic instructions (indivisible so cannot get interrupted)
Small subset, but load/add/store usually in it.
Not as general as critical
Much lower overhead.
#pragma omp atomic [read|write|update|capture]

// omp_ndot_atomic.cc
#include <rarray>
#include <algorithm>
double ndot(const rarray<double,1>& x,

const rarray<double,1>& y)
{

int n = std::min(x.size(), y.size());
double tot=0;
#pragma omp parallel for default(none) shared(n,tot,x,y)
for (int i=0; i<n; i++)

#pragma omp atomic update
tot += x[i] * y[i];

return tot;
}

Ramses van Zon High Performance Scientific Computing with OpenMP, part 2 PHY1610 Winter 2023 13 / 29

Atomic Construct Timing
// omp_ndot_atomic.cc
#include <rarray>
#include <algorithm>
double ndot(const rarray<double,1>& x,

const rarray<double,1>& y)
{

int n = std::min(x.size(), y.size());
double tot=0;
#pragma omp parallel for default(none) shared(n,tot,x,y)
for (int i=0; i<n; i++)

#pragma omp atomic update
tot += x[i] * y[i];

return tot;
}

$ make omp_ndot_atomic
$ export OMP_NUM_THREADS=16
$./omp_ndot_atomic
Dot product: 2.66667e+21
Exact answer: 2.66667e+21
Took 2.177 sec

About twice faster than critical, but still not great.
Ramses van Zon High Performance Scientific Computing with OpenMP, part 2 PHY1610 Winter 2023 14 / 29

Local Sums
The issue we have not resolved is that we’re still updating tot, which causes copies to main memory at
every iteration.

What if we accumulated tot for each core, and sum them up later?

double ndot(const rarray<double,1>& x,
const rarray<double,1>& y)

{
int n = std::min(x.size(), y.size());
double tot=0;
#pragma omp parallel default(none) shared(n,tot,x,y)
{

double localtot=0;
#pragma omp for
for (int i=0; i<n; i++)

localtot += x[i] * y[i];
#pragma omp atomic update
tot += localtot;

}
return tot;

}

$ export OMP_NUM_THREADS=16
$./omp_ndot_local
Dot product: 2.66667e+21
Exact answer: 2.66667e+21
Took 0.01715 sec

Correct answer, 6x faster!

Ramses van Zon High Performance Scientific Computing with OpenMP, part 2 PHY1610 Winter 2023 15 / 29

OpenMP Reduction Operations
What we did is quite common, taking a bunch
of data and summing it to one value:
reduction

OpenMP supports this using reduction
variables.

When declaring a variables as reduction
variables, private copies are made (much as for
private variables), which are combined at the
end of a parallel region through some
operation (+, *, min, max).

omp_ndot_reduction.cc

Ramses van Zon High Performance Scientific Computing with OpenMP, part 2 PHY1610 Winter 2023 16 / 29

Reduction Timing
// omp_ndot_reduction.cc
#include <rarray>
#include <algorithm>
double ndot(const rarray<double,1>& x,

const rarray<double,1>& y)
{

int n = std::min(x.size(), y.size());
double tot=0;
#pragma omp for default(none) shared(n,x,y) reduction(+:tot)
for (int i=0; i<n; i++)

tot += x[i] * y[i];
return tot;

}

$ make omp_ndot_reduction
$ export OMP_NUM_THREADS=8
$./omp_ndot_reduction
Dot product: 2.66667e+21
Exact answer: 2.66667e+21
Took 0.01691 sec
$

Correct, same timing as local sums, but
simpler code.

Ramses van Zon High Performance Scientific Computing with OpenMP, part 2 PHY1610 Winter 2023 17 / 29

Load Balancing

Ramses van Zon High Performance Scientific Computing with OpenMP, part 2 PHY1610 Winter 2023 18 / 29

Load Balancing in OpenMP

So far every iteration of the loop had the same amount of work.

Not always the case.

Sometimes cannot predict beforehand how unbalanced the problem is

OpenMP has work sharing constructs that allow you do statically or dynamically balance the load.

Ramses van Zon High Performance Scientific Computing with OpenMP, part 2 PHY1610 Winter 2023 19 / 29

Example: Mandelbrot Set
Let a be a parameter in the quadratic map:

bn+1 = b2
n + a

Depending on a, points b can escape to
infinite, or not, as n→∞.

The mandelbrot set is the boundary between
the set of a values which allow bn to escape,
and the set of values that do not.

Note: if ‖bn‖ > 2, b will escape.

Calculation:

Iterate for each point a in square, starting
from b0 = 0, and see if ‖bn‖ > 2.
if n<nmax, then blue, else yellow.

On the outside points diverge quickly.
Inside points: lots of work.

Ramses van Zon High Performance Scientific Computing with OpenMP, part 2 PHY1610 Winter 2023 20 / 29

Mandelbrot Code Overview
// iterations for each point
int how_many_iter(std::complex<double> a, int maxiter);
// compute iterations for each point in a rectangle
rmatrix<int> make_mandel_map(double xmin, double xmax, double ymin,

double ymax, int npix, int maxiter)
// display specific stuff
char display_map(const rmatrix<int>&,float,double,double&,double&,double&,double&);
void my_pgctab(float,float,float,float,float,float,int);
// driver routine
int main();

Compile and run:
$ make mandel mandel-parallel
$./mandel

5.06 sec
...
$ export OMP_NUM_THREADS=16
$./mandel-parallel

1.366 sec

Ramses van Zon High Performance Scientific Computing with OpenMP, part 2 PHY1610 Winter 2023 21 / 29

Computationally most demanding functions
rmatrix<int> make_mandel_map(double xmin, double xmax,

double ymin, double ymax,
int npix, int maxiter) {

rmatrix<int> mymap(npix,npix);

for (int i=0; i<npix; i++)
for (int j=0; j<npix; j++) {

double x = ((double)i)/((double)npix)*(xmax-xmin)+xmin;
double y = ((double)j)/((double)npix)*(ymax-ymin)+ymin;
std::complex<double> a(x,y);
mymap[i][j] = how_many_iter(a,maxiter);

}
return mymap;

}

int how_many_iter(std::complex<double> a, int maxiter) {
std::complex<double> b = a;
for (int i=0; i<maxiter; i++) {

if (std::norm(b) > 4) return i;
b = b*b + a;

}
return maxiter;

}
Ramses van Zon High Performance Scientific Computing with OpenMP, part 2 PHY1610 Winter 2023 22 / 29

Computationally most demanding functions
rmatrix<int> make_mandel_map(double xmin, double xmax,

double ymin, double ymax,
int npix, int maxiter) {

rmatrix<int> mymap(npix,npix);
#pragma omp parallel for default(none) shared(mymap,xmin,xmax,ymin,ymax,npix,maxiter)
for (int i=0; i<npix; i++)

for (int j=0; j<npix; j++) {
double x = ((double)i)/((double)npix)*(xmax-xmin)+xmin;
double y = ((double)j)/((double)npix)*(ymax-ymin)+ymin;
std::complex<double> a(x,y);
mymap[i][j] = how_many_iter(a,maxiter);

}
return mymap;

}

int how_many_iter(std::complex<double> a, int maxiter) {
std::complex<double> b = a;
for (int i=0; i<maxiter; i++) {

if (std::norm(b) > 4) return i;
b = b*b + a;

}
return maxiter;

}
Ramses van Zon High Performance Scientific Computing with OpenMP, part 2 PHY1610 Winter 2023 23 / 29

First Try OpenMP Mandelbrot
Default work sharing breaks N iterations into
N/nthreads chunks and assigns them to
threads.

But threads 0, 1, 6 and 7 will be done and
sitting idle while threads 2, 3, 4 and 5 work on
the rest

Inefficient use of resources.

Serial 5.060s
Nthreads=16 1.336s
Speedup 3.8x
Efficiency 24%

0 1 2 3 4 5 6 7

Ramses van Zon High Performance Scientific Computing with OpenMP, part 2 PHY1610 Winter 2023 24 / 29

Scheduling constructs in OpenMP

Default: each thread gets a big consecutive chunk of the loop. Often better to give each thread
many smaller interleaved chunks.

Can add schedule clause to omp for to change work sharing.

We can decide either at compile-time (static schedule) or run-time (dynamic schedule) how work will
be split.

#pragma omp parallel for schedule(static, m) gives m consecutive loop elements to each
thread instead of a big chunk.

With schedule(dynamic, m), each thread will work through m loop elements, then go to the
OpenMP run-time system and ask for more.

Load balancing (possibly) better with dynamic, but larger overhead than
with static.

Ramses van Zon High Performance Scientific Computing with OpenMP, part 2 PHY1610 Winter 2023 25 / 29

Second Try OpenMP Mandelbrot
#pragma omp parallel for schedule(static,25)

Can change the chunk size different from ∼
N/nthreads
In this case, more columns – work distributed a
bit better.
Now, for instance, thread 7 gets both a big
work chunk and a little one.

Serial 5.060s
Nthreads=16 0.7693s
Speedup 6.6x
Efficiency 41%

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Ramses van Zon High Performance Scientific Computing with OpenMP, part 2 PHY1610 Winter 2023 26 / 29

Third Try: Schedule dynamic
#pragma omp parallel for schedule(dynamic)

Break up into many pieces and hand them to
threads when they are ready.
Dynamic scheduling.
Increases overhead, decreases idling threads.
Can also choose chunk size.

Serial 5.060s
Nthreads=16 0.7686s
Speedup 6.6x
Efficiency 41%

Ramses van Zon High Performance Scientific Computing with OpenMP, part 2 PHY1610 Winter 2023 27 / 29

Tuning

schedule(static) or schedule(dynamic) are good starting points.
To get best performance in badly imbalanced problems, may have to play with chunk size; depends
on your problem, hardware, and compiler.

static,1 dynamic,1
0.4347s 0.4121s
11.6x 12.3x
72% 77%

Ramses van Zon High Performance Scientific Computing with OpenMP, part 2 PHY1610 Winter 2023 28 / 29

More. . .

There are many more features to OpenMP not discussed here.

Collapsed loops

Tasks

Tasks with dependencies

Nested OpenMP parallelism

Locks

SIMD

Thread affinities

Compute devices (e.g. NVIDIA/AMD graphics cards, Intel Xeon Phi)

Ramses van Zon High Performance Scientific Computing with OpenMP, part 2 PHY1610 Winter 2023 29 / 29

	Reductions
	Fixing the race condition
	Load Balancing

