
Measuring Performance

Ramses van Zon

PHY1610, Winter 2023

Ramses van Zon Measuring Performance PHY1610, Winter 2023 1 / 26

Measuring Performance

Ramses van Zon Measuring Performance PHY1610, Winter 2023 2 / 26

Profiling

is a form of runtime application analysis that
measures a performance metric, e.g. the
memory or the duration of a program or part
thereof, the usage of particular instructions, or
the frequency and duration of function calls.

Like debuggers for finding bugs, profilers are
evidence-based methods to find performance
problems.

Most commonly, profiling information serves to
aid program optimization.

We cannot improve what we don’t measure!

Measure

Make
improvements

Find
bottlenecks

Ramses van Zon Measuring Performance PHY1610, Winter 2023 3 / 26

Profiling
Where in the program is time being spent?

Find and focus in the “expensive’ ’ parts.

Don’t wate time optimizing parts that don’t
matter.

Find bottlenecks.
TickTock timer;
double timesteptime = 0.0;
double snapshottime = 0.0;
timer.tick();
initialize_wave(w);
timer.tock("initialization took");

// Output initial wave signal to files
timer.tick();
output_snapshot(0.0, w, fout);
nc_output_snapshot(0.0, w, ncout);
snapshottime += timer.silent_tock();

// Take timesteps
for (int s = 0; s < derivs.nsteps; s++) {

// Evolve one time step
timer.tick();
advance_wave(w, params, derivs);
timesteptime += timer.silent_tock();

// Output wave signal to files
if ((s+1)%derivs.nper == 0) {

timer.tick();
output_snapshot(s*derivs.dt,w,fout);
nc_output_snapshot(s*derivs.dt,w,ncout);
snapshottime += timer.silent_tock();

}
}
std::cout

<<"timesteps took "<<timesteptime<<"s\n"
<<"file I/O took "<<snapshottime<<"s\n";

Ramses van Zon Measuring Performance PHY1610, Winter 2023 4 / 26

Profiling

Two main approaches for Profiling

Tracing vs. Sampling

Instrumentation vs. Instrumentation-Free

The code on the right using “instrumentation”:
extra code needed to be added.

// Take timesteps
for (int s = 0; s < derivs.nsteps; s++) {

// Evolve one time step
timer.tick();
advance_wave(w, params, derivs);
timesteptime += timer.silent_tock();

// Output wave signal to files
if ((s+1)%derivs.nper == 0) {

timer.tick();
output_snapshot(s*derivs.dt,w,fout);
nc_output_snapshot(s*derivs.dt,w,ncout);
snapshottime += timer.silent_tock();

}
}
std::cout

<<"timesteps took "<<timesteptime<<"s\n"
<<"file I/O took "<<snapshottime<<"s\n";

Ramses van Zon Measuring Performance PHY1610, Winter 2023 5 / 26

Instrumentation
You can instrument regions of the code
Simple, but incredibly useful
Runs every time your code is run
Can trivially see if changes make things better or worse

// sumsins.cpp
#include <cmath>
#include <iostream>
#include "ticktock.h"
int main()
{

TickTock stopwatch; // holds timing info
stopwatch.tick(); // starts timing
// compute
double b = 0.0;
for (int i=0; i<=10000000; i++)

b += sin(i);
// report
std::cout << "The sum of sin(i) for i=0..10M"

<< " is " << b << "\n";
stopwatch.tock("To compute this took");

}

$ g++ -c -std=c++17 -O2 sumsins.cpp
$ g++ -c -std=c++17 -O2 ticktock.cc
$ g++ sumsins.o ticktock.o -o sumsins
$./sumsins
The sum of sin(i) for i=0..10M is 1.95589
To compute this took 0.1318 sec

This actually just uses the std::chrono standard
C++ library under the hood, but offers a simpler
way to time portions of code.

To get this little code:

git clone https://github.com/vanzonr/ticktock

Ramses van Zon Measuring Performance PHY1610, Winter 2023 6 / 26

https://github.com/vanzonr/ticktock

Instrumentation-free profiling with OS utilities

Let’s start by looking at some utilities provided by the Linux OS that we can use for profiling.

time
Measure duration of the whole run of an application

top, htop
Monitor CPU, memory and I/O utilization while the application is running.

ps, vmstat, free
(One-time) information on a running processes

. . .

Ramses van Zon Measuring Performance PHY1610, Winter 2023 7 / 26

Time : timing the whole program

time is a built-in command in the bash shell.

Very simple to use. It can be run from the
Linux command line on any command.

In a serial program:
real = user + sys

In parallel, at most:
user = nprocs x real

Can be run on tests to identify performance
regressions

$ time ./wave1d longwaveparams.txt

[program output]

real 0m16.715s # Elapsed "walltime"
user 0m16.105s # Actual user time (of all cores)
sys 0m0.252s # System/OS time, e.g. I/O

Ramses van Zon Measuring Performance PHY1610, Winter 2023 8 / 26

Top: Watching a program run
Run a command in one terminal.
Run top or top -u $USER in another terminal on the same node (type ‘q’ to exit).

top - 20:26:34 up 6 days, 2:52, 8 users, load average: 0.47, 0.81, 1.06
Tasks: 380 total, 2 running, 378 sleeping, 0 stopped, 0 zombie
%Cpu(s): 6.5 us, 0.6 sy, 0.0 ni, 92.7 id, 0.1 wa, 0.0 hi, 0.0 si, 0.0 st
KiB Mem : 65945184 total, 52059848 free, 1759912 used, 12125424 buff/cache
KiB Swap: 0 total, 0 free, 0 used. 57586756 avail Mem

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
12241 rzon 20 0 104376 8696 6228 R 97.7 0.0 0:05.96 wave1d
12244 rzon 20 0 173104 2656 1696 R 0.3 0.0 0:00.02 top
6199 rzon 20 0 186868 2760 1100 S 0.0 0.0 0:01.09 sshd
6200 rzon 20 0 127364 3364 1816 S 0.0 0.0 0:00.10 bash

Refreshes every 3 seconds.

htop is an alternative to top with a nicer default display.

ps, vmstat and free can give the same information, but just at a single time and non-interactively.

Pro-tip: type “zxcVm1t0” after starting top for a more insightful display.

Ramses van Zon Measuring Performance PHY1610, Winter 2023 9 / 26

Sampling for Profiling

As the program executes, every so often (~ 100ms) a timer goes, off, and the current location of
execution is recorded

Shows where time is being spent

Benefits:

Allow us to get finer-grained (more detailed) information about where time is being spent

Very low overhead

No instrumentation, i.e., no code modification

Disadvantages:

Requires sufficiently long runtime to get enough samples.
Does not tell us why the code was there.

Ramses van Zon Measuring Performance PHY1610, Winter 2023 10 / 26

A simple sampler : gprof
gprof is a profiler that works by adding the options “-pg -g” to g++ (both in compilations and
linking), the code will sample itself.
Depending on the combination of versions of g++ and gprof, it may also require the -gstabs option.
Rebuild and (re)run the application.
A file called “gmon.out” is created as a side-effect now.
gmon.out needs to be analysed by the gprof command.
The gprof command takes at least two arguments: the executable and the gmon.out file name.
This will show how much of its time the program spend in each function.
It also can take an option --line argument, to show line-by-line info.

$ make clean && make
g++ -c -pg -g -gstabs -std=c++17 -O2 -o wave1d.o wave1d.cpp
g++ -c -pg -g -gstabs -std=c++17 -O2 -o parameters.o parameters.cpp
...
g++ -O2 -pg -g -gstabs -o wave1d wave1d.o parameters.o ... ncoutput.o -lnetcdf_c++4 -lnetcdf
$./wave1d longwaveparameters.txt
Results written to 'longresults.txt'.
and also written to 'longresults.txt.nc'.
$ gprof ./wave1d gmon.out
...
$ gprof --line ./wave1d gmon.out

Ramses van Zon Measuring Performance PHY1610, Winter 2023 11 / 26

Output of gprof –line
$ gprof --line ./wave1d gmon.out | less
Flat profile:

Each sample counts as 0.01 seconds.
% cumulative self self total

time seconds seconds calls Ts/call Ts/call name
32.20 1.11 1.11 one_time_step(Waves&, Params&, Derived&) (wavefields.cpp:42 @ 403d10)
23.50 1.92 0.81 one_time_step(Waves&, Params&, Derived&) (wavefields.cpp:44 @ 403d52)
16.97 2.51 0.59 one_time_step(Waves&, Params&, Derived&) (wavefields.cpp:43 @ 403d37)
15.52 3.04 0.54 one_time_step(Waves&, Params&, Derived&) (wavefields.cpp:42 @ 403d46)
2.18 3.12 0.08 one_time_step(Waves&, Params&, Derived&) (wavefields.cpp:49 @ 403d83)
2.18 3.19 0.08 one_time_step(Waves&, Params&, Derived&) (wavefields.cpp:50 @ 403d89)
2.18 3.27 0.08 one_time_step(Waves&, Params&, Derived&) (wavefields.cpp:51 @ 403d93)
1.45 3.32 0.05 one_time_step(Waves&, Params&, Derived&) (wavefields.cpp:41 @ 403d67)
0.87 3.35 0.03 one_time_step(Waves&, Params&, Derived&) (wavefields.cpp:49 @ 403d78)
0.73 3.37 0.03 one_time_step(Waves&, Params&, Derived&) (wavefields.cpp:48 @ 403d7d)
0.58 3.39 0.02 one_time_step(Waves&, Params&, Derived&) (wavefields.cpp:47 @ 403d98)
0.58 3.41 0.02 ra::shared_shape<double, 1>::size() const (rarray:765 @ 403c32)
0.44 3.43 0.02 std::ostream::operator<<(double) (ostream:221 @ 403c12)
0.29 3.44 0.01 std::ostream::operator<<(double) (ostream:221 @ 403beb)
0.15 3.44 0.01 output_snapshot(double, Waves&, std::basic_ofstream<char, std::char_traits<char> >&) (output.cpp:30 @ 403c0e)
0.15 3.45 0.01 std::ostream::operator<<(double) (ostream:221 @ 403c06)
0.15 3.45 0.01 std::basic_ostream<char, std::char_traits<char> >& std::operator<< <std::char_traits<char> >(std::basic_ostream<char, std::char_traits<char> >&, char const) (ostream:570 @ 403bf9)
0.00 3.45 0.00 20 0.00 0.00 ra::shared_shape<double, 1>::decref() (rarray:868 @ 4031f0)

Ramses van Zon Measuring Performance PHY1610, Winter 2023 12 / 26

Memory Profiling

Most profilers use time as a metric, but what about memory?

Valgrind

Massif: Memory Heap Profiler
I valgrind --tool=massif ./mycode

I ms_print massif.out

Cachegrind: Cache Profiler
I valgrind --tool=cachegrind ./mycode

I Kcachegrind (gui frontend for cachegrind)

https://valgrind.org

Ramses van Zon Measuring Performance PHY1610, Winter 2023 13 / 26

https://valgrind.org

ARM Forge
ARM Forge is a commercial suite of developer tools: a debugger DDT, a profiler MAP and a performance
report utility (perf-report).

Get them on the Teach cluster or on Niagara with:
module unload gcc/12 # for technical reasons gcc must be loaded after ddt
module load ddt
module load gcc/12

Performance Reports
Compile with debugging on, ie -g (but not -pg)
perf-report ./wave1d longwaveparameters.txt
Generates .txt and .html files

MAP
Compile with debugging on, ie -g (but not -pg)
map or map ./wave1d longwaveparameters.txt
Can run without a gui with the --profile parameter.

Ramses van Zon Measuring Performance PHY1610, Winter 2023 14 / 26

ARM Performance Reports (Forge)

Ramses van Zon Measuring Performance PHY1610, Winter 2023 15 / 26

ARM MAP (Forge)

Ramses van Zon Measuring Performance PHY1610, Winter 2023 16 / 26

Profiling Summary

Two main approches: tracing vs sampling

Put your own timers in the code in/around important sections, find out where time is being spent.
I if something changes, you’ll know in what section

gprof is easy to use and excellent at finding where most of the time in your code is spent.

Know the ‘expensive’ parts of your code and spend your programming time accordingly.

valgrind is good for all things memory; performance, cache, and usage.

ARM Forge (with MAP, DDT, perf-report) is a great tool, if you have it available use it!

The “write less code” advice applies here too: use already optimized libraries.

Ramses van Zon Measuring Performance PHY1610, Winter 2023 17 / 26

Using SciNet (and other HPC) clusters

Ramses van Zon Measuring Performance PHY1610, Winter 2023 18 / 26

Teach cluster: login and compute nodes

So far, you’ve been running short computations on the Teach login node.

But most cluster (incl. Teach) consists of at least *two functionality different nodes.

The login node, teach01, is where you develop, edit, compile, prepare and submit jobs. You share its
resources with other students and courses.

Real computations should run on the compute nodes

The login node and compute nodes have the same architecture, operating system, and software stack.

To run on the compute nodes, you must submit a batch job.

When running this way, your job get dedicated resources: no contention, less timing fluctuations.

Ramses van Zon Measuring Performance PHY1610, Winter 2023 19 / 26

Storage Systems and Locations on SciNet systems

Home and scratch

You have a home and scratch directory on the
system, whose locations will be given by

$HOME=/home/g/groupname/username

$SCRATCH=/scratch/g/groupname/username

Use these convenient variables!

teach01:~$ pwd
/home/s/scinet/rzon
teach01:~$ cd $SCRATCH
teach01:~$ pwd
/scratch/s/scinet/rzon

Project

Users from groups with a RAC allocation will also have a project directory.

$PROJECT=/project/g/groupname/username

Ramses van Zon Measuring Performance PHY1610, Winter 2023 20 / 26

Storage Limits on SciNet

location quota expiration time backed up on login on compute
$HOME 100 GB never yes yes read-only
$SCRATCH 25 TB 2 months no yes yes
$PROJECT by allocation never yes yes yes

Compute nodes do not have local storage, but they have a lot of memory, which you can use as if it
is local disk /dev/shm.

Backup means a recent snapshot, not an achive of all data that ever was.

Ramses van Zon Measuring Performance PHY1610, Winter 2023 21 / 26

Testing
You really should test your code before you submit it to the cluster to know if your code is correct and
what kind of resources you need.

Small test jobs can be run on the login nodes.

Rule of thumb: couple of minutes, taking at most about 1-2GB of memory, couple of cores.

You can run the the ddt debugger on the login nodes after module load ddt.

The ddt module also gives you the map performance profiler.

Short tests that do not fit on a login node, or for which you need a dedicated node or set of cores,
request an interactive debug job with the debugjob command

teach01:~$ debugjob -n C
debugjob: Requesting 1 nodes with N tasks for 240 minutes and 0 seconds
SALLOC: Granted job allocation 202753
SALLOC: Waiting for resource configuration
SALLOC: Nodes teach35 are ready for job
teach35:~$

Here, C is the number of cores.
Ramses van Zon Measuring Performance PHY1610, Winter 2023 22 / 26

The Scheduler

The scheduler is a program that organizes the work load on the cluster.

You submit a request to the scheduler, and it will find the right moment for your request to run.

It does that by looking at the resources available, your priority, times and resources requested, . . .

It is quite a complicated process, with many variables to take into consideration.

Even when we run ‘interactively’ (e.g.debugjob), we are requesting resources to the scheduler

We refer to the ‘resource request’+‘script’ as a jobs.

What we will see next is how to communicate with the scheduler and request resources to run our
programs.

Ramses van Zon Measuring Performance PHY1610, Winter 2023 23 / 26

Submitting jobs
Teach (as well as all other SciNet and CC systems) uses SLURM as its job scheduler.

You submit jobs from a login node by passing a script to the sbatch command:
teach01:~$ cd $SCRATCH
teach01:scratch/rzon$ sbatch jobscript.sh

This puts the job in the queue. It will run on the compute nodes in due course.

Keep in mind:

You must use all requested cores.

Maximum walltime is 24 hours.

Jobs must write to your scratch directory
(home is read-only on compute nodes).

Compute nodes have no internet access

Download data you need beforehand on a login node.

Different clusters have different restrictions.
Ramses van Zon Measuring Performance PHY1610, Winter 2023 24 / 26

Example submission script (serial job)

#!/bin/bash
#SBATCH --nodes=1
#SBATCH --ntask=1
#SBATCH --cpus-per-task=1
#SBATCH --time=1:00:00
#SBATCH --job-name serial_job
#SBATCH --output=serial_output_%j.txt
#SBATCH --mail-type=FAIL

module load gcc/9.2.0

./serial_code 1

teach01:scratch$ sbatch serial_job.sh

First line indicates that this is a bash script.

Lines starting with #SBATCH go to SLURM.

sbatch reads these lines as a job request
(which it gives the name serial_job).

In this case, SLURM looks for one core to be
used for one task, for 1 hour.

Submit from /scratch, as /home is read-only.

Once SLURM founds a node with an unused
core, the script is run there:

I Loads modules;
I Sets an environment variable;
I Runs the serial_code app with argument
“1”.

Ramses van Zon Measuring Performance PHY1610, Winter 2023 25 / 26

Monitoring jobs - command line

Once the job is incorporated into the queue, there are some command you can use to monitor its progress.

”squeue“ to show the job queue (”squeue --me” for just your jobs);

”squeue -j JOBID“ to get information on a specific job
(alternatively,”scontrol show job JOBID“, which is more verbose).

”squeue --start -j JOBID“ to get an estimate for when a job will run.

”jobperf JOBID“ to get an instantaneous view of the cpu+memory usage of a running job’s nodes.

”scancel JOBID“ to cancel the job.
”scancel -u USERID“ to cancel all your jobs (careful!).

”sinfo -p compute“ to look at available nodes.

”sacct“ to get information on your recent jobs.

Ramses van Zon Measuring Performance PHY1610, Winter 2023 26 / 26

	Measuring Performance
	Using SciNet (and other HPC) clusters

