
Fourier Transforms

Ramses van Zon

PHY1610, Winter 2023

Ramses van Zon Fourier Transforms PHY1610, Winter 2023 1 / 28

(Discrete) Fourier Transform

Ramses van Zon Fourier Transforms PHY1610, Winter 2023 2 / 28

Fourier Transform

In this part of the lecture, we will discuss:

The Fourier transform,

The discrete Fourier transform

The fast Fourier transform

Examples using the FFTW library

Ramses van Zon Fourier Transforms PHY1610, Winter 2023 3 / 28

Fourier Transform recap
Let f be a function of some spatial variable x.

f(x) = e−|x|

Transform to a function f̂ of the angular
wavenumber k:

f̂(k) ∝
∫
f(x) e±i k·x dx

f(x) = (1 + k2)−1

Inverse transformation:

f(x) ∝
∫
f̂(k) e∓i k·x dk

Ramses van Zon Fourier Transforms PHY1610, Winter 2023 4 / 28

Fourier Transform

Fourier made the claim that any function can be expressed as a harmonic series.

The FT is a mathematical expression of that.

Constitutes a linear (basis) transformation in function space.

Transforms from spatial to wavenumber, or time to frequency, etc.

Constants and signs are just convention.∗
∗ some restritions apply.

Ramses van Zon Fourier Transforms PHY1610, Winter 2023 5 / 28

Discrete Fourier Transform

C. F. Gauss

Given a set of n function values on a regular
grid:

xj = j∆x; fj = f(j∆x)

Transform to n other values

f̂q =
n−1∑
j=0

fj e
± 2πi j q/n

Easily back-transformed:

fj =
1
n

n−1∑
q=0

f̂q e
∓ 2πi j q/n

Solution is periodic: f̂−q = f̂n−q. You run the risk of aliasing, as q is equivalent to
q + `n. Cannot resolve frequencies higher than q = n/2 (Nyquist).

Ramses van Zon Fourier Transforms PHY1610, Winter 2023 6 / 28

Slow Fourier Transform

f̂q =
n−1∑
j=0

fj e
± 2πi j q/n

Discrete fourier transform is a linear
transformation.

In particular, it’s a matrix-vector
multiplication.

Naively, costs O(n2). Slow!

Ramses van Zon Fourier Transforms PHY1610, Winter 2023 7 / 28

Slow DFT
#include <complex>
#include <rarray>
#include <cmath>

typedef std::complex<double> complex;

void fft_slow(const rvector<complex>& f, rvector<complex>& fhat, bool inverse)
{

int n = fhat.size();
double v = (inverse?-1:1)*2*M_PI/n;
for (int q=0; q<n; q++)
{

fhat[q] = 0.0;
for (int m=0; m<n; m++) {

fhat[q] += complex(cos(v*q*m), sin(v*q*m)) * f[m];
}

}
}

Even Gauss realized O(n2) was too slow and came up with . . .

Ramses van Zon Fourier Transforms PHY1610, Winter 2023 8 / 28

Fast Fourier Transform

Derived in partial form several times before and even after Gauss, because he’d just written it in his
diary in 1805 (published later).

Rediscovered (in general form) by Cooley and Tukey in 1965.

Basic idea

Write each n-point FT as a sum of two n
2 point FTs.

Do this recursively 2 logn times.

Each level requires ∼ n computations: O(n logn) instead of O(n2).

Could as easily divide into 3, 5, 7, . . . parts.

Ramses van Zon Fourier Transforms PHY1610, Winter 2023 9 / 28

Fast Fourier Transform: How is it done?
Define ωn = e2πi/n.

Note that ω2
n = ωn/2.

DFT takes form of matrix-vector multiplication:

f̂q =
n−1∑
j=0

ωqjn fj

With a bit of rewriting (assuming n is even):

f̂q =
n/2−1∑
j=0

ωqjn/2 f2j︸ ︷︷ ︸
FT of even samples

+ ωqn

n/2−1∑
j=0

ωqjn/2 f2j+1︸ ︷︷ ︸
FT of odd samples

Repeat, until the lowest level (for n = 1, f̂ = f).

Note that a fair amount of shuffling is involved.
Ramses van Zon Fourier Transforms PHY1610, Winter 2023 10 / 28

Fast Fourier Transform: Already done!

We’ve said it before and we’ll say it again: Do not write your own: use existing libraries!

Why?

Because getting all the pieces right is tricky;

Getting it to compute fast requires intimate knowledge of how processors work and access memory;

Because there are libraries available.

Examples:
I FFTW3 (Faster Fourier Transform in the West, version 3)
I Intel MKL
I IBM ESSL

Because you have better things to do.

Ramses van Zon Fourier Transforms PHY1610, Winter 2023 11 / 28

Example of using a library: FFTW

Rewrite of previous (slow) ft to a fast one using fftw
#include <complex>
#include <rarray>
#include <fftw3.h>

typedef std::complex<double> complex;

void fft_fast(const rvector<complex>& f, rvector<complex>& fhat, bool inverse)
{

int n = f.size();
fftw_plan p = fftw_plan_dft_1d(n,

(fftw_complex*)f.data(), (fftw_complex*)fhat.data(),
inverse?FFTW_BACKWARD:FFTW_FORWARD,
FFTW_ESTIMATE);

fftw_execute(p);
fftw_destroy_plan(p);

}

Ramses van Zon Fourier Transforms PHY1610, Winter 2023 12 / 28

Notes

Always create a plan first.

An fftw_plan contains all information necessary to compute the transform, including the pointers to
the input and output arrays.

Plans can be reused in the program, and even saved on disk!

When creating a plan, you can have FFTW measure the fastest way of computing dft’s of that size
(FFTW_MEASURE), instead of guessing (FFTW_ESTIMATE).

FFTW works with doubles by default, but you can install single precision too.

Ramses van Zon Fourier Transforms PHY1610, Winter 2023 13 / 28

Inverse DFT

Inverse DFT is similar to forward DFT, up to a normalization: almost just as fast.

fj =
1
n

n−1∑
q=0

f̂q e
∓ 2πi j q/n

Many implementations (almost all in fact) leave out the 1/n normalization.

FFT allows quick back-and-forth between space and wavenumber domain, or time and frequency
domain.

Allows parts of the computation and/or analysis to be done in the most convenient or efficient
domain.

Ramses van Zon Fourier Transforms PHY1610, Winter 2023 14 / 28

Consider an example

Create a 1d input signal: a discretized sinc(x) = sin(x)/x with 16384 points on the interval
[-30:30].

Perform forward transform

Write to standard out

Compile, and linking to fftw3 library.

Continous FT of sinc(x) is the rectangle function:

rect(f) =
{

0.5 if ‖k‖ ≤ 1
0 if ‖k‖ > 1

up to a normalization.

Does it match?

Ramses van Zon Fourier Transforms PHY1610, Winter 2023 15 / 28

Code for the working example
//sincfftw.cpp
#include <iostream>
#include <complex>
#include <rarray>
#include <fftw3.h>
typedef std::complex<double> complex;
int main() {

const int n = 16384;
rvector<complex> f(n), fhat(n);
for (int i=0; i<n; i++) {

double x = 60*(i/double(n)-0.5); // x-range from -30 to 30
if (x!=0.0) f[i] = sin(x)/x; else f[i] = 1.0;

}
fftw_plan p = fftw_plan_dft_1d(n,

(fftw_complex*)f.data(), (fftw_complex*)fhat.data(),
FFTW_FORWARD, FFTW_ESTIMATE);

fftw_execute(p);
fftw_destroy_plan(p);
for (int i=0; i<n; i++)

std::cout << f[i] << "," << fhat[i] << std::endl;
return 0;

}

Ramses van Zon Fourier Transforms PHY1610, Winter 2023 16 / 28

Compile, link, run, plot
$ module load gcc/12 fftw/3 python/3
$ g++ -std=c++17 -c -O2 sincfftw.cpp -o sincfftw.o
$ g++ sincfftw.o -o sincfftw -lfftw3
$./sincfftw > output.dat
$ ipython --pylab

>>> data = genfromtxt('output.dat')
>>> plot(data[:,0])
>>> figure()
>>> plot(data[:,2])

Ramses van Zon Fourier Transforms PHY1610, Winter 2023 17 / 28

Plots of the output, rewrapped

Pick the first and the last 30 points.
>>> x1=range(30)
>>> x2=range(len(data)-30,len(data))
>>> y1=data[x1,2]
>>> y2=data[x2,2]
>>> figure()
>>> plot(hstack((y2,y1)))

Ramses van Zon Fourier Transforms PHY1610, Winter 2023 18 / 28

Undo phase factor due to shifting

>>> plot(hstack((y2,y1))*array([1,-1]*30)

We retrieved our rectangle function!

Ramses van Zon Fourier Transforms PHY1610, Winter 2023 19 / 28

Precise Relation FT and DFT
Consider a function on f(x) an interval [x1, x2].

The fourier analysis will express this in terms of periodic functions, so think of f as periodic.

We will approximate this function with n discrete points on x1 + j∆x, where
∆x = (x2 − x1)/n, and j = 0..n− 1, i.e.

f(x) =
n−1∑
j=0

fjδ (x− (x1 + j∆x)) ∆x

Consider its continuous FT:

f̂(k) =
∫ x2

x1

eikxf(x) dx

eikx must have period (x2 − x1): k = q × 2π/(x2 − x1) with q integer.

Ramses van Zon Fourier Transforms PHY1610, Winter 2023 20 / 28

Precise Relation FT and DFT
Input

f(x) =
n−1∑
j=0

fjδ
(
x− (x1 + j∆x)

)
∆x

∆x =
x2 − x1

n

f̂(k) =
∫ x2

x1

eikxf(x) dx

k =
2π

x2 − x1
q =

2π
n∆x

q

f̂(k) =
∫ x2

x1

n−1∑
j=0

eikxfjδ
(
x−(x1+j∆x)

)
∆x dx

=
n−1∑
j=0

fje
ik(x1+j∆x)∆x

= eikx1∆x
n−1∑
j=0

fje
ikj∆x

= eikx1∆x
n−1∑
j=0

fje
2πiqj/n

Result

f̂(k) = eikx1∆x f̂q

Ramses van Zon Fourier Transforms PHY1610, Winter 2023 21 / 28

Multidimensional transforms
In principle a straighforward generalization:

Given a set of n×m function values on a regular grid:

fab = f(a∆x, b∆y)

Transform these to n other values f̂kl

f̂kl =
n−1∑
a=0

m−1∑
b=0

fab e
± 2πi (a k+b l)/n

Easily back-transformed:

fab =
1
nm

n−1∑
k=0

m−1∑
l=0

f̂kl e
∓ 2πi (a k+b l)/n

Negative frequencies: f−k,−l = fn−k,m−l.
Ramses van Zon Fourier Transforms PHY1610, Winter 2023 22 / 28

Multidimensional FFT

We could successive apply the FFT to each dimension

This may require transposes, can be expensive.

Alternatively, could apply FFT on rectangular patches.

Mostly should let the libraries deal with this.

FFT scaling still n logn.

Ramses van Zon Fourier Transforms PHY1610, Winter 2023 23 / 28

Symmetries for real data

All arrays were complex so far.

If input f is real, this can be exploited.

f∗j = fj ↔ f̂k = f̂∗n−k

Each complex number holds two real numbers, but for the input f we only need n real numbers.

If n is even, the transform f̂ has real f̂0 and f̂n/2, and the values of f̂k > n/2 can be derived
from the complex valued f̂0<k<n/2: again n real numbers need to be stored.

Ramses van Zon Fourier Transforms PHY1610, Winter 2023 24 / 28

Symmetries for real data

A different way of storing the result is in “half-complex storage’ ’. First, the n/2 real parts of
f̂0<k<n/2 are stored, then their imaginary parts in reversed order.

Seems odd, but means that the magnitude of the wave-numbers is like that for a
complex-to-complex transform.

These kind of implementation dependent storage patterns can be tricky, especially in higher
dimensions.

Ramses van Zon Fourier Transforms PHY1610, Winter 2023 25 / 28

Applications?

Ramses van Zon Fourier Transforms PHY1610, Winter 2023 26 / 28

Application of the Fourier transform

Signal processing, certainly.

Many equations become simpler in the fourier basis.
I Reason: exp(ik · x) are eigenfunctions of the ∂/∂x operator.
I Partial diferential equation become algebraic ones, or ODEs.
I Thus avoids matrix operations.

Ramses van Zon Fourier Transforms PHY1610, Winter 2023 27 / 28

Example: Solving a 1D diffusion with FFT

∂ρ

∂t
= κ

∂2ρ

∂x2

for ρ(x, t) on x ∈ [0, L], with boundary conditions ρ(0, t) = ρ(L, t) = 0, and ρ(x, 0) = f(x).

Write

ρ(x, t) =
∞∑

k=−∞

ρ̂k(t)e2πikx/L

then the PDE becomes an ODE:

dρ̂k

dt
= −κ

4π2k2

L2 ρ̂k; with ρ̂k(0) = f̂k.

Alternatively, one can first discretize the PDE, then take an FFT. This is numerically different.

Ramses van Zon Fourier Transforms PHY1610, Winter 2023 28 / 28

	(Discrete) Fourier Transform
	Applications?

