Erik Spence (SciNet HPC Consortium)

Erik Spence

SciNet HPC Consortium

1 March 2023

«40> «F>r «

> <
1 March 2023

DA™

1/16

Lectures, " Loops and conditionals”

To find today’s slides, go to the "Introduction to programming in R" page, on the right, under

https://scinet.courses/1277

Erik Spence (SciNet HPC Consortium)

40> «F>r «Z» «E»

1 March 2023

DA™

2/16

http://www.scinethpc.ca
https://scinet.courses/1277

® Tables.

Today's class will explore the wild wild world of:
® | oops,

® Conditionals,

® Factors,

Erik Spence (SciNet HPC Consortium)

40> «F>r «E» «
1 March 2023

DA™

3/16

http://www.scinethpc.ca

Loops are a feature of all programming languages. What are loops?

® A loop is a programming structure that allows for the same chunk of code to be run over
and over again.

® Each time the chunk of code is run, one or more variables change value, allowing for
slightly different behaviour each 'iteration’ of the loop.

® This allows for more efficient writing of code, since you don’t need to copy-and-paste a
chunk of code many times, if you need to run it many times.

® As with most coding structures, loops can be inside other loops ('nested’).

AO0>» «4F > «E» « > o>

Erik Spence (SciNet HPC Consortium) _ 1 March 2023 4/16

http://www.scinethpc.ca

R has three types of loops. The first is the >
"for" loop: > b <- c("Hello", "World", "From",
Y N . . + "All, llvectorll)
® "For” each element in the list or vector, S
assign the element value to the "loop > b
Variable” (”i”, in this Case). [1] "Hello" "World" "From" "A" "Vector"
>
" .
Then perform the code inside the code > for G in b) {
b|OCk + cat(i, "\Il“)
® Code blocks are indicated using { and }. *}
Hello
® Repeat the code block for each value of World
the list or vector. From
A
Vector
>

A4O0> «F > «E» « o>

Erik Spence (SciNet HPC Consortium) _ 1 March 2023 5/16

i
v
1

http://www.scinethpc.ca

The for loop is used whenever you >
know ahead of time how many times > for (my.loop.var in list(’cow’, 1, F, ’pants’)) {
you want to run the code block. In *
i + cat(my.loop.var, "\n")
this example, we want to run the .
code block once for each element in +}
the list. cow
1

: FALSE
Note that the loop variable, pants
my.loop.var in this case, can be S
named anything.

AO0>» «4F > «E» « > = o>

Erik Spence (SciNet HPC Consortium) _ 1 March 2023 6/16

http://www.scinethpc.ca

The second kind of loop is the "while” loop:

i<-1

while (i < 4) {
cat(i, "\n")
i<-1i+1

® The while loop will continue for as long
as the "test condition” is TRUE.

® Be careful not to create infinite loops.

® Type " Ctrl-C" to kill your infinite loop, if
you get into one.

wWw NN - + + + V |V]|V

The while loop is used whenever you don't
know ahead of time how many times you want

v

> # Don’t do this!

to run the code block. > while (TRUE) cat("hello", "\n")
"hello"
The third loop is the "repeat” loop. We will Mnellle!

not cover it here.

AO0>» «4F > «E» « > o>

Erik Spence (SciNet HPC Consortium) _ 1 March 2023 7/16

http://www.scinethpc.ca

second code block is indented.

}

R has the usual types of conditionals. The >
most commonly used is the "if’ statement: > ("pants" == "blue")
e [1] FALSE
® |f the condition is TRUE, then the S
commands in the code block are > if ("pants" == "blue") {
executed. + cat("Yay for pants!\n")
® |f the condition is FALSE, then the code : ;i
block is skipped. > for (1 in c(1, 2, 3)) {
® Notice that, if one code block is inside + i G <2
another code block, the entirety of the : y o Mt
a
1
>

These are NOT a type of loop!

AO0>» «4F > «E» « > o>

Erik Spence (SciNet HPC Consortium) _ 1 March 2023 8/16

http://www.scinethpc.ca

The conditionals usually contain Boolean >
operators: >2<3
[1] TRUE
® You probably know what "<" and ">" are. >
® The "==" is the equivalence test ("is) TEEREI e S
this equal to this?"). £1] TR
® The "!=" is the "not equal to" test. > (2 <3) & ("arms" != "legs")
® The "&" symbol is the "AND" operator. 51] TRUE
® The "|" symbol is the "OR" operator. > (2 < 3) & ("arms" == "legs")
® |f you have multiple tests in the same line, 1 o
separate them with brackets for clarity. >
e > (2 < 3) | ("arms" == "legs")
® Boolean operators show up in if [1] TRUE
statements and while loops. >

AO0>» «4F > «E» « > o>

Erik Spence (SciNet HPC Consortium) _ 1 March 2023 9/16

http://www.scinethpc.ca

You can add some optional structure to your > if ("pants" == "blue") {
'if’ statement, such as including an 'else’: < ; Cat(}:Yay for pants!\n")
+ else
® [f the condition is TRUE, then the b e (e fom pEmEeiET)
commands in the first code block are +}
executed. Boo for pants!
>
® |[f the condition is FALSE, then the code > for (1 in o(1, 2, 3)) {
block associated with the 'else’ is + if 1< 2) {
executed. + cat(i, "\n")
. : + 1
® The 'else’ statement is optional. . / ecz:(fToo big!\n")
® |f you include it, the 'else’ statement + 3
must be immediately after the 'if’ code I }
block’s }. Too big!
Too big!

AO0>» «4F > «E» « > o>

Erik Spence (SciNet HPC Consortium) _ 1 March 2023 10/ 16

http://www.scinethpc.ca

Note that the part inside the parentheses >
of a while loop or an if statement does not > if (TRUE) {
need to be a conditional. It can be :) FEEGRs Ry
anything that returns a boolean, including I am TRUE!
functions. >
> is.character(1)
[1] FALSE
>

> if (is.character(1)) {

+ cat("I am a character!\n")

+ } else {

+ cat("I am NOT a character!\n")
+}

I am NOT a character!

>

A4O0> «F > «E» « o>

Erik Spence (SciNet HPC Consortium) _ 1 March 2023 11/16

!
v
!

http://www.scinethpc.ca

But there's more! > for (i in list(1, 2, 3, 4, 5) {
® The "if" statement can also contain the usual : e i:tz:)"in")
"else if" option seen in other languages. %) eleelif @ == 3) {
® This allows you to combine several conditionals * e e Sty
into a single giant if statement. :) ei:(if ,(,ini)s) {
® As soon as a positive conditional is encountered + } else {
the program runs the associated code block, * e goealiyt)
and then jumps to the end of the if statement. : } }
® |f no positive conditional is encountered, 1
® if there is an else statement, the else statement no good!
code block is executed. Go 3!
® if there is no else statement (since it is :
optional), then nothing is done. S

A4O0> «F > «E» « o>

Erik Spence (SciNet HPC Consortium) _ 1 March 2023 12/16

i
v
1

http://www.scinethpc.ca

Whenver possible, operate on whole vectors > a <= 3:7
('vectorization’) rather than looping and > 15 & G500
operating one element at a time. ol ke Pl ORLY
>
® Your computer has built-in abilities > # do thist
. . >d<-ax*xb
which speed up vectorized S
calculations. > # don’t do this!
® The difference, especially on large > for (i in 1:5) {
+ e[i] <- a[i] * b[il
amounts of data, can be enormous. o)
>
> d

[1] 18 28 40 54 70

A\
(0]

[1] 18 28 40 54 70

A4O0> €«F» «E» « o>

Erik Spence (SciNet HPC Consortium) _ 1 March 2023 13/16

!
v
!

http://www.scinethpc.ca

R has other data types you may >
run into. One of them is 'factors’: > OrchardSprays$treatment
, , : [l DEBHGFCACBHDEAFGFHAEDCGB
® ‘factors’ are categorical

[25] HAECFGBDEDGACBHFACFGBDEH

variables, and as such take [49) BGCFAHDEGFDBHEAC

on discrete values. Levels: ABCDEFGH
>
° . .y
OrchardSprays is a built-in > str(OrchardSprays$treatment)
dataset. Factor w/ 8 levels "A", "B", "C", "D", 452 ...
® The 'levels’ of a factor are 2
. . > n n n n n 1 n n 1 n
the pOSSIble, integer, values factor(c("Agree", "Agree", "Disagree", "Indifferent"))
h bl k [1] Agree Agree Disagree Indifferent
the variable can take. Levels: Agree Disagree Indifferent
>
AO0>» «4F > «E» « > = o>
Erik Spence (SciNet HPC Consortium) _

1 March 2023 14 /16

http://www.scinethpc.ca

Tables are used to summarize results:
® Give the 'table’ command a
vector, or a factor, and it will
summarize the frequency of
values.

® You can use the "names”
function to get the various
column values.

® |ndividual entries can be
accessed using the double
square brackets.

Erik Spence (SciNet HPC Consortium)

> table(OrchardSprays$treatment)
ABCDETFGH
8 88838888

>

> my.table <- table(c("A", "A", "B", "A", "B", "B",
+ ngn, mgn, ngn))

bd

> my.table

ABC

4 3 2

bd

> names (my.table)
[1] "AII "B" ||CII

>

> my.table[[3]]
[1] 2

>

=)

1 March

2023

15/16

http://www.scinethpc.ca

Tables can also be used to do >
frequency analyses on > a <- c("Sometimes", "Never", "Never", "Always",
muIti—dimentionaI data. : "Always", "Sometimes", "Sometimes", "Never")
> b <- c("Maybe", "Maybe", "Yes", "Maybe",
+ "Maybe", "No", "Yes", "No")
>
> table(a, b)
b
a Maybe No Yes
Always 2 0 (0]
Never 1 1 1
Sometimes 1 1 1
>
AO0>» «4F > «E» « > =

Erik Spence (SciNet HPC Consortium) _ 1 March 2023

Da
16/16

http://www.scinethpc.ca

	Loops
	For loops
	While loops

	Conditionals
	If statements
	Else statements
	Else-if statements

	Other data types
	Factors
	Tables

