Numerics

Ramses van Zon

PHY1610, Winter 2023

Ramses van Zon Numerics PHY1610, Winter 2023 1/37

Numbers

Schilet

Ramses van Zon Numerics PHY1610, Winter 2023 2/37

How do we represent quantities?

o We use numbers, of course.

® |n grade school we are taught that numbers 1034
are organized in columns of digits. We learn S
the names of these columns. I \
® The numbers are understood as multiplying
the digit in the column by the number that thousands hundreds tens ones

names the column.

1034 = (1 x 1000) + (0 x 100) + (3 x 10) + (4 x 1)

t

Ramses van Zon Numerics PHY1610, Winter 2023 3/37

Other ways to represent a quantity

e Instead of using ‘tens’ and ‘hundreds’, let's

represent the columns by powers of what we 1034
will call the ‘base’

e Our normal way of representing numbers is
‘base 10, also called decimal.

e Each column represents a power of ten, and 10° 102 100 10°
the coefficient can be one of 10 numerals

(0-9).

1034 = (1 x 10%) + (0 x 10) + (3 x 10Y) + (4 x 10°)

Ramses van Zon Numerics PHY1610, Winter 2023 4/37

You can choose any base you want

How do we represent the quantity 1034 if we change bases? What about base 7 (septenary)?

1034 3005

1\ N\

103 102 101 109 73
(1000) (100) (1) (343) (49) (7) 1

1034 = (1 x 103) + (0 x 10) + (3 x 10%) + (4 x 10°)
1034 = (3 x 7))+ (0 x 7?) + (0 x 71) + (5 x 7%)

In base 7 the numerals have the range 0-6.

Who cares?

The reason we care is because computers do not use base 10 to store their data. Computers use base 2
(binary). The numerals have the range 0-1.

1034 1 O 000 0
103 1|02 \101 10° 512 128 i) 21&&

(1000) (100) (10) (1) 210
(1024)
1034 = (1 x 103) + (0 x 10%) + (3 x 10!) + (4 x 10°)
1034 = (1x29) 4+ (0x2%)+ (0x2%)+ (0x2)

+(0 x 2°) + (0 x 2°) + (0 x 2*) + (1 x 2°)
+(0 x 2%) + (1 x 21) + (0 x 2%)

Ramses van Zon Numerics

Why do computers use binary numbers?

Why use binary?]_.Q,OO .Q. 10.1—.0

e Modern computers oper?te’using ci,rcuits that f \ \
have one of two states: ‘on’ or ‘off". 29 o7 5 3 ol

e This choice is related to the complexity and (512) |(128) \(32) \(8) \(2)
cost of building binary versus ternary circuitry. 10 8 26 04 92 20

e Binary numbers are like series of ‘switches': (1024) (256) (64) (16) (4) (1)

each digit is either ‘on’ or ‘off’.

e Each ‘switch’ in the number is called a ‘bit’.

Ramses van Zon Numerics PHY1610, Winter 2023 7/37

Finite Binary Representations of Numeric Types

2023 8/37

Integers

All integers are exactly representable. e Finite range: can go from -23! to0 231 — 1

Different sizes of integer variables are available, (-2,147,483,648 to 2,147,483,647).
depending on your hardware, OS, and e Unsigned integers: 0...232 — 1.
programming language.

e All operations (+, -, *) between representable
For most languages, a typical integer is 32 bits, integers are represented unless there is
overflow.

e 1 bit for the sign, which, when set,
subtracts 232 of the number.

\]

sign number

A typical int = 32 bits = 4 bytes.

Ramses van Zon Numerics PHY1610, Winter 2023 9/37

Long integers

e Long integers are like regular integers, just e One bit for sign.
with a bigger memory size, usually 64 bits. (when set, subtracts 2°4 of the number)
e And consequently a bigger range of numbers. e Can go from -2%3 t0 293 — 1

(-9,223,372,036,854,775,808 to
9,223,372,036,854,775,807)

e Unsigned long integers: 0...2%% — 1.

Vo

sign number

A typical long int = 64 bits = 8 bytes.

Ramses van Zon Numerics PHY1610, Winter 2023 10/37

Integers in C++

| Type | Typical size ‘ GE3e o
short int sij; //
char 1 byte short s; //
short 2 bytes int i;
int 4 (2) bytes 1°ng int 1i; Z
ong H
long 8 bytes long long int 11i; //
long long | 8 bytes (C++11) long long 11; //
signed char c;
Size/Type Range :iiﬁ:i ne s . fi
1 byte signed -128 .. 127 signed long 1; //
1 byte unsigned | 0 .. 255 signed long long 11;//
2 byte signed | -32,768 .. 32,767 unstgnec char <i
2 byte unsigned | 0 .. 65,535 rrta] £t £
4 byte signed -2,147,483,648...2,147,483,647 unsigned long 1;
4 byte unsigned | 0 .. 4,294,967,295 unsigned long long 11;
8 byte signed -9,223,372,036,854,775,808 .. 9,223,372,036,854,775,807
8 byte unsigned | 0..18,446,744,073,709,551,615

valid
preferred

valid
preferred
valid
preferred

unnecessary
unnecessary
unnecessary
unnecessary

Ramses van Zon Numerics

PHY1610, Winter 2023 11/37

Integer OverFlow

#include <iostream> $ gt++ -std=c++17 int_exampleOF1.cpp
$./a.out

int main() x was: 65535

{

x is now: O
usine namespace std:

unsigned short x = 65535; // largest 16-bit unsigned value possible

cout << "x was: " << x << endl;
x =x + 1; // 65536 is out of our range -- we get overflow because x can't hold 17 bits
cout << "x is now: " << x << endl;
return O;
}
#include <iostream> $ gt+ -std=c++17 int_exampleOF2.cpp
$./a.out
int main() x was: 0
{ X is now: 65535
usineg namespvace std:
unsigned short x = 0; // smallest 2-byte unsigned value possible
cout << "x was: " << x << endl;
x =x - 1; // overflow!
cout << "x is now: " << x << endl;
return O;
}

Ramses van Zon Numerics PHY1610, Winter 2023

12/37

Fixed point numbers

How do we deal with decimal places?

o We could treat real numbers like integers: 0 ... INT_MAX, and only keep, say, the last two digits
behind the decimal point.

e This is known as ‘fixed point’ numbers, since the decimal place is always in the same spot.
e This is often used for financial timeseries data, since they only use a finite number of decimal places.

e But this is terrible for scientific computing. Relative precision varies with magnitude; we need to be
able to represent small and large numbers at the same time.

Ramses van Zon Numerics PHY1610, Winter 2023 13 /37

Floating point numbers

PHY1610,

Floating point numbers

e Analog of numbers in scientific notation.

—7
e Inclusion of an exponent means the decimal o 1 y 34 ><]-O

| I
point is ‘floating”. \ /
e Again, one bit is dedicated to sign. . .
sign mantissa base exponent

V] /

sign exponent mantissa
(1 bit) (8 bits) (23 bits)

A single precision real = 32 bits = 4 bytes.
A double precision real = 64 bits = 8 bytes.

Ramses van Zon Numerics PHY1610, Winter 2023 15 /37

Floats in C4+

double d(5.0); // 5.0 means fp (double by default)
float £(5.0f); // 5.0 means fp, f suffix means float

double d2(5e3); // another way to assign 5000

double d4(5e-2); // another way to assign 0.05

[Type | Size ‘ float fValue;
double dValue;
float 4 bytes long double dValue2;
double 8 bytes
long double | 8/12/16 bytes int n(5); // 5 means integer
double d1(5000.0);
double d3(0.05);
Size/Type | Range Precision
4 bytes +1.18 x 10738 to +3.4 x 10%® 6-9 sign.digits, typically 7
8 bytes +2.23 x 10739 to +1.80 x 10308 15-18 sign.digits, typ. 16
12 bytes | 43.65 x 1074 to 4+1.18 x 10*932 | 18-21 significant digits
16 bytes | 43.36 x 1074932 to +1.18 x 10*932 | 33-36 significant digits

Ramses van Zon

Numerics PHY1610, Winter 2023 16 /37

Special ‘numbers’ & Numeric Limits Interface

Special numbers

This format for storing floating point numbers comes from the IEEE 754 standard.
There's room in the format for the storing of a few special numbers.

e Signed infinities (+Inf, -Inf): result of overflow, or divide by zero.

e Signed zeros: signed underflow, or divide by -+ /-Inf.

e Not a Number (NaN): square root of a negative number, 0/0, Inf/Inf, etc.

® The events which lead to these are usually errors, and can be made to cause exceptions.

ETHELCRTER AT Numerics PHY1610, Winter 2023 18 /37

#include <limits>

template<> class numeric_limits<bool>; template<> class numeric_limits<int>;
template<> class numeric_limits<char>; template<> class numeric_limits<unsigned int>;
template<> class numeric_limits<signed char>; template<> class numeric_limits<long>;
template<> class numeric_limits<unsigned char>; template<> class numeric_limits<unsigned long>;
template<> class numeric_limits<wchar_t>; template<> class numeric_limits<long long>;

template<> class numeric_limits<char16_t>; // C++11 template<> class numeric_limits<unsigned long long>;
template<> class numeric_limits<char32_t>; // C++11 template<> class numeric_limits<float>;

template<> class numeric_limits<short>; template<> class numeric_limits<double>;

template<> class numeric_limits<unsigned short>; template<> class numeric_limits<long double>;

Member Functions

min

lowest

max

epsilon
round_error
infinity
quiet_NaN
signaling_ NaN
denorm_min

returns the smallest finite value of the given type
(C+-+11) returns the lowest finite value of the given type
returns the largest finite value of the given type

returns the difference between 1.0 and the next representable value of the given floati
returns the maximum rounding error of the given floating-point type
returns the positive infinity value of the given floating-point type
returns a quiet NaN value of the given floating-point type

returns a signaling NaN value of the given floating-point type

returns the smallest positive subnormal value of the given floating-poi

Ramses van Zon

Numerics PHY1610, Winter 2023 19/37

C++4+ Numeric Limits — example

#include <limits>

#include <iostream>

int main()

{
std::cout << "type\tlowest\thighest\n";
std::cout << "int\t"
<< std::numeric_limits<int>::lowest() << '\t'
<< std::numeric_limits<int>::max() << '\n';
std::cout << "float\t"
<< std::numeric_limits<float>::lowest() << '\t'
<< std::numeric_limits<float>::max() << '\n';
std::cout << "double\t"
<< std::numeric_limits<double>::lowest() << '\t'
<< std::numeric_limits<double>::max() << '\n';
}
$ g++ -std=c++17 limits.cpp
$./a.out
type lowest highest
int -2147483648 2147483647

float -3.40282e+38 3.40282e+38
double -1.79769e+308 1.79769e+308 }

Ramses van Zon Numerics

PHY1610, Winter 2023

20/37

IEEE-754 /854 Standards

float (single precision real) = 32 bits = 4 bytes ~~ |IEEE-754
double (double precision real) = 64 bits = 8 bytes ~~ |EEE-854

Property | Value for float | Value for double

Largest rep.nbr. 3.402823466e+-38 | 1.7976931348623157e+-308

Smallest nbr.
without losing precision | 1.175494351e-38 | 2.2250738585072014e-308

Smallest rep.nbr. 1.401298464e-45 | 5e-324
Mantissa bits 23 52
Exponent bits 8 11

Epsilon 1.1929093e-7 2.220446049250313e-16

Ramses van Zon Numerics PHY1610, Winter 2023 21/37

ieee?754.h

Example of a routine to tell if two floats are equal to a certain number of significant decimal digits:

#include <ieee754.h>
#include <cmath>
bool flt_equals(float a, float b, int sigfigs)

{
if (a == b)
return true;
union ieee754_float
pa = reinterpret_cast<union ieee754_float>(&a),
pb = reinterpret_cast<union ieee754_float#>(&b);
unsigned int
aexp = pa->ieee.exponent,
bexp = pb->ieee.exponent;
if (aexp != bexp or pa->ieee.negative != pb->ieee.negative)
return false;
pa—->ieee.exponent = pb->ieee.exponent = IEEE754_FLOAT_BIAS;
float sig_mag = pow(10, -(float)sigfigs);
if (fabs(a-b) < sig_mag/2)
return true;
return false;
}
Note: The header file might not exist in your system.
Ramses van Zon Numerics PHY1610, Winter 2023 22/37

Limitations in floating point mathematics

There are limitiations inherent in using finite-length floating point variables.

e Except for numbers that fit exactly into a base two representation, assigning a real number to a
floating point variable involves truncation.

e Think about how you represent 1/3. Is it 0.37 0.33? 0.3337

® You end up with an error of 1/2 ULP
(Unit in Last Place)

Unrepresentable numbers

In base two, 0.1 is an infinitely repeating fraction: 0.0001100110011001100110011. ..
So this cannot be represented exactly in finite binary!
Limited accuracy

Single precision: 1 part in 272* ~ 6e-8.
Double precision: 1 part in 2753 ~ 1e-16.

Ramses van Zon Numerics PHY1610, Winter 2023 23/37

Aside: want to see more

#include <iostream>
#include <iomanip>

void output(float

f, double d) {

std::cout << "f = " << f << '"\n';

std::cout << "d = " << d << '\n';

std::cout << "f+d = " << f+d << '\n';
std::cout << "f-d = " << f-d << '\n';
std::cout << "f*d = " << fxd << '\n';
std::cout << "f/d = " << f/d << '\n';
std::cout << "d/f = " << d/f << '\n';

int main()

{

output(0.01f, 1.0e-17);

// set fixed floating format
std::cout.setf(std::ios::fixed);
// change fixed format precision
std::cout.precision(5);

//

output (0.01f, 1.0e-17);

Ramses van Zon

digits in output?

$ gt++ -std=c++17 fp_ariths.cpp
$./a.out
f =0.01
d = le-17
f+d = 0.01
f-d = 0.01
f*d = le-19
f/d = le+15
d/f = le-15
f = 0.01000
d = 0.00000
f+d = 0.01000
f-d = 0.01000
f*d = 0.00000
f/d = 999999977648258.12500
d/f = 0.00000
Numerics PHY1610, Winter 2023 24 /37

Equality testing

er 2023

25 /37

Testing for equality

Never ever ever ever test for equality with floating
point numbers!

® Because of rounding errors in floating point
numbers, you don't know exactly what you're
going to get.

e Instead, test to see if the absolute difference is
below some tolerance that is near epsilon.

e Testing for equality with integers is ok,
however, because integers are exact.

$ g++ -std=c++17 fp_tol.cpp
$./a.out

fxf = 0.01

g = 0.01

False

True

}

Ramses van Zon Numerics

#include <iostream>
#include <cmath>

int main()

float £ = 0.1;

float g = 0.01;

std::cout << "f*f = " << f*xf << '\n'
<< "g =" << g << '"\n';

if (fxf == g)
std::cout <<
else
std::cout <<

"True" <<

'\Il';

"False" << '\n';
float TOL=1e-7;
if (fabs(fxf - g) < TOL)
std::cout << "True" << '\n';
else
std::cout << "False" <<

l\nv;

PHY1610, Winter 2023

26 /37

Roundoff errors

Roundoff error occurs when you're not being careful with which combinations of types of numbers you are
operating on:

(a+b)+c#a+(b+c)

// oundOff.cpp
#include <iostream>
int main()

{
double a = 1.0, b = 1.0, ¢ = 1le-16;
std::cout << (a - b) + c << std::endl;
std::cout << a + (-b + c) << std::endl;
return O;

¥

$ gt+ -std=c++17 RoundOff.cpp

$./a.out

le-16

1.11022e-16

Ramses van Zon Numerics PHY1610, Winter 2023 27 /37

Roundoff errors, continued

Roundoff errors can occur anytime you start operating near machine precision.

e Machine precision (or machine epsilon) is the upper bound on the relative error due to rounding.
This is generally ~ 1e-8 for single precision (float)
and le-16 for double precision.

e Roundoff errors are most common when subtracting or dividing two non-integer numbers that are
about the same size, thus forcing the computer to do arithmetic near machine epsilon.

e Do your best to modify your algorithms to avoid such calculations.

Ramses van Zon Numerics PHY1610, Winter 2023 28/37

Machine epsilon

er 2023

29/37

Machine epsilon

Let's do some addition, to demonstrate what could go wrong.

e Problem: 1.0 + 0.001
e Let's work in base 10.

e Let's assume that we only have a mantissa precision of 3, and exponent precision of 2.

1 00 > 100 e So what happened?

e Mantissa only has a precision of 3! The final

+ 1 OO X 10_3 answer is beyond the range of the mantissal

1.00 x 10°
+0.001 x 10°

1.00 x 10°

Ramses van Zon Numerics

30/37

Machine epsilon

e Machine epsilon* gives you the limits #include <iostream>
of the precision of the machine. talmelicl CemRi>

e It is defined to be the smallest x int main()
such that.l +x #1. #loat £ = 1,03
(or sometimes, the largest x such float g = 1.e-18;
that 1+ x =1.)
std::cout << "f =" << f << '\n';
e Machine epsilon is named after the std::cout << "g =" << g << '\n';
mathematical term for a small
e d:iicout << " (1. - 1.)+ 1.e-18 = " << (f-f)+g << '"\n';
itive infinitesimal. st ;
ORI L std::cout << " (1. + 1.e-18) - 1.0 = " << (f+g)-f << '\n';
std::cout << " (1. + 1.e-18) = " << (f+g) << '\n';
}
$ gt++ -std=c++17 fp_machEpsilon.cpp
$./a.out
f =10
g =1e-18

(1. - 1.)+ 1.e-18 = 1e-18
(1. + 1.e-18) - 1.0 =0
(1. + 1.e-18) =1
Ramses van Zon Numerics PHY1610, Winter 2023 31/37

Beware: subtraction

3 sig. digits

Be very wary of subtracting very similar numbers. \ 1 23 X 100

e Problem: subtract 1.22 from 1.23.

0
e Assume that we only have a mantissa precision of 3, and - 122 X 10
exponent precision of 2.
e By performing this subtraction, we eliminate most of the 1 OO X 10_2
information, and end up with ‘catastrophic cancellation'.
e We go from 3 significant digits to 1. /
1 sig. digit

e Dangerous in intermediate results.

The same problem can occur when dividing large numbers.

Ramses van Zon Numerics PHY1610, Winter 2023 32/37

Overflow

Overflow occurs when the result of a calculation #include <iostream>

exceeds the representable range of the variable type.
int main()

e |t can happen with different types of numerical {

types: real (FP), integers, ... float £ = 1.0e15;

e E.g. 8-bit integers have a range of -128 to 127. ~ Stdiscout << Uf =1 << £ << f\n';
std::cout << "fxf =" << f*xf << '\n';
e E.g. 4-bytes floats have a range of SRelE BER S8 WERATE T S SR <8 Tl
+1.18 x 10738 to +3.4 x 10138,)
e Always be sure to usye varlébles that are big § gt+ -std=c++17 fp_machEpsilon.cpp
enough for what you're doing. $./a.out
f =1e+15
f*f =1e+30
f*f*f =inf

Ramses van Zon Numerics PHY1610, Winter 2023 33/37

Underflow

An underflow error is the opposite of an overflow
error: you are attempting to make a number which
is smaller than the variable can hold.

#include <iostream>
int main()

float

e 32-bit floats integers have a range of -3.4e38 Ezzz

to +3.4e38: (+1.18 x 10738 £3.4 x 10738] Flloat
float

= -1.0e35;
= -1.0e44;
1.0e40;
= 1.0e-44;
= 1.0e-46;

H = B0
I

e An overflow error will result if you attempt to

go beyond this range. std::cout << "f =" <<
std::cout << "g =" <<

e An underflow error results if you try to go too std::cout << "h =" <<
small. std::cout << "k =" <<
std::cout << "1 =" <<

<< '\n';
<< "\n';
<< '\n';
<< "\n';
<< '"\n';

H = B0

g++ -std=c++17 fp_undFlow.cpp
./a.out

=-1e+35

=-inf

=inf

=9.80909e-45

1 =0

N PR Hh & #

Ramses van Zon Numerics PHY1610, Winter 2023 34/37

Discretizations error

What is discretization error? Where does it come
from?

® |n the real world space and time are continuous.
But simulations and calculations are not.

e Variables must be converted from continuous
to discrete.

e Space is sliced up into grids. Time is changed
to steps.

e The density of the grids and steps goes up
with increasing resolution.

Ramses van Zon Numerics PHY1610, Winter 2023 35/37

Discretization errors, continued

Discretization error is the error introduced to a calculation by the act of discretizing the variables. What's
the problem?

® As a source of error, you want to make sure that these errors are kept small; they cannot be avoided.

e One must be sure the grid density (resolution) is high enough that discretization errors are at an
acceptable level.

e What resolution is high enough? This depends on what is being discretized (time versus space), the
type of calculation, and other factors.

e There are relationships between the discretization of the various variables that need to be respected,
to keep discretization errors under control (and to prevent numerical instabilities).

Ramses van Zon Numerics PHY1610, Winter 2023 36/37

Summary: things to remember

® Integers are stored exactly.

® Floating point numbers are, in general, NOT stored exactly. Rounding error will cause the number to
be slightly off.

e DO NOT test floating point numbers for equality. Instead test (fabs(a - b) < cutoff)
* Know the approximate value of epsilon for the machine that you are using.

* Know the limits of your precision: if your calculations span as many orders of magnitude as the
inverse of epsilon you're going to lose precision.

® Try not to subtract floating point numbers that are very close to one another. ‘Catastrophic
cancellation' leads to loss of precision.

* Be aware of overflow and underflow: use variable sizes that are appropriate for your problem.

ScCilet

Ramses van Zon Numerics PHY1610, Winter 2023 37/37

	Numbers
	Finite Binary Representations of Numeric Types
	Floating point numbers
	Special `numbers' & Numeric Limits Interface
	Equality testing
	Machine epsilon

