
Testing and Debugging

Ramses van Zon

PHY1610H Winter 2023

Ramses van Zon Testing and Debugging PHY1610H Winter 2023 1 / 28

Motivation

Ramses van Zon Testing and Debugging PHY1610H Winter 2023 2 / 28

Three bits of reality about scientific software:
Scientific software can be large, complex and subtle.

Scientific software is constantly evolving.

Code will be handed down, shared, reused.

Example of this complexity

Consider the sample code to simulate a damped wave equation in one dimension. It had to
1 Read parameters;
2 Set initial conditions;
3 Compute the evolution of the wave in time;
4 Output the result.

At some point in the research project, initial conditions may need to change, or the output, or the
algorithm to compute the time evolution, . . .

Ramses van Zon Testing and Debugging PHY1610H Winter 2023 3 / 28

Managing complexity using modularity

Modularity is extracing the different parts of the program that are responsible for different things.

Each of these should be fairly independent.

Implementation changes of one module should not affect other modules.

Each part can be maintained by a different person.

Once a part is working well, it can be used as an appliance.

Ramses van Zon Testing and Debugging PHY1610H Winter 2023 4 / 28

Questions

1 How do we ensure a module works correctly?

Unit testing
2 What if we find that it doesn’t?

Debugging

Ramses van Zon Testing and Debugging PHY1610H Winter 2023 5 / 28

Unit testing

Ramses van Zon Testing and Debugging PHY1610H Winter 2023 6 / 28

Integrated testing

Especially with new software, or old software
that was modified, you’ll want to verify that it
works as a whole.

Test the application with a smaller test case
for which you know that output.

This can strictly only prove incorrectness
(no tests can prove correctness).

But if no errors are found, it increases your
level of confidence in the software.

Ramses van Zon Testing and Debugging PHY1610H Winter 2023 7 / 28

Unit testing
An integrated test essentially gives you one
data point.

If you’ve modularized the code into n parts,
you should have at least n data points to know
that the parts aren’t failing.

Because each module has one responsibility,
you can write a test for each module.

If the test for a module fails, you only need to
inspect that module, not the whole code of the
application.

Note that if you did not modularize, everything
is connected, you could not have n tests.
And when the integrated test fails, the error
could be anywhere in the code.

Ramses van Zon Testing and Debugging PHY1610H Winter 2023 8 / 28

Example from lecture 5 (modular)

// hydrogen.cpp
#include <iostream>
#include <rarray>
#include "eigenval.h"
#include "outputarr.h"
#include "initmat.h"
int main() {

const int n = 4913;
rmatrix<double> m = initMatrix(n);
rvector<double> a;
double e;
groundState(m, e, a);
std::cout<<"Ground state energy="<<e<<"\n";
writeText("data.txt", a);
writeBinary("data.bin", a);

}

Makefile
CXXFLAGS=-std=c++17 -O2 -g
LDFLAGS=-g
all: hydrogen
hydrogen.o: hydrogen.cpp eigenval.h outputarr.h initmat.h
eigenval.o: eigenval.cpp eigenval.h
outputarr.o: outputarr.cpp outputarr.h
initmat.o: initmat.cpp initmat.h
hydrogen: hydrogen.o eigenval.o outputarr.o initmat.o

$(CXX) $(LDFLAGS) -o $@ $ˆ
clean:

$(RM) hydrogen.o eigenval.o outputarr.o initmat.o

How would we create an integrated test?

Ramses van Zon Testing and Debugging PHY1610H Winter 2023 9 / 28

Example: Integrated test for hydrogen
1 Create reference output

$ g++ -std=c++17 -O2 -g -o hydrogen0 hydrogen0.cpp
$ # or 'make' and 'mv hydrogen hydrogen0'
$./hydrogen0 > cout0.txt
$ mv data.txt data0.txt
$ mv data.bin data0.bin

2 Run the new modular code
$ make hydrogen
$./hydrogen > cout.txt

3 Compare the outputs
$ diff cout.txt cout0.txt
$ diff data.txt data0.txt
$ cmp data.bin data0.bin

Automate everything!
4 Store your reference

$ git add data0.txt data0.bin cout0.txt
$ git commit -m 'Added original output as reference'

5 Add a integratedtest rule to the Makefile
cout.txt: hydrogen

hydrogen > cout.txt
integratedtest: data0.txt data0.bin cout0.txt \

data.txt data.bin cout.txt
diff cout.txt cout0.txt
diff data.txt data0.txt
cmp data.bin data0.bin

6 Always git commit
$ git add Makefile
$ git commit -m 'Added integratedtest to Makefile'

7 make integratedtest
Ramses van Zon Testing and Debugging PHY1610H Winter 2023 10 / 28

Example: Unit test for outputarr module (1/2)
// outputarr.h
#ifndef OUTPUTARRH
#define OUTPUTARRH
#include <string>
#include <rarray>
// The writeBinary function writes the 1d rarray
// 'a' to the file 'name' in binary format
void writeBinary(const std::string& name,

const rvector<double>& a);
// The writeText function writes the 1d rarray
// 'a' to the file 'name' in ASCII format
void writeText(const std::string& name,

const rvector<double>& a);
#endif

Both writeBinary and writeText should have at
least one unit test.

But let’s start with one unit test for writeText.

It could look like this:

#include "outputarr.h"
#include <iostream>
#include <fstream>
int main() {

std::cout << "A UNIT TEST FOR 'writeText'\n";
// test file writing:
rvector<double> a(3);
a = 1, 2, 3;
writeText("testoutputarr.txt", a);
// read it back
std::ifstream in("testoutputarr.txt");
std::string s[3];
in >> s[0] >> s[1] >> s[2];
// check
if (s[0]!="1" or s[1]!="2" or s[2]!="3") {

std::cout << "TEST FAILED\n";
return 1;

} else {
std::cout << "TEST PASSED\n";
return 0;

}

Ramses van Zon Testing and Debugging PHY1610H Winter 2023 11 / 28

Example: Unit test for outputarr module (2/2)
Add to makefile:
...
test: run_outputarr_test integratedtest

run_outputarr_test:
./outputarr_test

outputarr_test: outputarr_test.o outputarr.o
$(CXX) $(LDFLAGS) -o $@ $ˆ

outputarr_test.o: outputarr_test.cpp outputarr.h
$(CXX) $(CXXFLAGS) -c -o $@ $<

To run:
$ make test
g++ ...
g++ ...
./outputarr_test
A UNIT TEST FOR 'writeText'
TEST PASSED
$ echo $?
0

Important things to note

Unit tests are separate from the application!

The test only depends on outputarr.h and
outputarr.o. (test isolation)

It’s a separate program, which requires its own
data initialization and checking.

The ‘test’ rule runs all tests

All tests for one module are ideally in one file.

To automate, we need a consistent way to
report errors, a way to run only some tests,
etc.: frameworks.

Ramses van Zon Testing and Debugging PHY1610H Winter 2023 12 / 28

Testing frameworks

There’s a lot of extra coding here just to run the tests.

The tests need to be maintained as well.

Especially when your project contains a lot of tests,
use a unit testing framework.

Examples:

Boost.Test (from the Boost library suite)

Google C++ Testing Framework (a.k.a googletest)

Catch2

These are typically combinations of macros, a driver main function that can select which tests to run, etc.

For the assignment, if you’re going to use a framework, use Catch2.

Ramses van Zon Testing and Debugging PHY1610H Winter 2023 13 / 28

Example of Boost.Test
// output_bt.cpp
#include "outputarr.h"
#include <fstream>
#define BOOST_TEST_DYN_LINK
#define BOOST_TEST_MODULE output_bt
#include <boost/test/unit_test.hpp>
BOOST_AUTO_TEST_CASE(writeText_test)
{

// create file:
rvector<double> a(3);
a = 1,2,3;
writeText("testoutputarr.txt", a);
// read back:
std::ifstream in("testoutputarr.txt");
std::string s[3];
in >> s[0] >> s[1] >> s[2];
// check
BOOST_CHECK(s[0]=="1");
BOOST_CHECK(s[1]=="2");
BOOST_CHECK(s[2]=="3");

}

$ module load gcc/12 boost

$ g++ -std=c++17 -g -O2 -c output_bt.cpp
$ g++ -g -O2 -o output_bt output_bt.o outputarr.o

-lboost_unit_test_framework

$./output_bt --log_level=all

Running 1 test case...
Entering test module "output_bt"
output_bt.cpp(7): Entering test case "writeText_test"
output_bt.cpp(18): info: check s[0]=="1" has passed
output_bt.cpp(19): info: check s[1]=="2" has passed
output_bt.cpp(20): info: check s[2]=="3" has passed
output_bt.cpp(7):
Leaving test module "output_bt"; testing time: 521us
*** No errors detected

Ramses van Zon Testing and Debugging PHY1610H Winter 2023 14 / 28

Example of Catch2
// output_c2.cpp
#include "outputarr.h"
#include <fstream>

#include <catch2/catch_all.hpp>

TEST_CASE("writeText test")
{

// create file:
rvector<double> a(3);
a = 1,2,3;
writeText("testoutputarr.txt", a);
// read back:
std::ifstream in("testoutputarr.txt");
std::string s[3];
in >> s[0] >> s[1] >> s[2];
// check
REQUIRE(s[0]=="1");
REQUIRE(s[1]=="2");
REQUIRE(s[2]=="3");

}

$ module load gcc/12 catch2/3.3.1

$ g++ -std=c++17 -g -O2 -c output_c2.cpp
$ g++ -g -O2 -o output_c2 output_c2.o outputarr.o

-lCatch2Main -lCatch2

$./output_c2 -s

Randomness seeded to: 3824212292
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
output_c2 is a Catch2 v3.3.1 host application.
Run with -? for options
------------------------------------------------------
writeText test
...
All tests passed (3 assertions in 1 test case)

Ramses van Zon Testing and Debugging PHY1610H Winter 2023 15 / 28



Guidelines for testing
Each module should have a separate test suite
(e.g. output_c2.cpp should also have a test for writeBinary).

If the code is properly modular, those module test should not need any of the other .cpp files.

Each module should have a named target in the Makefile that runs its test suite.
run_output_c2:

./output_c2 -s
output_c2: output_c2.o outputarr.o

$(CXX) $(LDFLAGS) -o $@ $ˆ -lCatch2Main -lCatch2
output_c2.o: output_c2.cpp outputarr.h

$(CXX) $(CXXFLAGS) -c -o $@ $<
.PHONY: run_output_c2

An overall ‘test’ target should run all test suites and any integrated tests.

Testing gives confidence in your module, and tells you which modules have stopped working properly.

Once your tests are okay, you now have a piece of code that you could easily use in other
applications as well, and which you can comfortably share.

Ramses van Zon Testing and Debugging PHY1610H Winter 2023 16 / 28



Debugging

Ramses van Zon Testing and Debugging PHY1610H Winter 2023 17 / 28



What if your program or test isn’t running correctly. . .

Nonsense. All programs execute “correctly’ ’.

We just told it to do the wrong thing.

Debugging is the art of reconciling your mental
model of what the code is doing with what you
actually told it to do.

https://imgs.xkcd.com/comics/debugger.png
Debugger: program to help detect errors in other programs.

Ramses van Zon Testing and Debugging PHY1610H Winter 2023 18 / 28



Tips to avoid debugging
Write better code.

I simple, clear, straightfoward code.
I modularity (avoid global variables and 10,000 line functions).
I avoid “cute tricks’ ’, (no obfuscated C code winners – IOCCC).

Don’t write code, use existing libraries.

Write (simple) tests for each module.

Use version control and small commits.

Switch on the -Wall flag, inspect all warnings, fix them or understand them all.

Use defensive programming:

Check arguments, use assert (which can be
switched of with -DNDEBUG compilation flag)
E.g.:

#include <cassert>
#include <cmath>
double mysqrt(double x) {

assert(x>=0);
return sqrt(x);

}

Ramses van Zon Testing and Debugging PHY1610H Winter 2023 19 / 28



Despite that, still errors?

Some common issues:

Arithmetic Corner cases (sqrt(-0.0)), infinities
Memory access Index out of range, uninitialized pointers
Logic Infinite loop, corner cases
Misuse Wrong input, ignored error, no initialization
Syntax Wrong operators/arguments
Resource starvation Memory leak, quota overflow
Parallel Race conditions, deadlock

Ramses van Zon Testing and Debugging PHY1610H Winter 2023 20 / 28



Debugging workflows

As soon as you are convinced there is a real problem, create the simplest situation in which it
repeatedly occurs.

Take a scientific approach: model, hypothesis, experiment, conclusion.

Try a smaller problem size, turning off different physical effects with options, etc, until you have a
simple, fast, repeatable example.

Try to narrow it down to a particular module/function/class.

Integrated calculation: Write out intermediate results, inspect them.

Ramses van Zon Testing and Debugging PHY1610H Winter 2023 21 / 28



Ways to debug

To figure out what is going wrong, and where in the code, we can

Put strategic print statements in the code.

Use a debugger.

Ramses van Zon Testing and Debugging PHY1610H Winter 2023 22 / 28



What’s wrong with using print statements?

Strategy

Constant cycle:
I strategically add print statements
I compile
I run
I analyze output
I repeat

Removing the extra code after the bug is fixed

Repeat for each bug

Problems with this approach

A bug is always unexpected, so you don’t know
where to put those strategic print statements.

As a result, this approach:

is time consuming
is error prone (print statements can have bugs)
changes memory layout, output format, timing
. . .

There’s a better way!

Ramses van Zon Testing and Debugging PHY1610H Winter 2023 23 / 28



Debuggers
are programs that can show what happens in a program at runtime.

Features

1 Crash inspection
2 Function call stack
3 Step through code
4 Automated interruption
5 Variable checking and setting

Use a graphical/IDE debugger or not?

Local work station: graphical/IDE is convenient

Remotely (SciNet): can be slow or hard to set up.

In any case, graphical and text-based debuggers use the same concepts.

Ramses van Zon Testing and Debugging PHY1610H Winter 2023 24 / 28



Debuggers

Preparing the executable for debugging

Add required compilation flags, -g (sometimes -g -gstabs)

(both in compiling and linking!)

Optional: switch off optimization -O0

Command-line based symbolic debugger: gdb

Free, GNU license, symbolic debugger.

Available on many systems.

Been around for a while, but still developed and up-to-date

Command-line based, does not show code listing by default, unless you use the -tui option.

Ramses van Zon Testing and Debugging PHY1610H Winter 2023 25 / 28



Example
$ module load gcc/12 rarray/2.4 gdb/10
$ gdb -tui hydrogen

Ramses van Zon Testing and Debugging PHY1610H Winter 2023 26 / 28



GDB command summary
help h print description of command
run r run from the start (+args)
backtrace/where ba function call stack
break b set breakpoint
delete d delete breakpoint
continue c continue
list l print part of the code
step s step into function
next n continue until next line
print p print variable
display disp print variable at every prompt
finish fin continue until function end
set variable set var change variable
down do go to called function
until unt continue until line/function
up up go to caller
watch wa stop if variable changes
quit q quit gdb

Ramses van Zon Testing and Debugging PHY1610H Winter 2023 27 / 28



Graphical debuggers

DDD: free, bit old, can do serial and threaded
debugging.

DDT: commercial, on SciNet, good for parallel
debugging (including mpi and cuda)

Ramses van Zon Testing and Debugging PHY1610H Winter 2023 28 / 28


	Motivation
	Unit testing
	Debugging

