
Libraries

Ramses van Zon

PHY1610, Winter 2023

Ramses van Zon Libraries PHY1610, Winter 2023 1 / 28

Libraries

Ramses van Zon Libraries PHY1610, Winter 2023 2 / 28

Code is bad
There is a big different in the way scientists view code and the way software developer view it.

Scientists

Code is an asset.

Software developer

Code is a liability.

Every line of code you write has potential issues now or in the future and needs to be maintained.

Scientists will often come up with quick and dirty solutions to get results, which causes headaches
later in the development process: Technical Debt.

Furthermore there is a lot of code that has already been written and that can be reused, so you
might be reinventing the wheel.

The solution is to code less!

Reuse and recycle code that is out there by using libraries.

Ramses van Zon Libraries PHY1610, Winter 2023 3 / 28

Libraries are modules
So let’s start with a modular code.

Several object files for different modules that
need to be linked together.

Example: thisapp.cpp contains the main
function and helper.cpp/helper.h are a
module.

makefile for 'thisapp'
CXX=g++
CXXFLAGS=-O2 -std=c++17
all: thisapp

thisapp.o: thisapp.cpp helper.h
$(CXX) $(CXXFLAGS) -c -o thisapp.o thisapp.cpp

helper.o: helper.cpp helper.h
$(CXX) $(CXXFLAGS) -c -o helper.o helper.cpp

thisapp: thisapp.o helper.o
$(CXX) -o thisapp thisapp.o helper.o

To reuse the module, copy helper.cpp/.h

What if we could use it in another project
called without recompiling helper.cpp?

Install .o and .h to separate directories:
helper.h -> /base/include/helper.h
helper.o -> /base/lib/helper.o

Must let compiler know where they are:
Add -I flag for include directories.

makefile for 'newapp'
CXX=g++
CXXFLAGS=-I/base/include -O2 -std=c++17
all: newapp

newapp.o: newapp.cpp /base/include/helper.h
$(CXX) $(CXXFLAGS) -c -o newapp.o newapp.cpp

newapp: newapp.o /base/lib/helper.o
$(CXX) -o newapp newapp.o /base/lib/helper.o

makefile for 'newapp'
CXX=g++
CXXFLAGS=-I/base/include -O2 -std=c++17
all: newapp

newapp.o: newapp.cpp
$(CXX) $(CXXFLAGS) -c -o newapp.o newapp.cpp

newapp: newapp.o
$(CXX) -o newapp newapp.o /base/lib/helper.o

Ramses van Zon Libraries PHY1610, Winter 2023 4 / 28

Libraries, continued
What we just did is a poor man’s library building.

Real libraries are similar; they have

to be installed (and perhaps built first)
header files (.h or .hpp) in some folder
library files (object code) in a related folder.

Library filenames start with lib & end in .a/.so.

makefile for 'newapp'
CXX=g++
CXXFLAGS=-I/base/include -O2 -std=c++17
all: newapp

newapp.o: newapp.cpp
$(CXX) $(CXXFLAGS) -c -o newapp.o newapp.cpp

newapp: newapp.o
$(CXX) -o newapp newapp.o /base/lib/libhelper.a

To avoid explict paths in makefile rules, we specify:

the path to the library’s object using the -L
option in the LDFLAGS variable;

the object code using -lNAME
(a lower case l!) stored in variable LDLIBS.

We’re not getting into creating your own libraries
here, which requires some system-dependent
specialized linking commands.

makefile for 'newapp'
CXX=g++
CXXFLAGS=-I/base/include -O2 -std=c++17
LDFLAGS=-L/base/lib
LDLIBS=-lhelper
all: newapp

newapp.o: newapp.cpp
$(CXX) $(CXXFLAGS) -c -o newapp.o newapp.cpp

newapp: newapp.o
$(CXX) $(LDFLAGS) -o newapp newapp.o $(LDLIBS)

Ramses van Zon Libraries PHY1610, Winter 2023 5 / 28

Libraries, once more
Adding a clean rule and extracting the common
path, the Makefile for newapp will look like this:
makefile for 'newapp'
CXX=g++
HELPERBASE?=/base/
HELPERINC=$(HELPERBASE)include
HELPERLIB=$(HELPERBASE)lib
CXXFLAGS=-I$(HELPERINC) -O2 -std=c++17
LDFLAGS=-L$(HELPERLIB)
LDLIBS=-lhelper

all: newapp

newapp.o: newapp.cpp
$(CXX) $(CXXFLAGS) -c -o newapp.o newapp.cpp

newapp: newapp.o
$(CXX) $(LDFLAGS) -o newapp newapp.o $(LDLIBS)

clean:
$(RM) newapp.o

Note:

C++ standard libaries (vector,cmath,...)
do not need any -l...’s.

There are standard directories for libraries that
needn’t be specified in -I or -L options
(/usr/include,...)

Libraries installed through a package manager
end up in standard paths; they just need
-l... options in LDLIBS.

You also do not need -I or -L for libraries
accessed using the ‘module load’ command on
the Teach or Niagara clusters.

If you compile your own libraries in
non-standard locations, you do need -I and -L
options.

Ramses van Zon Libraries PHY1610, Winter 2023 6 / 28

Installing libraries from source
What to do when your package manager does not have that library, or you do not have permission to
install packages in the standard paths?

Or, what if you are on SciNet systems (where you do not have permissions to install using the package
manager) and there isn’t a module for that library already?

Compile from source code with a "base" or "prefix" directory.

Common installation procedure (but read documentation!):

$./configure --help
$./configure --prefix=<BASE>
$ make -j 4
$ make install

$ mkdir builddir && cd builddir
$ cmake .. -DCMAKE_INSTALL_PREFIX=<BASE>
$ make -j 4
$ make install

You choose the <BASE>, but it should be a directory that you have write permission to, e.g., a
subdirectory of your $HOME. These are “non-standard” installation directories.

If the documentation says to do sudo, it is wrong except for system-wide installations on personal
computers.

Ramses van Zon Libraries PHY1610, Winter 2023 7 / 28

Using Libraries
Include its header file(s) in your code.

Link with -lLIBNAME.

Non-standard installation directory? You need -I<BASE>/include and -L<BASE>/lib options.

Alternatively, you can omit these for g++ under linux by setting some environment variables:
export CPATH="$CPATH:<BASE>/include" # compiler looks here for include files
export LIBRARY_PATH="$LIBRARY_PATH:<BASE>/lib" # and here for library files
export LD_LIBRARY_PATH="$LD_LIBRARY_PATH:<BASE>/lib" # runtime linker looks here

Eenter these commands on the linux prompt before make or add to your ~/.bashrc.

The LD_LIBRARY_PATH is necessary to run application linked against dynamic libraries (.so).

If the library installs binary applications (i.e. commands) as well, you’ll also need to set
export PATH="$PATH:<BASE>/bin" # linux shell looks for executables here

Read the documentation that came with the library (before searching the web)!

Ramses van Zon Libraries PHY1610, Winter 2023 8 / 28

Library Example: GNU Scientific Library

Ramses van Zon Libraries PHY1610, Winter 2023 9 / 28

GNU Scientific Library (GSL)

Is a C library containing many useful scientific routines, such as:

Root finding

Minimization

Sorting

Integration, differentiation, interpolation,
approximation

Statistics, histograms, fitting

Monte Carlo integration, simulated annealing

ODEs

Polynomials, permutations

Special functions

Vectors, matrices

Note: C library means we’ll likely need to deal with some pointers and casts.

Ramses van Zon Libraries PHY1610, Winter 2023 10 / 28

GSL root finding example
Suppose we want to find where f (x) = a cos(sin(v + wx)) + bx − cx2 is zero (a “root”).

// gslrx.cpp
#include <iostream>
#include <gsl/gsl_roots.h>

struct Params {
double v, w, a, b, c;

};
double examplefunction(double x, void* param){
Params* p = reinterpret_cast<Params*>param;
return p->a*cos(sin(p->v+p->w*x))+p->b*x-p->c*x*x;

}

int main() {
double x_lo = -4.0;
double x_hi = 5.0;
Params args = {0.3, 2/3.0, 2.0, 1/1.3, 1/30.0};
gsl_root_fsolver* solver;
gsl_function fwrapper;
solver = gsl_root_fsolver_alloc(

gsl_root_fsolver_brent);

fwrapper.function = examplefunction;
fwrapper.params = &args;
gsl_root_fsolver_set(solver,&fwrapper,x_lo,x_hi);

std::cout << "iter lower upper root err\n";

int status = 1;
for (int iter=0; status and iter < 100; ++iter) {

gsl_root_fsolver_iterate(solver);
double x_rt = gsl_root_fsolver_root(solver);
double x_lo = gsl_root_fsolver_x_lower(solver);
double x_hi = gsl_root_fsolver_x_upper(solver);
std::cout << iter <<" "<< x_lo <<" "<< x_hi

<<" "<< x_rt <<" "<<x_hi-x_lo<<"\n";
status=gsl_root_test_interval(x_lo,x_hi,0,1e-3);

}

gsl_root_fsolver_free(solver);
return status;

}

Ramses van Zon Libraries PHY1610, Winter 2023 11 / 28

Compilation and linkage

Lots of gsl... stuff.

All of the algorithms come from the GSL.

The rest is just wrappers, setting up
parameters and calling the appropriate
functions.

There are pointers and typecasts, because
we’re dealing with a C library.

How to compile on the command line?

$ module load gcc/12 gsl/2.7.1
$ GSLINC=$MODULE_GSL_PREFIX/include
$ GSLLIB=$MODULE_GSL_PREFIX/lib
$ g++ -c -I$GSLINC gslrx.cpp -o gslrx.o
$ g++ gslrx.o -o gslrx -L$GSLLIB -lgsl -lgslcblas
$./gslrx

Output
$./gslrx
iter lower upper root err
0 -4 -1.27657 -1.27657 2.72343
1 -1.95919 -1.27657 -1.95919 0.682622
2 -1.75011 -1.27657 -1.75011 0.473542
3 -1.75011 -1.74893 -1.74893 0.0011793
$

Ramses van Zon Libraries PHY1610, Winter 2023 12 / 28

GSL Makefile usage

CXX=g++
GSL_MODULE_PREFIX?=.
GSLINC?=$(MODULE_GSL_PREFIX)/include
GSLLIB?=$(MODULE_GSL_PREFIX)/lib
CXXFLAGS=-I$(GSLINC) -O2 -std=c++17
LDFLAGS=-L$(GSLLIB)
LDLIBS=-lgsl -lgslcblas

all: gslrx
.PHONY: all clean

gslrx.o: gslrx.cpp
$(CXX) $(CXXFLAGS) -c -o gslrx.o gslrx.cpp

gslrx: gslrx.o
$(CXX) $(LDFLAGS) -o gslrx gslrx.o $(LDLIBS)

clean: ; $(RM) gslrx.o

Compilation on Teach cluster:
$ module load gcc/12 gsl/2.7.1
$ make

Compilation on your own computer:
$ export GSLINC=... # whereever headers are
$ export GSLLIB=... # whereever libs are
$ make

or
$ export MODULE_GSL_PREFIX=... # with include & lib
$ make

You can also set make variables like this:
$ make MODULE_GSL_PREFIX=... # with include & lib

Ramses van Zon Libraries PHY1610, Winter 2023 13 / 28

Don’t Reinvent the Wheel

There are many possible algorithms to implement for root finding.

But they are all pretty standard.

Surely, someone must have done this already? Correct!

The GNU Scientific Library is one such library.

Don’t implement this yourself if there is a library that does it for you.

Even existing solutions like the once in the GSL, can’t really be used until you understand the
algorthims on a high level.

Ramses van Zon Libraries PHY1610, Winter 2023 14 / 28

Digression: Root Finding

Ramses van Zon Libraries PHY1610, Winter 2023 15 / 28

Root finding

It is not uncommon in scientific computing to want solve an equation numerically.

If there is one unknown and one equation only, we can always write the equation as

f (x) = 0

If x satisfies this equation, it is called a “root’ ’.

If there’s a set of equations, one can write:

f1(x1, x2, x3, . . .) = 0
f2(x1, x2, x3, . . .) = 0

. . .

The one-dimensional case is considerably easier to solve: First.

Ramses van Zon Libraries PHY1610, Winter 2023 16 / 28

1D Root Finding

-2

-1

 0

 1

 2

 3

 4

-4 -3 -2 -1 0 1 2 3

f

x

Algorithms always start from an initial guess and
(usually) a bounding interval [a, b] in which the
root is to be found.

What’s so nice about 1D?

If f (a) and f (b) have opposite signs, and f is
continuous, there must be a root inside the
interval: the root is bracketed.

Consecutive refinement of the interval until
a − b < ε guarranteed to find the root.

Ramses van Zon Libraries PHY1610, Winter 2023 17 / 28

Bracketing
Must find bounding interval first!

Plot the function.

Make a conservative guess for [a, b] then slice up the interval, checking for sign change of f .

Make a wild guess and expand the interval until f exhibits a sign change.

Trouble makers

No sign change Easily missed Singularity
Ramses van Zon Libraries PHY1610, Winter 2023 18 / 28

Suppose we’ve bracketed a root, what’s next?
Classic root finding algorithms

Bisection

Secant/False Position

Ridders’/Brent

Newton-Raphson (requires derivatives)

All of these focus in on the root, but have different convergence and stability characteristics.

Note:

For polynomial f : specialized routines (Muller, Laguerre)

For eigenvalue problems: specialized routines (linear algebra)

Ramses van Zon Libraries PHY1610, Winter 2023 19 / 28

Bisection method

a1 b1b2b3a3

f

Sign change: Root must lie in [a1, b1]

Find midpoint of interval.

Compute f (midpoint), and its sign.

Sign same as upper bound: midpoint becomes
new upper bound b2.

Find midpoint again.

Sign same as upper bound: becomes new lower
bound a2.

Next midpoint becomes new upper bound b3.

Next midpoint becomes new lower bound a3.

Ramses van Zon Libraries PHY1610, Winter 2023 20 / 28

False Position Method

a1 b1b2a2

f

Same start: root within [a1, b1]

Linearly approximate/interpolate f .

Solve for next x .

Compute f (x), and inspect its sign.

Get new root bracket.

Interpolate again.

Solve for next x .

Compute f (x), inspect sign: new bracket.

etc.

Ramses van Zon Libraries PHY1610, Winter 2023 21 / 28

Newton-Raphson method

x1x2x3

f

Guess x .

From function and derivative, get linear
approx.

Compute approximate root.

Repeat.

Fast convergence.

Ramses van Zon Libraries PHY1610, Winter 2023 22 / 28

Convergence and Stability

method convergence stability
Bisection εn+1 = 1

2εn Stable
Secant εn+1 = cε1.6

n No bracket guarrantee
False position εn+1 = 1

2εn − cε1.6
n Stable

Ridders’ εn+2 = cε2n Stable
Brent εn+1 = 1

2εn − cε2n Stable
Newton-Raphson εn+1 = cε2n Can be unstable

Ramses van Zon Libraries PHY1610, Winter 2023 23 / 28

Now consider the GSL root finding example again
Suppose we want to find where f (x) = a cos(sin(v + wx)) + bx − cx2 is zero (a “root”).

// gslrx.cpp
#include <iostream>
#include <gsl/gsl_roots.h>

struct Params {
double v, w, a, b, c;

};
double examplefunction(double x, void* param){
Params* p = reinterpret_cast<Params*>param;
return p->a*cos(sin(p->v+p->w*x))+p->b*x-p->c*x*x;

}

int main() {
double x_lo = -4.0;
double x_hi = 5.0;
Params args = {0.3, 2/3.0, 2.0, 1/1.3, 1/30.0};
gsl_root_fsolver* solver;
gsl_function fwrapper;
solver = gsl_root_fsolver_alloc(

gsl_root_fsolver_brent);

fwrapper.function = examplefunction;
fwrapper.params = &args;
gsl_root_fsolver_set(solver,&fwrapper,x_lo,x_hi);

std::cout << "iter lower upper root err\n";

int status = 1;
for (int iter=0; status and iter < 100; ++iter) {

gsl_root_fsolver_iterate(solver);
double x_rt = gsl_root_fsolver_root(solver);
double x_lo = gsl_root_fsolver_x_lower(solver);
double x_hi = gsl_root_fsolver_x_upper(solver);
std::cout << iter <<" "<< x_lo <<" "<< x_hi

<<" "<< x_rt <<" "<<x_hi-x_lo<<"\n";
status=gsl_root_test_interval(x_lo,x_hi,0,1e-3);

}

gsl_root_fsolver_free(solver);
return status;

}

Ramses van Zon Libraries PHY1610, Winter 2023 24 / 28

Multidimensional Root Finding

~f (~x) = ~0 or
f1(x1, x2, x3, . . . , xD) = 0
f2(x1, x2, x3, . . . , xD) = 0

...
fD(x1, x2, x3, . . . , xD) = 0

Cannot bracket a root with a finite number of points.

Roots of each equation define a D − 1 hypersurface.

Looking for possible intersections of hypersurfaces.

Ramses van Zon Libraries PHY1610, Winter 2023 25 / 28

Newton-Raphson for Multidimensional Root Finding

Given a good initial guess, Newton-Raphson can work in arbitrary dimensions:

~f (~x0 + δ~x) = ~0

~f (~x0) + ∂~f
∂~x · δ

~x = ~0

~f (~x0) = −∂
~f
∂~x · δ

~x

~f (~x0) = −J · δ~x
δ~x = −J−1 · ~f (~x0)

Requires inverting a D × D matrix, or at least, solving a linear set of equations: see lecture on linear
algebra.

Ramses van Zon Libraries PHY1610, Winter 2023 26 / 28

Convergence and Stability

As in 1D, Newton-Raphson can be unstable.

Need some safe guard that our iteration steps do not spin out of control.

Several ways, e.g. make sure that ‖~f (~x)‖2 gets smaller in each time step.

This can potentially still fail, but usually does the trick.

Also in the GSL.

Ramses van Zon Libraries PHY1610, Winter 2023 27 / 28

Conclusion

GSL has a lot of other functionality

Point of this lecture was to use a library

C libraries may need some ‘boilerplate’, but at least you’re not

Ramses van Zon Libraries PHY1610, Winter 2023 28 / 28

	Libraries
	Library Example: GNU Scientific Library
	Digression: Root Finding

