
INTRODUCTION TO THE (LINUX) SHELL.

WHAT IS A SHELL?

WHAT IS A SHELL?
oIn computing, a shell is a user interface for access to an operating system's services. In

general, operating system shells use either a command-line interface (CLI) or graphical
user interface (GUI), depending on the computer's role and particular operation. It is
named a shell because it is the outermost layer around the operating system kernel.

oA program that interprets commands.
oAllows a user to execute commands by typing them manually at a terminal, or

automatically in programs called shell scripts, or simply scripts.
oA shell is not an operating system. It is a way to interface with the operating system and

run commands.
Alternate names: console, terminal, command line, command line interface, command

prompt.

SHELL TYPES:
Just like people know different languages and dialects, your UNIX system will usually offer a variety of shell types:

osh or Bourne Shell: the original shell still used on UNIX systems and in UNIX−related environments. This is the basic
shell, a small program with few features. While this is not the standard shell anymore, it is still available on every Linux
system for compatibility with UNIX programs.

obash or Bourne Again shell: the standard GNU shell, intuitive and flexible. Probably most advisable for beginning users
while being at the same time a powerful tool for the advanced and professional user. On Linux, bash is the standard shell
for common users. This shell is a so−called superset of the Bourne shell, a set of add−ons and plug−ins. This means that
the Bourne Again shell is compatible with the Bourne shell: commands that work in sh, also work in bash. However, the
reverse is not always the case. All examples and exercises in this book use bash.

ocsh or C shell: the syntax of this shell resembles that of the C programming language. Sometimes asked for by
programmers.

otcsh or Turbo C shell: a superset of the common C shell, enhancing user−friendliness and speed.

oksh or the Korn shell: sometimes appreciated by people with a UNIX background. A superset of the Bourne shell; with
standard configuration a nightmare for beginning users.

The file /etc/shells gives an overview of known shells on a Linux system:
$ cat /etc/shells
/bin/sh
/bin/bash
/sbin/nologin
/bin/ksh

WHAT IS BASH?

• BASH = Bourne Again SHell

• Bash is a shell written as a free replacement to the standard Bourne Shell
(/bin/sh) originally written by Steve Bourne for UNIX systems.

• It has all of the features of the original Bourne Shell, plus additions that
make it easier to program with and use from the command line.

• Since it is Free Software, it has been adopted as the default shell on most
Linux systems and other Unix flavours.

ACCESS

Windows Instructions:

1.Search for “putty download” on Google.

2.Select this result: www.chiark.greenend.org.uk (It’s the original….).

3.Follow link download putty

4.Install putty

5.Run putty

ACCESS

Mac Instructions:

1.Run terminal

ACCESS
Mac Instructions:

1.Run terminal

Is that easy?!
Yes, it’s Mac!

Detailed instructions:

To find “terminal”:

1.Press command+space

2.Type “terminal”

3.Move icon to the dock (you will be using it on a daily basis from now on until the end of ages)

4.Click on it to open “terminal”.

ACCESS

Mac (Terminal):

$ ssh username@niagara.scinet.utoronto.ca

Windows (Putty):

Host Name: niagara.scinet.utoronto.ca

User: <Your username>
Password: <Your password>

COMMON COMMANDS

COMMON COMMANDS
pwd Print Working Directory

Print the full filename of the current working directory:

ls List contents of a directory:

ls List contents of a directory:
(long listing format)

date Show/modify date:
print or set the system date and time:

$ pwd
/usr/src

$ ls
iso linux linux-4.11.8-1 linux-4.11.8-1-obj linux-obj packages vboxhost-5.1.22 vtun-
2.6.tar.gz

$ ls -l
total 116
drwxrwxr-x 3 root root 4096 Nov 5 10:28 iso
lrwxrwxrwx 1 root root 14 Jul 16 2017 linux -> linux-4.11.8-1
drwxr-xr-x 24 root root 4096 Jul 16 2017 linux-4.11.8-1
drwxr-xr-x 3 root root 4096 Jul 16 2017 linux-4.11.8-1-obj
drwxr-xr-x 3 root root 4096 Jul 16 2017 linux-obj
drwxr-xr-x 8 root root 4096 Jul 16 2017 packages
lrwxrwxrwx 1 root root 34 Apr 28 2017 vboxhost-5.1.22 -> /usr/share/virtualbox/src/vboxhost
-rw-r--r-- 1 mts root 95637 Aug 23 12:49 vtun-2.6.tar.gz

$ date
Tue 26 Oct 2021 13:23:56 EDT

NAVIGATING THE FILE SYSTEM

Where is my C: drive?!

A filesystem organizes a computer's files and directories into a tree structure: The first
directory in the filesystem is the root directory. It is the parent of all other directories
and files.
The Unix filesystem is a tree-like hierarchy of directories and files. At the base of the
filesystem is the “/” directory, otherwise known as the “root” (not to be confused with
the root user) or “root directory”. Unlike DOS or Windows filesystems that have
multiple “roots”, one for each disk drive, the Unix filesystem mounts all disks
somewhere underneath the “/” filesystem.

NAVIGATING THE FILE SYSTEM

NAVIGATING THE FILE SYSTEM
THE LINUX DIRECTORY LAYOUT:
Directory Description
/ The nameless base of the filesystem. All other directories, files, drives, and devices

are attached to this root. Commonly (but incorrectly) referred to as the “slash” or “/”
directory. The “/” is just a directory separator, not a directory itself.

/bin Essential command binaries (programs) are stored here (bash, ls, mount, tar, etc.)
/boot Static files of the boot loader. (Kernel, initrd, etc)
/dev Device files. In Linux, hardware devices are accessed just like other files, and they

are kept under this directory.
/etc Host-specific system configuration files.
/home Location of users' personal home directories (e.g. /home/susan).
/lib Essential shared libraries and kernel modules.
/proc Process information pseudo-filesystem. An interface to kernel data structures.
/root The root (superuser) home directory.

NAVIGATING THE FILE SYSTEM
THE LINUX DIRECTORY LAYOUT:
Directory Description
/sbin Essential system binaries (fdisk, fsck, init, etc).
/tmp Temporary files. All users have permission to place temporary files here.
/usr The base directory for most shareable, read-only data (programs, libraries,

documentation, and much more).
/usr/include Header files for compiling C programs.

/usr/lib Libraries for most binary programs.
/usr/sbin Non-vital system binaries (lpd, useradd, etc.)
/usr/share Architecture-independent data (icons, backgrounds, documentation, man pages, etc.).

/usr/src Program source code. E.g. The Linux Kernel, source RPMs, etc.
/usr/X11R6 The X Window System.

NAVIGATING THE FILE SYSTEM
THE LINUX DIRECTORY LAYOUT:
Directory Description
/var Variable data: mail and printer spools, log files, lock files, etc.
/sys Modern Linux distributions include a /sys directory as a virtual filesystem (sysfs,

comparable to /proc, which is a procfs), which stores and allows modification of the
devices connected to the system

/lost+found The lost+found directory is a construct used by fsck when there is damage to the
filesystem (not to the hardware device, but to the fs). Files that would normally be
lost because of directory corruption would be linked in that filesystem's lost+found
directory by inode number.

/mnt This is a generic mount point under which you mount your filesystems or devices.
/opt This directory is reserved for all the software and add-on packages that are not

part of the default installation.

SPECIAL CHARACTERS

It is important to know that there are many symbols and characters
that the shell interprets in special ways. This means that certain typed
characters:

a) cannot be used in certain situations,

b) may be used to perform special operations, or,

c) must be “escaped” if you want to use them in a normal way.

SPECIAL CHARACTERS
Character Description

\ Escape character. If you want to reference a special character, you must “escape” it with a
backslash first. Example: touch /tmp/filename*

/ Directory separator, used to separate a string of directory names. Example: /usr/src/linux
. Current directory. Can also “hide” files when this is the first character in a filename.
.. Parent directory
~ User’s home directory
* Wildcard character. Represents 0 or more characters in a filename, or by itself, all files in a

directory. Example: pic*2002 can represent the files pic2002, picJanuary2002,
picFeb292002, etc.

? Represents a single character in a filename.
Example: hello?.txt can represent hello1.txt, helloz.txt, but not hello22.txt

[] Can be used to represent a range of values, e.g. [0-9], [A-Z], etc.
Example: hello[0-2].txt represents the names hello0.txt, hello1.txt, and hello2.txt

| |& “Pipe”. Redirect the output of one command into another command. Example: ls | more

SPECIAL CHARACTERS
Characte

r
Description

> Redirect output of a command into a new file. If the file already exists, over-write it.
Example: ls > myfiles.txt

>> Redirect the output of a command onto the end of an existing file.
Example: echo “Mary 555-1234” >> phonenumbers.txt

< Redirect a file as input to a program.
Example: more < phonenumbers.txt

; Command separator. Allows you to execute multiple commands on a single line.
Example: cd /var/log ; less messages

&& Command separator as above, but only runs the second command if the first one
finished without errors. Example: cd /var/log && less messages

|| Command separator as above, but only runs the second command if the first one
finished with errors. Example: grep –q kern messages|| echo “No kernel messages”

& Execute a command in the background, and immediately get your command line back.
Example: find / -name core > /tmp/corefiles.txt &

FILE DESCRIPTORS
In Unix, a file descriptor (fd) is an abstract indicator (handle) used to
access a file or other input/output resource, such as a pipe or network
socket.

Each Unix process should expect to have three standard POSIX file
descriptors, corresponding to the three standard streams:

Integer
value Name <unistd.h> symbolic constant <stdio.h> file stream

0 Standard input STDIN_FILENO stdin

1 Standard output STDOUT_FILENO stdout

2 Standard error STDERR_FILENO stderr

FILE DESCRIPTORS
Standard input (stdin)
Standard input is stream data going into a program. The program requests data transfers by use of the read operation. Not all programs require stream input. For
example, the ls program (which display file names contained in a directory) may take command-line arguments, but perform their operations without any stream data
input. Unless redirected, standard input is inherited from the parent process. In the case of an interactive shell, that is usually associated with the keyboard.

The file descriptor for standard input is 0 (zero); the POSIX <unistd.h> definition is STDIN_FILENO; the corresponding C <stdio.h> variable is FILE* stdin; similarly,
the C++ <iostream> variable is std::cin.

Standard output (stdout)
Standard output is the stream where a program writes its output data. The program requests data transfer with the write operation. Not all programs generate output.
For example, the file mv command is silent on success. Unless redirected, standard output is inherited from the parent process. In the case of an interactive shell,
that is usually the text terminal which initiated the program.

The file descriptor for standard output is 1 (one); the POSIX <unistd.h> definition is STDOUT_FILENO; the corresponding C <stdio.h> variable is FILE* stdout;
similarly, the C++ <iostream> variable is std::cout.

Standard error (stderr)
Standard error is another output stream typically used by programs to output error messages or diagnostics. It is a stream independent of standard output and can
be redirected separately. The usual destination is the text terminal which started the program to provide the best chance of being seen even if standard output is
redirected (so not readily observed). For example, output of a program in a pipeline is redirected to input of the next program, but errors from each program still go
directly to the text terminal.

The file descriptor for standard error is defined by POSIX as 2 (two); the <unistd.h> header file provides the symbol STDERR_FILENO;[2] the corresponding C
<stdio.h> variable is FILE* stderr.

REDIRECTION

Input and Output of a command may be redirected before it is executed,
using a special notation, the redirection operators, interpreted by the shell.

Redirection operators:

< Read from

> Write to

>> Append to

| Pipe

PIPE (ALSO CALLED PIPELINE)
This is one of the most powerful tools of bash. A pipeline is a way in which the
output of one command becomes the input of a second command.

The stdout of command1 is the stdin of command2

The stdout, AND the stderr, of command1 is the stdin of command2

You can use the pipeline more than once in a command line:

The stdout of command1 is the stdin of command2 and the stdout of

command2 is the stdin of command3

command1 | command2

command1 |& command2

command1 | command2 | command3

command1 |& command2

PIPE (ALSO CALLED PIPELINE)

Example:

In this example, we run the command “ls -la /usr/bin”, which gives us a long
listing of all of the files in /usr/bin. Because the output of this command is
typically very long, we pipe the output to a program called “more”, which
displays the output for us one screen at a time.

ls -la /usr/bin | more

BUILT-IN COMMANDS
Built−in commands are necessary to implement functionality impossible or inconvenient to obtain
with separate utilities.

Bash supports 3 types of built−in commands:

Bourne Shell built−ins:
:, ., break, cd, continue, eval, exec, exit, export, getopts, hash, pwd, readonly, return, set, shift,
test, [, times, trap, umask and unset.

Bash built−in commands:
alias, bind, builtin, command, declare, echo, enable, help, let, local, logout, printf, read, shopt,
type, typeset, ulimit and unalias.

Special built−in commands:
When Bash is executing in POSIX mode, the special built−ins differ from other built−in
commands.

The POSIX special built−ins are: :, ., break, continue, eval, exec, exit, export, readonly, return,
set, shift, trap and unset.

PERMISSIONS
First, let see what does it mean the information provided in a long listing:

$ ls -l -a /boot/
total 32660
drwxr-xr-x 4 root root 4096 Sep 9 12:17 .
drwxr-xr-x 23 root root 4096 Jul 16 2017 ..
-rw-r--r-- 1 root root 1725 May 24 2017 boot.readme
-rw-r--r-- 1 root root 191697 Jul 8 2017 config-4.11.8-1-default
drwxrwxr-x 3 root root 16384 Dec 31 1969 efi
drwxr-xr-x 7 root root 4096 Sep 9 12:17 grub2
lrwxrwxrwx 1 root root 23 Jul 16 2017 initrd -> initrd-4.11.8-1-default
-rw------- 1 root root 11187208 Sep 9 12:17 initrd-4.11.8-1-default
-rw-r--r-- 1 root root 1095036 Jul 8 2017 symtypes-4.11.8-1-default.gz
-rw-r--r-- 1 root root 381495 Jul 8 2017 symvers-4.11.8-1-default.gz
-rw-r--r-- 1 root root 484 Jul 8 2017 sysctl.conf-4.11.8-1-default
-rw-r--r-- 1 root root 3305559 Jul 8 2017 System.map-4.11.8-1-default
-rw-r--r-- 1 root root 9981850 Jul 8 2017 vmlinux-4.11.8-1-default.gz
lrwxrwxrwx 1 root root 24 Jul 16 2017 vmlinuz -> vmlinuz-4.11.8-1-default
-rw-r--r-- 1 root root 7241840 Jul 8 2017 vmlinuz-4.11.8-1-default
-rw-r--r-- 1 root root 65 Jul 8 2017 .vmlinuz-4.11.8-1-default.hmac

long
listing show invisible files

directory

regular file

symbolic link

invisible file

Destination of the
symbolic link

owner group

Size in bytes

Date
(last modified)

Permissions

file name

PERMISSIONS

There are nine permission settings (also called bits). These settings are
divided in three groups of three each one:

-rw-r--r--

The first “bit” is for read, the second bit if for write and the third is for execute:

rwx

$ ls -l -a /boot/vmlinuz*
lrwxrwxrwx 1 root root 24 Jul 16 2017 /boot/vmlinuz -> vmlinuz-4.11.8-1-default
-rw-r--r-- 1 root root 7241840 Jul 8 2017 /boot/vmlinuz-4.11.8-1-default

Permissions

owner group others

PERMISSIONS
This:

rwx
can be expressed as a number. A binary number, or a decimal number.
Since these three letters are actually bits:
rwx is the same as 111 (binary) or 7 (decimal)

rw- is the same as 110 (binary) or 6 (decimal)

r-- is the same as 100 (binary) or 4 (decimal)

--- is the same as 000 (binary) or 0 (decimal)

--x is the same as 001 (binary) or 1 (decimal)

PERMISSIONS
Permissions Decimal Description

rwxrwxrwx 777 All permissions for everybody (Dangerous!).

rw-r--r-- 644 Read and write for the owner. Read for everybody else. (Most
common for regular files).

r--r--r-- 444 Read only for everybody

rwxr-xr-x 755 Read and write and execute for the owner. Read and execute for
everybody else. (Most common for directories).

r-------- 400 Only the owner can read the file.

r--r----- 440 Only the owner and the group members can read the file.

r-xr-x--- 550 Only the owner and the group members can read and execute the
file.

--------- 000 No permissions for anybody

CHMOD
chmod is the command for modifying permissions (change file mode
bits).

Here there are some examples:
Command Description

chmod +x <FILE> Add execution permissions to file

chmod 777 <FILE> Add ALL permissions for everybody (Dangerous!)

chmod 755 <FILE> Read, write and execute for the owner, read and execute for everybody
else.

chmod 644 <FILE> Read and write for the owner, read-only for everybody else

	Introduction to the (Linux) Shell.
	What is a shell?
	Slide 3
	Shell types:
	What is Bash?
	Access
	Slide 7
	Slide 8
	Slide 9
	Common commands
	Slide 11
	Navigating the file system
	Slide 13
	Navigating the file system The Linux Directory Layout:
	Slide 15
	Slide 16
	Special characters
	Slide 18
	Slide 19
	File descriptors
	Slide 21
	Redirection
	Pipe (also called pipeline)
	Slide 24
	Built-in commands
	Permissions
	Slide 27
	Slide 28
	Slide 29
	chmod

