Neural network programming:
generative adversarial networks

Erik Spence
SciNet HPC Consortium

19 May 2022

Scilet

Erik Spence (SciNet HPC Consortium) Generative adversarial networks 19 May 2022 1/25



Today’s code and slides

You can get the slides and code for today’s class at the SciNet Education web page.
https://scinet.courses/1210

Click on the link for the class, and look under " Lectures”, click on " GANs" .

Scilet

’ compute ca\cu\

Erik Spence (SciNet HPC Consortium) Generative adversarial networks 19 May 2022 2/25


https://scinet.courses/1210

Today’s class

This class will cover the following topics:
@ Generative adversarial networks.

e Example.

Please ask questions if something isn't clear.

Scilet

’ compute ca\cul

Erik Spence (SciNet HPC Consortium) Generative adversarial networks 19 May 2022 3/25



Generative Adversarial Networks (2014)
What are Generative Adversarial Networks (GANs)?

@ GANs are another type of generative network, introduced by Goodfellow and
collaborators, U. de Montréal.

@ A GAN consists of two coupled networks, the "discriminator” and the " generator”.

@ The generator takes a latent space vector (random noise) as input, and generates fake
data to be fed into the discriminator.

@ The discriminator is a standard discriminating neural network.

@ The system is called "adversarial” because the two networks are treated as adversaries:

» The discriminator is trained to learn whether a given input, x, is authentic data from a real
data set, rather than fake data created by the generator.
» The generator is trained to try to fool the discriminator into thinking its output comes from
the real data set.
@ The two networks are trained alternately. Eventually (if all goes well) the outputgélﬁ\'
generator will become very similar to that of the input data set. o Compute'gfm

Erik Spence (SciNet HPC Consortium) Generative adversarial networks 19 May 2022 4/25



GAN schematic

latent space input

generotor MR el data?
D (D
true data set

The discriminator is given a mixed data set of real data from the true data set and fake data
from the generator.

Scilet

’ compute ca\cul

Erik Spence (SciNet HPC Consortium) Generative adversarial networks 19 May 2022 5/25



GANs can do amazing things

https://thispersondoesnotexist.com met

Erik Spence (SciNet HPC Consortium) Generative adversarial networks 19 May 2022 6/25


https://thispersondoesnotexist.com

Training GANs

Training both networks simultaneously must require coupling them together. How is this done?
@ Let the discriminator, D, take as its input x and has weights and biases 0p.
@ Let the generator, GG, take as its input z and has weights and biases O¢.

e We wish to minimize the discriminator’s cost function Cp(0p, 0¢), but the
discriminator only has control over 6p.

e Similarly, we wish to minimize the generator’s cost function Cg(€p, 0¢g), but the
generator only has control over 0.

@ Formally, because the two networks are trying to reach an equillibrium, rather than a
minimum, the goal is to find a Nash equillibrium.

Scilet

’ compute ca\cu\

Erik Spence (SciNet HPC Consortium) Generative adversarial networks 19 May 2022 7/25



Training GANSs, continued

The original algorithm called for Stochastic Gradient Descent (SGD) to train the networks.
@ At each step, two minibatches are sampled.

» A batch of x values from the true data set.
> A batch of random values z, which are then used to generate fake data, using the generator.

@ We then perform two steps alternatively.
» We update @p to reduce Cp, based on both real and fake data.
» We update B¢ to reduce Cg.
@ In the original GAN algorithm, the cost function for the discriminator is always the same,
cross-entropy:

1N 1N
Cp(6p,0c) = — Z log (D(x:)) — Z log (1 — D(G(2:)))

We have assumed 2NN data points in each minibatch, half of which are from the real data_set.
et
(’ compzx_its; Ea\cu\

Erik Spence (SciNet HPC Consortium) Generative adversarial networks 19 May 2022 8/25



Training GANs, continued more

What cost function do we use for the generator? Several have been proposed.
@ One option is the "zero-sum game": Cg = —Cp.

@ Another option is to flip the target used to construct the cross-entropy:
N
1
Ca = —3 > log (D(G(1))),
i

@ The motivation for this function is to ensure that the losing side has a strong gradient.

N
1 -1
Maximum likelihood: Cg = —— E o~ (D(G(z:)))
aximum likelihoo fe] 2 i e

Where o is the usual sigmoid function.
&i'\let
(’ compute «calcul

Erik Spence (SciNet HPC Consortium) Generative adversarial networks 19 May 2022 9/25



Training failures

As you might at first intuitively expect, training GANs is non-trivial.
@ Rather than minimizing a cost function, we're trying to balance two competing
minimizations.

@ This is, more often than not, unstable.
» The generator can 'collapse’ (fail to generate convincing data) resulting in the discriminator

getting a perfect score.
» The discriminator can converge to zero, and the generator stops training.

@ Overcoming these problems requires extremely careful choice of hyperparameters.

GANs also suffer from other training problems:
@ mode collapse: the generator latches on to a single feature of the input data and ignores

all others.
@ convergence ambiguity: how do we tell if things are converging? There's no single metric;
the loss values don't help. Met

’ compute ca\cu\

Erik Spence (SciNet HPC Consortium) Generative adversarial networks 19 May 2022 10 /25



GAN example

Let's build a GAN. What problem will we tackle?
@ Let's work on our old friend, the MNIST data set.
@ As you recall, these are 60000 28 x 28 pixel images of hand-written digits, in greyscale.

@ There are many many types of GANs out there. This one will be a Deep Convolutional
GAN (DCGAN).

@ The goal will be for the network to generate images of hand-written digits which are
convincing.

Scilet

Erik Spence (SciNet HPC Consortium) Generative adversarial networks 19 May 2022 11/25



Our discriminator

First we need a discriminator.
@ The input data is (28 x 28 x 1) (greyscale).

@ We then put in 4 convolution layers, each of which has a 5 x 5 filter, with strides of 1 or
2, and different numbers of feature maps.

@ We use the leaky RelLU as the activation function.
@ Dropout is used on all the layers.
@ We then flatten the last layer and input it into the output layers, containing 2 neurons.

@ Recall that the discriminator just needs to indicate whether the input image is real or fake.

Scilet

’ compute ca\cu\

Erik Spence (SciNet HPC Consortium) Generative adversarial networks 19 May 2022 12/25



Our discriminator, continued

convolution layer

convolution layer
(14 x 14 x 64) Y
(7 x 7 x 256)

output

convolution layer
(7 x 7 x128)

input layer
(28 x 28 x 1) convolution layer
(28 x 28 x 32)

The number of convolutional layer feature maps is given by the third number in the brackets.
et

Erik Spence (SciNet HPC Consortium) Generative adversarial networks 19 May 2022 13/25



Our discriminator, the code

# MNIST gan.py

import tensorflow
import tensorflow
import tensorflow
import tensorflow

def

kernel _size =

]

return x

.keras.models as km
.keras.layers as kl
.keras.utils as ku
.keras.optimizers as ko

add_D_layers(in, fmnum, stride):

x = k1.Conv2D(fm_num,

(5, 5),

strides = stride,
padding = "same") (in)

= k1.LeakyReLU() (x)
% = kl.Dropout(0.3) (x)

Erik Spence (SciNet HPC Consortium)

# Create the discriminator.
def create D(Q):

input_image = kl.Input(shape =

(28, 28, 1))

x = add_D_layers(input_image, 32, 1)

add_D_layers(x, 64, 2)

X
X
X

last = kl.Flatten() (x)

output = kl.Dense(2, activation =

model = km.Model(inputs =

outputs = ouput)

model.compile(optimizer =
loss =

return model

add_D_layers(x, 128, 2)
add_D_layers(x, 256, 1)

input_image, name =

ko.Adam(le-4),

’categorical _crossentropy’)

"softmax") (last)

’D’,

t

Et‘

Generative adversarial networks

19 May 2022

=4
CANADA

14 /25



Other activation functions: leaky RelLU

Two commonly-used functions: 4l | ﬁeLLJ N T
@ Rectifier Linear Units (ReLUs): * * leakyRelU ¢
f(z) = max(0, z). i
o Leaky Rel U: |
z z>0
1) = 18
az z<0
for a > 0. or
Leaky RelLUs have gradients for z < 0, —1;,..:"". :

which is usually advantageous. NN S S SN S
-4 -3 -2 -1 0 1 2 Sm
z et
‘) com;:zx_its; Ei\cu\

Erik Spence (SciNet HPC Consortium) Generative adversarial networks 19 May 2022 15/25



Our generator

How shall we construct our generator?
@ We have a single input, the latent space input (a vector of Gaussian noise).
@ Feed this into a fully-connected layer.
@ Reshape the layer’'s output into a square.

@ Repeatedly apply transposed convolution to it, while shrinking the number of feature
maps, until we get to (28 x 28 x 1).

Scilet

’ compute ca\cu\

Erik Spence (SciNet HPC Consortium) Generative adversarial networks 19 May 2022 16 /25



Our generator, continued

fully-col
(125

input (100)

nnected deconvolution
544) (28 x 28 x 32)
deconvolution output
(7 x 7 x 128)
deconvolution

(7 x 7 x 256)

Erik Spence (SciNet HPC Consortium)

deconvolution
(14 x 14 x 64)

Generative adversarial networks

deconvolution
(28 x 28 x 1)

Scilet

19 May 2022 17/25



Our generator, the code

# MNIST gan.py, continued def create G():

input_z = kl.Input(shape = (100,))
def add_G_layers(in, fm num, stride):

x = kl.Dense(256 * 7 * 7) (input_z)

x = k1.Conv2DTranspose (fm_num, x = kl.BatchNormalization() (x)
kernel_size = (5, 5), x = kl.LeakyReLU() (x)
padding = "same",
strides = stride) (in) x = k1.Reshape((7, 7, 256)) (x)

= kl.BatchNormalization() (x)
x = kl.LeakyReLUQ) (x)

™

= add_G_layers(x, 256, 1)
= add_-G-layers(x, 128, 1)
= add_G-layers(x, 64, 2)
= add_G_layers(x, 32, 2)

MoM XM

return x

x = kl.Conv2DTranspose(1, (5, 5), padding = "same",
activation = "tanh") (x)

return km.Model (inputs = input_z, outputs = x) 1

cormpute « calqul
TANADA

Erik Spence (SciNet HPC Consortium) Generative adversarial networks 19 May 2022 18 /25



Training our GAN

The algorithm for training the GAN is as follows.
o Create the input layer for the discriminator.
o Create the discriminator (D) and generator (G).
o Create a combined discriminator-generator (DG) network.
@ Turn off the training of the discriminator.
@ Compile the DG network.

o Now iterate:

» Create fake data, using G.

Train D on real and new fake data.

Turn off training of D.

Train the combined DG network so as to train G to create authentic images.
Turn training for D back on.

v

v vy

Scilet

) compute ca\cu\

Erik Spence (SciNet HPC Consortium) Generative adversarial networks 19 May 2022 19 /25



Training our GAN, the code

# MNIST_gan.py, continued

import keras.backend as K
import numpy as np

import numpy.random as npr

input_z = k1.Input(shape = (100,))
# Create the networks.

D = create D()

create G()

«
]

# Create the generator input layers.

# MNIST_gan.py, continued

# Create the combined network.
output = D(G(inputs = input_z))

# Turn off D before compiling.
DG.get_layer("D").trainable = False

# Compile the generator.

DG.compile(optimizer = ko.Adam(lr =

Erik Spence (SciNet HPC Consortium)

loss = "categorical_crossentropy")

DG = km.Model(inputs = input_z, outputs = output)

le-4),

Generative adversarial networks

19 May 2022

Scifet
" com;:zxitsk- Ei\cul

20/25



Training our GAN, the code, continued

# MNIST gan.py, continued
for it in range(num_epochs):
for image_batch in train_dataset:

# Turn on D.
D.trainable = True
for 1 in D.layers: l.trainable = True

# Create some fake images.
zz = npr.normal(0., 1., (batch_size, 100))
f_ images = G.predict(zz)

all_images = np.concatenate([f_images,

image_batch])

np.ones (image_batch.shape[0])])
all_cats = ku.to_categorical(all_cats, 2)

all_cats = np.contatenate([np.zeros(batch_size),

# MNIST gan.py, continued

# Train on the mages.
D_loss = D.train_on batch(all_images,
all_cats)

# We are done training D. Now train G.
D.trainable = False

for 1 in D.layers: l.trainable = False

# Create some input.

zz = npr.normal(0., 1., (batch_size, 100))

# Train DG on the fake images.
DG_loss = DG.train_on_batch(zz,

ku.to_categorical (np.ones(batch_size),

# Now save the losses and images.

Erik Spence (SciNet HPC Consortium)

Generative adversarial networks

19 May 2022

compute « caicl
CANADA

2))

i

21/25



Training our GAN, running

This takes about 3 hours on a GPU.

ejspence@mycomp ~>

ejspence@mycomp ~> python MNIST_gan.py

0: [D loss: 0.039339] [DG loss: 0.055060]
1: [D loss: 0.020271] [DG loss: 0.150696]
2: [D loss: 0.038817] [DG loss: 5.117784]
3: [D loss: 0.365811] [DG loss: 2.477790]

496: [D loss: 0.617432] [DG loss: 1.407433]
497: [D loss: 0.625149] [DG loss: 1.447843]
498: [D loss: 0.621429] [DG loss: 1.181722]
499: [D loss: 0.596228] [DG loss: 1.274543]

ejspence@mycomp ~>

Scilet

’ compute ca\cu\

Erik Spence (SciNet HPC Consortium) Generative adversarial networks 19 May 2022 22/25


~
~
~

Our GAN, results

Erik Spence (SciNet HPC Consortium)

97 7 7
27 |
£ O 8 S
g L0 7

Generative adversarial networks

ScCitet

19 May 2022 23/25



Some final GAN notes

Some notes about the example, and GANs.
@ This took many attempts to get to work. Training failures aren't uncommon.
@ Since the GAN paper was published, man better GAN techniques have been introduced.
@ There are zillions of variations on the GAN. Check out the " GAN zoo" if you're interested.

@ There is talk of using GANs to replace regular HPC.

Scilet

) compute ca\cu\

Erik Spence (SciNet HPC Consortium) Generative adversarial networks 19 May 2022 24 /25



Linky goodness

GANSs:

@ https://arxiv.org/abs/1701.00160

@ https://blog.openai.com/generative-models

@ https://deephunt.in/the-gan-z00-79597dc8c347
@ http://arxiv.org/abs/1511.06434
°

https://medium.com/towards-data-science/
gan-by-example-using-keras-on-tensorflow-backend-1a6d515a60d0

https://arxiv.org/abs/1606.03498
@ https://arxiv.org/abs/1701.07875

Scifet
‘) com;:zx_its; Ei\cu\

Erik Spence (SciNet HPC Consortium) Generative adversarial networks 19 May 2022 25/25


https://arxiv.org/abs/1701.00160
https://blog.openai.com/generative-models
https://deephunt.in/the-gan-zoo-79597dc8c347
http://arxiv.org/abs/1511.06434
https://medium.com/towards-data-science/gan-by-example-using-keras-on-tensorflow-backend-1a6d515a60d0
https://medium.com/towards-data-science/gan-by-example-using-keras-on-tensorflow-backend-1a6d515a60d0
https://arxiv.org/abs/1606.03498
https://arxiv.org/abs/1701.07875

	Generative neural networks
	Generative adversarial networks
	Training GANs
	Training failures

	Example
	Our discriminator
	Leaky ReLU
	Our generator
	Training our example


