
PHY1610 - Distributed Parallel Programming with MPI

Ramses van Zon

March 29, 2022

Ramses van Zon PHY1610 - Distributed Parallel Programming with MPI March 29, 2022 1 / 39

Improving scalability

Issues with shared memory programming
Parallel tasks are run by threads.
All threads live on the same node and share the memory.
Limited to the resources of a single node.
Creation and deletion of threads can cause overhead (see assignment 8!)
Can lead to bugs like race conditions.

Today will look at distributed memory programming
Parallel tasks are processes.
Each process has only its own, private memory.
Processes need not be on the same node.
You can scale up the size of your system to as many resources as you have.
Harder to create race condition bugs, but now you get new bugs like dead-lock.
Must explicitly code in the communication between processes: Message Passing Interface aka MPI

Ramses van Zon PHY1610 - Distributed Parallel Programming with MPI March 29, 2022 2 / 39

Improving scalability

Issues with shared memory programming
Parallel tasks are run by threads.
All threads live on the same node and share the memory.
Limited to the resources of a single node.
Creation and deletion of threads can cause overhead (see assignment 8!)
Can lead to bugs like race conditions.

Today will look at distributed memory programming
Parallel tasks are processes.
Each process has only its own, private memory.
Processes need not be on the same node.
You can scale up the size of your system to as many resources as you have.
Harder to create race condition bugs, but now you get new bugs like dead-lock.
Must explicitly code in the communication between processes: Message Passing Interface aka MPI

Ramses van Zon PHY1610 - Distributed Parallel Programming with MPI March 29, 2022 2 / 39

Section 1

MPI Intro

Ramses van Zon PHY1610 - Distributed Parallel Programming with MPI March 29, 2022 3 / 39

Message Passing Interface (MPI)
What is it?

An open standard library interface for message passing, ratified by the MPI Forum
Version: 1.0 (1994), 1.1 (1995), 1.2 (1997), 1.3 (2008)
Version: 2.0 (1997), 2.1 (2008), 2.2 (2009)
Version: 3.0 (2012), 3.1 (2015)
Version: 4.0 (2021)

MPI Implementations

OpenMPI www.open-mpi.org
$ module load gcc/9 openmpi/4
or
$ module load intel openmpi

Currently these give you OpenMPI version 4.1.2..

MPICH www.mpich.org (MPICH, MVAPICH2, IntelMPI)
$ module load intel intelmpi

Ramses van Zon PHY1610 - Distributed Parallel Programming with MPI March 29, 2022 4 / 39

www.open-mpi.org
www.mpich.org

Message Passing Interface (MPI)
What is it?

An open standard library interface for message passing, ratified by the MPI Forum
Version: 1.0 (1994), 1.1 (1995), 1.2 (1997), 1.3 (2008)
Version: 2.0 (1997), 2.1 (2008), 2.2 (2009)
Version: 3.0 (2012), 3.1 (2015)
Version: 4.0 (2021)

MPI Implementations

OpenMPI www.open-mpi.org
$ module load gcc/9 openmpi/4
or
$ module load intel openmpi

Currently these give you OpenMPI version 4.1.2..

MPICH www.mpich.org (MPICH, MVAPICH2, IntelMPI)
$ module load intel intelmpi

Ramses van Zon PHY1610 - Distributed Parallel Programming with MPI March 29, 2022 4 / 39

www.open-mpi.org
www.mpich.org

MPI is a Library for Message-Passing

Library:

Not built in to compiler.

Function calls that can be made from any
compiler, many languages.

Just link to it.

Wrappers: mpicc, mpif90, mpicxx

#include <iostream>
#include <string>
#include <mpi.h>
using namespace std;

int main(int argc, char **argv)
{

int rank, size;

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &size);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
cout << "Hello from task " +

to_string(rank) + " of " +
to_string(size) + "\n";

MPI_Finalize();
}

Ramses van Zon PHY1610 - Distributed Parallel Programming with MPI March 29, 2022 5 / 39

MPI is a Library for Message Passing

CPU1

CPU2

CPU3

CPU4

Communication/coordination between tasks
done by sending and receiving messages.

Each message involves a function call from
each of the programs.

Ramses van Zon PHY1610 - Distributed Parallel Programming with MPI March 29, 2022 6 / 39

MPI is a Library for Message Passing

CPU1

CPU2

CPU3

CPU4

Three basic sets of functionality:

Pairwise communications via messages;

Collective operations via messages;

Efficient routines for getting data from
memory into messages and vice versa.

Ramses van Zon PHY1610 - Distributed Parallel Programming with MPI March 29, 2022 7 / 39

Messages

CPU1 CPU2

count of MPI_SOMETYPE

tag

Messages have a sender and a receiver.

When you are sending a message, you don’t
need to specify the sender (it is the current
processor).

A sent message has to be actively received by
the receiving process

Ramses van Zon PHY1610 - Distributed Parallel Programming with MPI March 29, 2022 8 / 39

Messages

CPU1 CPU2

count of MPI_SOMETYPE

tag

MPI messages are a string of length count all
of some fixed MPI type.

MPI types exist for characters, integers,
floating point numbers, etc.

An arbitrary non-negative integer tag is also
included – helps keep things straight if lots of
messages are sent.

Ramses van Zon PHY1610 - Distributed Parallel Programming with MPI March 29, 2022 9 / 39

Size of MPI Library

Many, many functions (>200).

Not nearly so many concepts.

We’ll get started with just 10-12, use more as
needed.

MPI_Init()
MPI_Comm_size()
MPI_Comm_rank()
MPI_Ssend()
MPI_Recv()
MPI_Finalize()

Ramses van Zon PHY1610 - Distributed Parallel Programming with MPI March 29, 2022 10 / 39

Example: Hello World

#include <iostream>
#include <string>
#include <mpi.h>
using namespace std;

int main(int argc, char **argv)
{

int rank, size;

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);
cout<< "Hello from task" + to_string(rank) +

" of " + to_string(size) + " world\n";

MPI_Finalize();
}

Ramses van Zon PHY1610 - Distributed Parallel Programming with MPI March 29, 2022 11 / 39

Example: Hello World

Compile with MPI

MPI provides compiler wrappers

mpicc
mpicxx
mpif90

that set all the -I, -L, -l, etc. options properly for the base compiler.
$ git clone /scinet/course/phy1610/mpi
$ cd mpi
$ module load gcc/9 openmpi/4
$ mpicxx -O2 -std=c++17 -o mpi-hello-world mpi-hello-world.cc # or: 'make mpi-hello-world'
$ mpirun -n 16 ./mpi-hello-world

Ramses van Zon PHY1610 - Distributed Parallel Programming with MPI March 29, 2022 12 / 39

What mpirun Does

Launches n processes, assigns each an MPI
rank and starts the program.

Usually, the processes run the same
executable, therefore each process runs the
exact same code.

For multinode runs, has a list of nodes, and
logs in (effectively) to each node, where it
launches the program.

Most MPI implementations have a more
versatile but non-portable mpirun command
as well.

Ramses van Zon PHY1610 - Distributed Parallel Programming with MPI March 29, 2022 13 / 39

Number of Processes

Number of processes to use is almost always
equal to the number of processors.

But not necessarily.

On a Teach debugjob, what happens when
you run this?

$ mpirun -n 16 ./mpi-hello-world

Ramses van Zon PHY1610 - Distributed Parallel Programming with MPI March 29, 2022 14 / 39

mpirun runs any program

mpirun will start its process-launching
procedure for any program.

Sets variables somehow that mpi programs
recognize so that they know which process
they are.

E.g., try this:
$ hostname
$ mpirun -n 4 hostname
$ ls
$ mpirun -n 4 ls

Ramses van Zon PHY1610 - Distributed Parallel Programming with MPI March 29, 2022 15 / 39

Example: Hello World

$ mpirun -n 4 ./mpi-hello-world
Hello from task 2 of 4 world
Hello from task 1 of 4 world
Hello from task 0 of 4 world
Hello from task 3 of 4 world

$ mpirun --tag-output -n 4 ./mpi-hello-world
[1,2]<stdout>:Hello from task 2 of 4
[1,3]<stdout>:Hello from task 3 of 4
[1,0]<stdout>:Hello from task 0 of 4
[1,1]<stdout>:Hello from task 1 of 4

The --tag-output flag is specific for the OpenMPI implementation of MPI.

Ramses van Zon PHY1610 - Distributed Parallel Programming with MPI March 29, 2022 16 / 39

Section 2

MPI Basics

Ramses van Zon PHY1610 - Distributed Parallel Programming with MPI March 29, 2022 17 / 39

MPI Basics
Basic MPI Components

#include <mpi.h>
MPI library definitions

MPI_Init(&argc,&argv)
MPI Intialization, must come first

MPI_Finalize()
Finalizes MPI, must come last

Formally, MPI routines return an error code.
But in fact, MPI applications by default abort
when there is an error.

Communicator Components

A communicator is a handle to a group of
processes that can communicate.
MPI_Comm_rank(MPI_COMM_WORLD,&rank)
MPI_Comm_size(MPI_COMM_WORLD,&rank)

#include <iostream>
#include <string>
#include <mpi.h>
using namespace std;

int main(int argc, char **argv)
{

int rank, size;

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);
cout << "Hello from task" + to_string(rank) +

" of " + to_string(size) + " world\n";

MPI_Finalize();
}

Ramses van Zon PHY1610 - Distributed Parallel Programming with MPI March 29, 2022 18 / 39

Communicators

rank 1

rank 2

rank 3

rank 0

MPI groups processes into communicators.

Each communicator has some size – number
of tasks.

Every task has a rank 0..size-1

Every task in your program belongs to
MPI_COMM_WORLD.

MPI_COMM_WORLD:
size = 4, ranks = 0..3

Ramses van Zon PHY1610 - Distributed Parallel Programming with MPI March 29, 2022 19 / 39

Communicators

One can create one’s own
communicators over the same
tasks.

May break the tasks up into
subgroups.

May just re-order them for
some reason.

MPI_COMM_WORLD:

size=4,ranks=0..3

rank 1

rank 2

rank 3

rank 0

new_comm:

size=3,ranks=0..2

rank 2

rank 0

rank 1

Ramses van Zon PHY1610 - Distributed Parallel Programming with MPI March 29, 2022 20 / 39

MPI Basics - Communicator Components

MPI_COMM_WORLD:

Global Communicator

MPI_Comm_rank(MPI_COMM_WORLD,&rank)

Get current tasks rank

MPI_Comm_size(MPI_COMM_WORLD,&size)

Get communicator size

Ramses van Zon PHY1610 - Distributed Parallel Programming with MPI March 29, 2022 21 / 39

MPI = Rank and Size
Rank and Size are much more important in
MPI than in OpenMP

In OpenMP, the compiler assigns jobs to each
thread; you do not need to know which one is
which (usually).

In MPI, all proceses run the same code.

In MPI, processes determine amongst
themselves which piece of puzzle to work on,
based on their rank, then communicate with
appropriate others.

rank 1

rank 2

rank 3

rank 0

Ramses van Zon PHY1610 - Distributed Parallel Programming with MPI March 29, 2022 22 / 39

MPI = Communication
Explicit Communication between Tasks

In OpenMP, threads can communicate using
the memory.

In MPI, a process which needs data of
another process needs to communicate with
that process by passing messages.

MPI_Ssend(...)

MPI_Recv(...)

rank 1

rank 2

rank 3

rank 0

Ramses van Zon PHY1610 - Distributed Parallel Programming with MPI March 29, 2022 23 / 39

MPI: Send & Receive
MPI_Ssend(sendptr, count, MPI_TYPE, destination,tag, Communicator);

MPI_Recv(recvptr, count, MPI_TYPE, source, tag, Communicator, MPI_status)

sendptr/recvptr: pointer to message

count: number of elements in message

MPI_TYPE: one of MPI_DOUBLE, MPI_FLOAT, MPI_INT, MPI_CHAR, etc.

destination/source: rank of sender/reciever

tag: unique id for message pair

Communicator: MPI_COMM_WORLD or user created

status: receiver status (error, source, tag)

Note: MPI has a Fortran and C interface. We can use the C interface in C++ but will have to deal with
pointers, i.e., we’ll give arguments likes &(array[0]) or array.data() instead of just array.

Ramses van Zon PHY1610 - Distributed Parallel Programming with MPI March 29, 2022 24 / 39

MPI: Send & Receive
#include <iostream>
#include <string>
#include <mpi.h>
using namespace std;
int main(int argc, char **argv)
{

int rank, size;
int tag = 1;
double msgsent, msgrcvd;
MPI_Status rstatus;
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);
msgsent = 111.;
msgrcvd = -999.;
if (rank == 0) {

MPI_Ssend(&msgsent, 1, MPI_DOUBLE, 1, tag, MPI_COMM_WORLD);
cout << "Sent " + to_string(msgsent) + " from " + to_string(rank) + "\n";

}
if (rank == 1) {

MPI_Recv(&msgrcvd, 1, MPI_DOUBLE, 0, tag, MPI_COMM_WORLD, &rstatus);
cout << "Received " + to_string(msgrcvd) + " on " + to_string(rank) + "\n";

}
MPI_Finalize();

} Ramses van Zon PHY1610 - Distributed Parallel Programming with MPI March 29, 2022 25 / 39

MPI: Send & Receive

$ make firstmessage
$ mpirun -n 2 ./firstmessage
Send 111.000000 from 0
Received 111.000000 on 1

Ramses van Zon PHY1610 - Distributed Parallel Programming with MPI March 29, 2022 26 / 39

MPI Communication Patterns

Send a message to the right:

Ramses van Zon PHY1610 - Distributed Parallel Programming with MPI March 29, 2022 27 / 39

Specials

Special Source/Destination MPI_PROC_NULL

MPI_PROC_NULL basically ignores the relevant operation; can lead to cleaner code.

Special Source MPI_ANY_SOURCE

MPI_ANY_SOURCE is a wildcard; matches any source when receiving.

Special Status MPI_STATUS_IGNORE

Use MPI_STATUS_IGNORE if you do not want to capture the status in a receive.

Ramses van Zon PHY1610 - Distributed Parallel Programming with MPI March 29, 2022 28 / 39

Section 3

Deadlocks

Ramses van Zon PHY1610 - Distributed Parallel Programming with MPI March 29, 2022 29 / 39

Deadlocks are a classic parallel bug

In this explicit message passing model, it is possible to completely freeze the application.

This can happen when a process is sending a message, but no process is or will ever be ready to
receive it.

This is called deadlock

To see how that could happen, let’s look at an example.

Ramses van Zon PHY1610 - Distributed Parallel Programming with MPI March 29, 2022 30 / 39

MPI: Send Right, Receive Left
#include <iostream>
#include <string>
#include <mpi.h>
using namespace std;
int main(int argc, char **argv)
{

int rank, size, left, right, tag = 1;
double msgsent, msgrcvd;
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);
left = rank - 1;
if (left < 0) left = MPI_PROC_NULL;
right = rank + 1;
if (right >= size) right = MPI_PROC_NULL;
msgsent = rank*rank;
msgrcvd = -999.;
MPI_Ssend(&msgsent, 1, MPI_DOUBLE, right, tag, MPI_COMM_WORLD);
MPI_Recv(&msgrcvd, 1, MPI_DOUBLE, left, tag, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
cout << to_string(rank) + ": Sent " + to_string(msgsent)

+ " and got " + to_string(msgrcvd) + "\n";
MPI_Finalize();

}
Ramses van Zon PHY1610 - Distributed Parallel Programming with MPI March 29, 2022 31 / 39

MPI: Send Right, Receive Left

$ make secondmessage
$ mpirun -n 3 ./secondmessage
2: Sent 4.000000 and got 1.000000
0: Sent 0.000000 and got -999.000000
1: Sent 1.000000 and got 0.000000
$

$ mpirun -n 6 ./secondmessage
4: Sent 16.000000 and got 9.000000
5: Sent 25.000000 and got 16.000000
0: Sent 0.000000 and got -999.000000
1: Sent 1.000000 and got 0.000000
2: Sent 4.000000 and got 1.000000
3: Sent 9.000000 and got 4.000000

Ramses van Zon PHY1610 - Distributed Parallel Programming with MPI March 29, 2022 32 / 39

MPI: Send Right, Receive Left with Periodic BCs

Periodic Boundary Conditions:

Ramses van Zon PHY1610 - Distributed Parallel Programming with MPI March 29, 2022 33 / 39

MPI: Send Right, Receive Left with Periodic BCs

...
left = rank - 1;
if (left < 0) left = size-1; // Periodic BC
right = rank + 1;
if (right >= size) right =0; // Periodic BC
msgsent = rank*rank;
msgrcvd = -999.;
...

$ make thirdmessage
$ mpirun -n 3 ./thirdmessage
_

Program hangs!

Ramses van Zon PHY1610 - Distributed Parallel Programming with MPI March 29, 2022 34 / 39

MPI: Send Right, Receive Left with Periodic BCs

...
left = rank - 1;
if (left < 0) left = size-1; // Periodic BC
right = rank + 1;
if (right >= size) right =0; // Periodic BC
msgsent = rank*rank;
msgrcvd = -999.;
...

$ make thirdmessage
$ mpirun -n 3 ./thirdmessage
_

Program hangs!

Ramses van Zon PHY1610 - Distributed Parallel Programming with MPI March 29, 2022 34 / 39

Deadlock!

A classic parallel bug.

Occurs when a cycle of tasks are waiting for
the others to finish.

Whenever you see a closed cycle, you likely
have (or risk) a deadlock.

Here, all processes are waiting for the send to
complete, but no one is receiving.

Sends and receives must be paired when sending

Ramses van Zon PHY1610 - Distributed Parallel Programming with MPI March 29, 2022 35 / 39

How do we fix the deadlock?
Without using new MPI routine, how do we fix the deadlock?

Even-odd solution

First: evens send, odds receive
Then: odds send, evens receive
Will this work with an odd number of processes? How about 2? 1?

Ramses van Zon PHY1610 - Distributed Parallel Programming with MPI March 29, 2022 36 / 39

MPI: Send Right, Recv Left with Periodic BCs - fixed

...
if ((rank % 2) == 0) {

MPI_Ssend(&msgsent, 1, MPI_DOUBLE, right, tag, MPI_COMM_WORLD);
MPI_Recv(&msgrcvd, 1, MPI_DOUBLE, left, tag, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

} else {
MPI_Recv(&msgrcvd, 1, MPI_DOUBLE, left, tag, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
MPI_Ssend(&msgsent, 1, MPI_DOUBLE, right, tag, MPI_COMM_WORLD);

}
...

$ make fourthmessage
$ mpirun -n 5 ./fourthmessage
1: Sent 1.000000 and got 0.000000
2: Sent 4.000000 and got 1.000000
3: Sent 9.000000 and got 4.000000
4: Sent 16.000000 and got 9.000000
0: Sent 0.000000 and got 16.000000

Ramses van Zon PHY1610 - Distributed Parallel Programming with MPI March 29, 2022 37 / 39

MPI: Sendrecv

MPI_Sendrecv(sendptr, count, MPI_TYPE, destination, tag,
recvptr, count, MPI_TYPE, source, tag, Communicator, MPI_Status)

A blocking send and receive built together.

Lets them happen simultaneously.

Can automatically pair send/recvs.

Why 2 sets of tags/types/counts?

Ramses van Zon PHY1610 - Distributed Parallel Programming with MPI March 29, 2022 38 / 39

Send Right, Receive Left with Periodic BCs - Sendrecv

Code
...
MPI_Sendrecv(&msgsent, 1, MPI_DOUBLE, right, tag,

&msgrcvd, 1, MPI_DOUBLE, left, tag, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
...

Execution
$ make fifthmessage
$ mpirun -n 5 ./fifthmessage
1: Sent 1.000000 and got 0.000000
2: Sent 4.000000 and got 1.000000
3: Sent 9.000000 and got 4.000000
4: Sent 16.000000 and got 9.000000
0: Sent 0.000000 and got 16.000000

Ramses van Zon PHY1610 - Distributed Parallel Programming with MPI March 29, 2022 39 / 39

	MPI Intro
	MPI Basics
	Deadlocks

