
Quantitative Applications for Data Analysis:
classification II

Erik Spence

SciNet HPC Consortium

24 March 2022

Erik Spence (SciNet HPC Consortium) Classification II 24 March 2022 1 / 27

Today’s slides

Today’s slides can be found here. Go to the ”Quantitative Applications for Data Analysis”
page, under Lectures, ”Classification II”.

https://scinet.courses

Erik Spence (SciNet HPC Consortium) Classification II 24 March 2022 2 / 27

https://scinet.courses

Today’s class

Today we will visit the following topics:

Logistic regression.

ROC curves.

kNN.

Ask questions!

Erik Spence (SciNet HPC Consortium) Classification II 24 March 2022 3 / 27

Classification

Classification is similar to regression, in a sense:

You fit a model to data with known answers (y = f(x1, x2, x3, ...)).

You use the model to make predictions about new data.

But what do you do if the labels (y) are discrete? How do you deal with that?

Data point y is either in category 1 or 2.

You don’t get points for putting y in category 1.5.

Classification algorithms are used to create models for separating data into known categories.

Erik Spence (SciNet HPC Consortium) Classification II 24 March 2022 4 / 27

Classification problems

Classification problems are everywhere:

Bioinformatics - classifying proteins according to function.

Medical diagnosis.

Image processing:
I what objects exist in an image?
I hand-written text analysis.

Text categorization:
I Spam filtering
I Sentiment analysis: is this tweet positive or negative?

Language recognition.

Fraud detection.

Input variables can be continuous, discrete, or both.

Erik Spence (SciNet HPC Consortium) Classification II 24 March 2022 5 / 27

Classification approaches

There are lots of classification approaches which one might use.

Decision trees: analyze the features of the data and make ’decisions’ about how to ’split’
the data into uniform groups.

Logistic regression: like linear regression, but now we fit a ”yes/no” function to the data.

Naive Bayes: a type of probabilistic analysis.

kNN: k Nearest Neighbours; use the k nearest neighbours to a data point to predict the
category of a new data point.

Support Vector Machines: essentially a linear model of the data, used for separate groups.

Neural networks: a weird algorithmic approach to using functions to categorize data.

Today we will go over logistic regression and kNN.

Erik Spence (SciNet HPC Consortium) Classification II 24 March 2022 6 / 27

Logistic regression

One way to consider binary classification is to
go back to regression, and fit a linear
regression to an integer 0/1 variable for
classification: over 0.5, True, else False.

This requires a linear separation between the
classes to be effective.

However, naive application of linear regression
can lead to a number of problems, which grow
with the number of dimensions. These are
mostly related to the unbounded nature of the
function.

3 2 1 0 1 2 3

0.25

0.00

0.25

0.50

0.75

1.00

1.25

Linear
Logistic Prediction

Erik Spence (SciNet HPC Consortium) Classification II 24 March 2022 7 / 27

Logistic regression, continued
A whole infrastructure exists for ”generalized linear models”, where the function being fit is not

y = β0 + x1β1 + x2β2 + · · · = x · ~β

but rather some power or exponential of x · ~β.

Consider instead fitting, not the probability p, but rather the log of the odds ratio,

µ = ln

(
p

1 − p

)
= x · ~β

We can fit this log-odds equation, and derive

p =
ex·

~β

1 + ex·~β
=

1

1 + e−x·~β

Erik Spence (SciNet HPC Consortium) Classification II 24 March 2022 8 / 27

Logistic regression, continued more

p =
1

1 + e−x·~β

This approach has a number of very nice
properties:

We have a nice, bounded, well-behaved
function.

We can directly calculate the inferred
probability of category membership.

We’re essentially fitting a Bernoulli
process.

3 2 1 0 1 2 3

0.25

0.00

0.25

0.50

0.75

1.00

1.25

Linear
Logistic Prediction
Logistic Function

Erik Spence (SciNet HPC Consortium) Classification II 24 March 2022 9 / 27

Logistic regression, continued some more

One has to use somewhat different numerical
algorithms to fit these curves; typical
curve-fitting algorithms deal very poorly with
exponentials.

Techniques like expectation maximization
(EM) or other well-conditioned iterative
methods are often used.

That’s fine; they’re all hidden beneath
whatever logistic or GLM packages you might
want to use.

3 2 1 0 1 2 3

0.25

0.00

0.25

0.50

0.75

1.00

1.25

Linear
Logistic Prediction
Logistic Function

Erik Spence (SciNet HPC Consortium) Classification II 24 March 2022 10 / 27

Logistic regression, example

Using logistic regression in
sklearn is as simple as you
might expect.

From the linear model
subpackage, create a
LogisticRegression object.

Fit in the usual way.

Note that logistic
regression can be used for
more than just binary
classification.

In [1]: import sklearn.datasets as skd

In [2]: import sklearn.model selection as skms

In [3]: import sklearn.linear model as sklm

In [4]:

In [4]: data = skd.load breast cancer()

In [5]:

In [5]: train x, test x, train y, test y = \

...: skms.train test split(data.data, data.target,

...: test size = 0.2)

In [6]:

In [6]: model = sklm.LogisticRegression(max iter = 10000)

In [7]:

In [7]: model = model.fit(train x, train y)

In [8]:

In [8]: test pred = model.predict(test x)

In [9]:

Erik Spence (SciNet HPC Consortium) Classification II 24 March 2022 11 / 27

Confusion matrix
How you determine the effectiveness of a classifier is different than a regression. You can
count the number incorrectly classified, and this useful, but it doesn’t give you much
information you can use to improve the result.

The ’Confusion Matrix’, tells you which misclassifications happened. Traditionally, ’true’
classifications are on the rows, and predictions are on the columns.

In [9]: import sklearn.metrics as skm

In [10]:

In [10]: skm.accuracy score(test y, test pred)

Out[10]: 0.956140350877193

In [11]:

In [11]: skm.confusion matrix(test y, test pred)

Out[11]:

array([[41, 2],

[3, 68]])

Erik Spence (SciNet HPC Consortium) Classification II 24 March 2022 12 / 27

Evaluating binary classifiers

Binary classification is a common and important enough special case that its confusion matrix
elements have special names, and various quality measures are defined.

Classified Positive (CP) Classified Negative (CN)

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

One can always get exactly one of FN or FP to be zero (for example, just classify everything
positive, then there will never be any false negatives).

But there is usually a tradeoff between false positives and false negatives.

Erik Spence (SciNet HPC Consortium) Classification II 24 March 2022 13 / 27

Classification thresholds

In most binary classifiers, there’s some
equivalent of a threshold you can set.
This threshold determines when a given
data point moves from one
categorization to the other.

For the case of logistic regression, the
default threshold is 0.5.

Set it lower (allow more true, but
also false, positives).

Set it higher (allow more true, but
also false, negatives).

3 2 1 0 1 2 3

0.25

0.00

0.25

0.50

0.75

1.00

1.25

Linear
Logistic Prediction
Logistic Function

Erik Spence (SciNet HPC Consortium) Classification II 24 March 2022 14 / 27

ROC curve

By varying the classification threshold,
from 0 to 1, we can get a collection of
points for the TPR and FPR. Plotting
the two measures on either axis gives a
ROC (Receiver Operating
Characteristic) curve.

The diagonal line represents
random chance.

We want our curve to be as high
above the diagonal as possible.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Erik Spence (SciNet HPC Consortium) Classification II 24 March 2022 15 / 27

ROC curve, continued

In [12]:

In [12]: probs = model.predict proba(test x)

In [13]:

In [13]: fpr, tpr, = skm.roc curve(test y,

...: probs[:,1])

In [13]:

In [13]: import matplotlib.pyplot as plt

In [14]:

In [14]: plt.plot(fpr, tpr, ’go-’)

In [14]:

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Note that your curve will look different
from this one, due to randomness.

Erik Spence (SciNet HPC Consortium) Classification II 24 March 2022 16 / 27

ROC curve, continued more

The quality of a classifier is determined by
the ROC curve’s AUC (area under the
curve).

The worst classifiers will have an AUC
near 0.5.

Good classifiers have an AUC near 1.0.

For the non-binary classification situation,
you create ”one versus all” ROC curves,
with one ROC curve for each category.

In [14]:

In [14]: skm.roc auc score(test y, probs[:,1])

Out[14]: 0.9854096520763187

In [15]:

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Erik Spence (SciNet HPC Consortium) Classification II 24 March 2022 17 / 27

Nearest neighbours - kNN

Consider a more-geometric approach
to classification: given an input data
point, find the nearest point in the
training set, and choose that
classification for your input data
point.

This is a type of regression.

A generalization is to choose the k
Nearest Neighbours (kNN), and
choose the classification that the
majority of those k points has.

4 2 0 2 4

4

2

0

2

4

Two 2D Gaussians, centred on (-1,-1) (red), and
(1,1) (blue) with σ = 1.5, k = 1.

Erik Spence (SciNet HPC Consortium) Classification II 24 March 2022 18 / 27

Nearest neighbours - kNN, continued
knndemo.py

import numpy as np, matplotlib.pyplot as plt

from scipy.stats import norm

import sklearn.neighbors as skn

num0 = 200; num = int(num0 / 2)

c1 = -1.0; c2 = 1.0; sig1 = 1.5

Generate Gaussian data.

x1 = norm.rvs(size = num, loc = c1, scale = sig)

y1 = norm.rvs(size = num, loc = c1, scale = sig)

x2 = norm.rvs(size = num, loc = c2, scale = sig)

y2 = norm.rvs(size = num, loc = c2, scale = sig)

Set up the data.

z1 = np.c [x1, y1]; z2 = np.c [x2, y2];

x = np.concatenate((z1, z2))

y = np.concatenate((np.zeros(num), np.ones(num)))

Set up the background grid.

xx, yy = np.meshgrid(np.arange(-5, 5, 0.01),

np.arange(-5, 5, 0.01))

Build the model, and train.

model = skn.KNeighborsClassifier(k)

model.fit(x, y)

Predict the values for the background.

z = model.predict(np.c [xx.ravel(), yy.ravel()])

Put the result into a colour plot.

z = z.reshape(xx.shape)

plt.pcolormesh(xx, yy, z)

Plot also the training points, and save.

plt.scatter(x[:, 0], x[:, 1], c = y)

plt.savefig(’knndemo k=’ + str(k) + ’.pdf’)

Erik Spence (SciNet HPC Consortium) Classification II 24 March 2022 19 / 27

Bias-variance in kNN

There’s a bias-variance-like
tradeoff in kNN, as can be
seen by varying k on the same
data.

At low k, the variance is very
large. The model is trying to
fit to every single point.

At higher k, we average over a
large area, and we start to lose
features.

k=1 k=3

4 2 0 2 4

4

2

0

2

4

4 2 0 2 4

4

2

0

2

4

k=7 k=13

4 2 0 2 4

4

2

0

2

4

4 2 0 2 4

4

2

0

2

4

Erik Spence (SciNet HPC Consortium) Classification II 24 March 2022 20 / 27

Bias-variance in kNN, continued

On the right we see 4
instances of the previous data
set. The model has been built
with k = 1 for all 4. It’s clear
that the decision boundary
varies widely from one run to
the next.

4 2 0 2 4

4

2

0

2

4

4 2 0 2 4

4

2

0

2

4

4 2 0 2 4

4

3

2

1

0

1

2

3

4

4 2 0 2 4

6

4

2

0

2

4

Erik Spence (SciNet HPC Consortium) Classification II 24 March 2022 21 / 27

Scaling continuous features

In the iris data set, petal length varies over a much greater range than sepal width. If we just
use Euclidean distance for kNN, sepal width will provide very little information: all points are
close to each other in that dimension.

We want the information in all features to contribute to the solution. To this end, we should
scale the features to that they all get to play. A common technique is to centre the features by
subtracting off their means, and then scaling them by their standard deviations.

x′ =
x− µ

σx

Many libraries will do this for you, for methods where it matters. But not all will; check the
documentation!

Erik Spence (SciNet HPC Consortium) Classification II 24 March 2022 22 / 27

Cross-validation and kNN

But we are left with the same (or
similar) problem as the polynomial
fitting: how do we choose the value
of k?

The sklearn package has built-in
functionality to perform
cross-validation on a kNN analysis.

Let’s try this on the output of the
make classification function. By
default this function creates 20
features.

In [15]:

In [15]: import sklearn.datasets as skd

In [16]:

In [16]: x, y = skd.make classification(500,

...: n classes = 3,

...: n informative = 4)

In [17]:

In [17]: x.shape

Out[17]: (500, 20)

In [18]:

In [18]: train x, test x, train y, test y = \

...: skms.train test split(x, y,

...: test size = 0.2)

In [19]:

Erik Spence (SciNet HPC Consortium) Classification II 24 March 2022 23 / 27

Cross-validation and kNN, continued

How do we use the sklearn
cross-validation?

Create a KNeighborsClassifier
object.

Use the cross val score function
to perform the cross-validation
for you.

The function returns the scores
for each k fold.

Examine the scores to find the
best k value.

In [19]:

In [19]: import sklearn.neighbors as skn

In [20]: import numpy as np

In [21]:

In [21]: kvalues = range(1, 82, 2)

In [22]: scores = np.zeros(len(kvalues))

In [23]:

In [23]: for i, k in enumerate(kvalues):

...: model = skn.KNeighborsClassifier(k)

...: scores[i] = np.mean(skms.cross val score(model,

train x, train y, cv = 10))

In [24]:

In [24]: plt.plot(kvalues, scores, ’ko-’)

In [25]:

Erik Spence (SciNet HPC Consortium) Classification II 24 March 2022 24 / 27

Cross-validation and kNN, continued more

0 10 20 30 40 50 60 70 80
k

0.60

0.62

0.64

0.66

0.68

Ac
cu

ra
cy

 [%
]

Erik Spence (SciNet HPC Consortium) Classification II 24 March 2022 25 / 27

Cross-validation and kNN, continued even more

Unfortunately, cross val score does
not return the best model. You need
to recalculate that yourself.

As always, it’s a good idea to see
how well the algorithm works, and
make sure the errors are balanced.

In [25]:

In [25]: bestmodel = skn.KNeighborsClassifier(7)

In [26]:

In [26]: bestmodel = bestmodel.fit(train x, train y)

In [27]:

In [27]: test pred = bestmodel.predict(test x)

In [28]:

In [28]: skm.confusion matrix(test y, test pred)

array([[32, 0, 3],

[8, 17, 4],

[12, 7, 17]])

In [28]:

In [28]: skm.accuracy score(test y, test pred)

Out[28]: 0.66

In [29]:

Erik Spence (SciNet HPC Consortium) Classification II 24 March 2022 26 / 27

Summary
You’ve now seen three classification algorithms: decision trees, logistic regression and kNN.
Some things to remember:

logistic regression strength: not prone to over-fitting.

logistic regression strength: can work well with noisy data.

logistic regression weakness: assumes there is a single smooth boundary between
categories.

kNN strength: completely non-parametric (data can take any numeric form).

kNN strength: works in as many dimensions as you like.

kNN weakness: slow if there are too many data points.

kNN weakness: doesn’t handle categorical data.

There are guidelines you can use, but ultimately experience and experimentation is most
important.

Erik Spence (SciNet HPC Consortium) Classification II 24 March 2022 27 / 27

	Classification
	Logistic regression
	Example
	Confusion matrix
	Evaluating classifiers
	ROC curve

	kNN
	Scaling features
	Example

