
BCH2203 Python - 10. Machine Learning

Ramses van Zon

23 March 2022

Ramses van Zon BCH2203 Python - 10. Machine Learning 23 March 2022 1 / 36

This class

We’ll do a lightning overview of some of the machine learning you can do in Python

Will briefly look at:
I regression
I classification
I cluster analysis

Take away message: use the scikit-learn package

Ramses van Zon BCH2203 Python - 10. Machine Learning 23 March 2022 2 / 36

http://www.scinethpc.ca

About Scikit-learn

Standard machine learning package in Python.

Get it with from sklearn import ... or
from sklearn.SUBPACKAGE import ...

Built on numpy, scipy, and matplotlib.

Can do regression, classification, clustering, decision trees, . . .

https://scikit-learn.org

Ramses van Zon BCH2203 Python - 10. Machine Learning 23 March 2022 3 / 36

http://www.scinethpc.ca
https://scikit-learn.org

1

Regression

Ramses van Zon BCH2203 Python - 10. Machine Learning 23 March 2022 4 / 36

Linear Regression

You fit a model to data with known answers (y = f(x1, x2, x3, . . .)).

For linear regression, the model is linear, but allows for some assumed randomness.

You use the model to make predictions about new data.

Ramses van Zon BCH2203 Python - 10. Machine Learning 23 March 2022 5 / 36

http://www.scinethpc.ca

Linear Regression in Python

Linear model:
I Independent variables: x
I Dependent variables: y
I Assume y = ax+ b plus some noise

Data points (xi, yi)→ estimate a and b.

Possible with just numpy:
>>> from numpy import arange,random,polyfit,polyval
>>> n = 50
>>> x = arange(float(n))
>>> y = x + 50*random.random(n)
>>> fit = polyfit(x,y,1)
>>> print(fit)
[0.87283243 29.21160988]
>>> predict = polyval(fit,12.5)
>>> print(predict)
35.8567217981

scikit learn version:
>>> from sklearn import linear_model
>>> from numpy import c_
>>> regr = linear_model.LinearRegression()
>>> regr.fit(c_[x],c_[y]
>>> print(regr.coef_, regr.intercept_)
[[0.87283243]] [29.21160988]
>>> print(regr.predict([[12.5]]))
[[35.8567218]]

Ramses van Zon BCH2203 Python - 10. Machine Learning 23 March 2022 6 / 36

http://www.scinethpc.ca

Scikit learn peculiarities

>>> from sklearn import linear_model
>>> from numpy import c_
>>> regr = linear_model.LinearRegression()
>>> regr.fit(c_[x],c_[y]
>>> print(regr.coef_, regr.intercept_)
[[0.87283243]] [29.21160988]
>>> print(regr.predict([[12.5]]))
[[35.8567218]]

All input and output are 2D: can fit multiple
features (x) and targets (y).

np.c_[a,b,c,...] turns creates a numpy matrix
with the vectors a,b,c,... as columns.

Even for a single vector, sklearn wants a matrix.

Use fit() to train it, predict() to apply to
(new) data.

Polynomial fits require
creating x2, x3 as additional independent variables
(sklearn.preprocessing.PolynomialFeatures)

Ramses van Zon BCH2203 Python - 10. Machine Learning 23 March 2022 7 / 36

http://www.scinethpc.ca

We still don’t quite know how well we did.

Need the typical machine-learning approach of dividing the data in a ‘training’ and a ‘test’ set.

In general, we get our data, and that’s it. We don’t have the luxury of generating more data on a whim.

We would like to do out-of-sample testing of whatever model we generate, to see how it does against new
data. But we don’t have any new data.

The solution is to hold out some of the original data. Most of the data is used for training the model, the rest
is used for testing it. These data should be chosen randomly, as in the next slide.

Ramses van Zon BCH2203 Python - 10. Machine Learning 23 March 2022 8 / 36

http://www.scinethpc.ca

Separating training and testing data

We generated data already:
>>> from numpy import arange,random,logical_not
>>> from sklearn import linear_model
>>> n = 50
>>> x = arange(float(n))
>>> y = x + 50*random.random(n)

Now we’ll set a side some of that data for testing:
>>> test_fraction = 0.2
>>> test_selection = random.random(n) < test_fraction
>>> x_test, y_test = c_[x[test_selection]], c_[y[test_selection]]

And fit using the rest:
>>> train_selection = logical_not(test_selection)
>>> x_train, y_train = c_[x[train_selection]], c_[y[train_selection]]
>>> regr = linear_model.LinearRegression()
>>> regr.fit(x_train, y_train)

Ramses van Zon BCH2203 Python - 10. Machine Learning 23 March 2022 9 / 36

http://www.scinethpc.ca

Goodness of fit

>>> regr.fit(x_train, y_train)

We have fitted on the training data.
We can now see how well this works for the test data.
For instance, we could use the R2 metric (built-in) on the predictions for the test data:

>>> print(regr.score(x_test,y_test))
0.567106344383

The closer the R2 score is to 1, the better the fit.

More metrics in sklearn.metrics

Ramses van Zon BCH2203 Python - 10. Machine Learning 23 March 2022 10 / 36

http://www.scinethpc.ca

Train/Test Split

As with many standard techniques from ML, scikit-learn has a utility for this:
>>> from numpy import arange,random
>>> from sklearn import linear_model
>>> n = 50
>>> x = arange(float(n))
>>> y = x + 50*random.random(n)
>>>
>>> from sklearn.model_selection import train_test_split
>>> test_fraction = 0.2
>>> x_train, x_test, y_train, y_test = train_test_split(x[:,None],y[:,None],test_size=test_fraction)
>>>
>>> regr = linear_model.LinearRegression()
>>> regr.fit(x_train, y_train)
>>>
>>> print(regr.score(x_test, y_test))
0.596961546282

Ramses van Zon BCH2203 Python - 10. Machine Learning 23 March 2022 11 / 36

http://www.scinethpc.ca

Nothing like a visual confirmation.

R2=0.596961546282 looks neither very good nor too
bad.

Nothing like a plot to see the result:
>>> import matplotlib.pylab as plt
>>> from numpy import linspace
>>> px = linspace(0.0,float(n),200)
>>> py = regr.predict(c_[px])[:,0]
>>> plt.plot(x,y,'o',px,py,'-')
>>> plt.show();plt.pause(.1)

Ramses van Zon BCH2203 Python - 10. Machine Learning 23 March 2022 12 / 36

http://www.scinethpc.ca

2

Classification

Ramses van Zon BCH2203 Python - 10. Machine Learning 23 March 2022 13 / 36

Classification Basics

Classification is similar to regression, in a sense:

You fit a model to data with known answers (y = f(x1, x2, x3, ...)).
You use the model to make predictions about new data.

But what do you do if the labels (y) are discrete? How do you deal with that?

Data point y is either in category 1 or 2.
You don’t get points for putting y in category 1.5.

Classification algorithms are used to create models for separating data into known categories.

Ramses van Zon BCH2203 Python - 10. Machine Learning 23 March 2022 14 / 36

http://www.scinethpc.ca

Classification in Python

Some classic classification problems:

Bioinformatics - classifying proteins according to function.

Medical diagnosis

Image processing:
I what objects exist in an image?
I hand-written text analysis.

Text categorization:
I Spam filtering
I Sentiment analysis: is this tweet positive or negative?

Language recognition.

Fraud detection.

Input variables can be continuous, discrete, or both.

Ramses van Zon BCH2203 Python - 10. Machine Learning 23 March 2022 15 / 36

http://www.scinethpc.ca

Classification approaches

There are lots of classification approaches which one might use.

Decision trees: analyze the features of the data and make ’decisions’ about how to ’split’ the data into
uniform groups.

Logistic regression: like linear regression, but now we fit a ”yes/no” function to the data.

Naive Bayes: a type of probabilistic analysis.

kNN: k Nearest Neighbours; use the k nearest neighbours to a data point to predict the category of a new
data point.

Support Vector Machines: essentially a linear model of the data, used for separate groups.

Neural networks: an algorithmic approach to using functions to categorize data.

There isn’t time to cover all of these. Let’s look at Decision Trees.

Ramses van Zon BCH2203 Python - 10. Machine Learning 23 March 2022 16 / 36

http://www.scinethpc.ca

Decision Trees

A Decision Tree is a structure which classifies an input
based on a number of binary decisions.

It splits the data set based on one of the p “features”
of the data.

“Features” are the independent variables associated
with the data (x1, x2, . . . , xp).

Ramses van Zon BCH2203 Python - 10. Machine Learning 23 March 2022 17 / 36

http://www.scinethpc.ca

Decision Trees, continued

Data can be split based on discrete data

(“if category == A”) or continuous data

(“if height < 1.5m”)

The goal of developing a decision tree is to determine
when and where and how to split the data, so as to
maximize the ‘purity’ of the resulting sub-data set.

Ramses van Zon BCH2203 Python - 10. Machine Learning 23 March 2022 18 / 36

http://www.scinethpc.ca

Splitting algorithms

Algorithms which split the data, rank possible splits based on increasing ‘purity’ of the two subgroups it generates.

Consider the probability p that a member of one of the
labels is in a given feature category. Two common
measures for the ‘impurity’ of the generated groups are
given by

Gini index:
∑
p(1− p)

Entropy: −
∑

[p ln p+ (1− p) ln(1− p)]

where the sum is over all labels and possible values in
the given category.

An impurity of 0, i.e., probability of 0 or 1, is perfect.

Ramses van Zon BCH2203 Python - 10. Machine Learning 23 March 2022 19 / 36

http://www.scinethpc.ca

Splitting algorithms, continued

So how do these algorithms proceed?

While every data point is not in a pure sub-tree:

For each feature in the data remaining in the sub-tree, consider a split:
I If the feature is categorical, consider all values, split by value and measure the impurity of the resulting subgroups.
I If the feature is continuous, use line optimization to choose the best point at which to split, keeping track of the

impurity at that point.

Choose the split which maximizes the change in the impurity (smallest impurity value), and split the data.

Ramses van Zon BCH2203 Python - 10. Machine Learning 23 March 2022 20 / 36

http://www.scinethpc.ca

Example: Iris data

Let’s use sklearn to build a decision tree. We’ll use the Iris data set.

The data consists as four measurements of 150 wild irises of 3 species.

It’s a classic classification problem.

It’s one of the data sets which comes with sklearn.

We first randomly split the iris data set, 70/30, into training and test data sets.
>>> from sklearn import datasets
>>> from sklearn.model_selection import train_test_split
>>> iris = datasets.load_iris()
>>> train_data, test_data, train_target, test_target = train_test_split(

iris.data, iris.target, test_size=0.3)

https://en.wikipedia.org/wiki/Iris_flower_data_set

Ramses van Zon BCH2203 Python - 10. Machine Learning 23 March 2022 21 / 36

http://www.scinethpc.ca
https://en.wikipedia.org/wiki/Iris_flower_data_set

Example: Iris data, continued

Now that the data’s split up, we’re ready to generate
the tree.

import the DecisionTreeClassifier

Specify which features to use

Generate the tree.

Check against the training data.

Pretty good fit!

>>> from sklearn.tree import DecisionTreeClassifier
>>>
>>> iris_tree = DecisionTreeClassifier(
... criterion = "gini", random_state = 1,
... max_depth=4, min_samples_leaf=5)
>>>
>>> iris_tree.fit(train_data, train_target)
>>>
>>> print(iris_tree.score(train_data, train_target))
0.971428571429

How about test data?
>>> print(iris_tree.score(test_data, test_target))
0.9555555555555556

Not bad!

Ramses van Zon BCH2203 Python - 10. Machine Learning 23 March 2022 22 / 36

http://www.scinethpc.ca

Plot a decision tree

>>> from sklearn.tree import plot_tree
>>> plot_tree(iris_tree,

feature_names=iris.feature_names,
class_names=iris.target_names,
proportion=True,
impurity=False,
filled=True);

Ramses van Zon BCH2203 Python - 10. Machine Learning 23 March 2022 23 / 36

http://www.scinethpc.ca

Trees and over-fitting

As with polynomials and regression, we can easily produce overly-complex decision trees which do great on the
training data, but don’t generalize.

In fact, this is guaranteed to happen with decision trees, since given enough splits, it will always perfectly classify
the data.

How do we deal with this? The usual approach is to prune the tree at some level, where the results are ”good
enough”, and the model is not ”too complex”.

Ramses van Zon BCH2203 Python - 10. Machine Learning 23 March 2022 24 / 36

http://www.scinethpc.ca

3

Cluster Analysis

Ramses van Zon BCH2203 Python - 10. Machine Learning 23 March 2022 25 / 36

Clustering

Clustering is classification without the classes.

Unsupervised learning - no labels.
Assign groups of “similar” observations to the same cluster.

Scientific applications:

Assign proteins with similar interactions to same group
Find patterns in galaxy properties
Determine topics in bodies of text

Business applications

Market segmentation
“People who buy X often buy. . . ”

Ramses van Zon BCH2203 Python - 10. Machine Learning 23 March 2022 26 / 36

http://www.scinethpc.ca

Clustering

Two primary reasons for clustering:

Uncover undiscovered patterns in high-dimensional data
Summarize large number of observations into fewer, homogeneous clusters.

Definition of “similar”, “cluster” notably vague.

Typically involve short “distances” between points in the p-dimensional space of features.

Continuous spaces - a Euclidean or other distance metric.

Ordinal spaces (e.g., bag-of-word counts): use a ‘cosine similarity’.

Ramses van Zon BCH2203 Python - 10. Machine Learning 23 March 2022 27 / 36

http://www.scinethpc.ca

K-means

K-means clustering is a geometric clustering algorithm
which uncovers roughly spherical blobs of clusters
amongst the data items. The algorithm is very simple:

Starting with k initial cluster centers,

For each data point, assign to nearest centre,

Calculate the centroid of each new cluster,

Move cluster centers to new centre,

Repeat until converged

Ramses van Zon BCH2203 Python - 10. Machine Learning 23 March 2022 28 / 36

http://www.scinethpc.ca

K-means: pros and cons

K-means is extremely robust, but has some downsides:

Have to know before hand how many (k) clusters
you’re looking for.

Random initial positions can go badly wrong;

Need many initial tries; handled automatically by
k-means

How to measure quality of clusters?

Ramses van Zon BCH2203 Python - 10. Machine Learning 23 March 2022 29 / 36

http://www.scinethpc.ca

K-means: Error measures

A few error measures available for k-means:

Homogenity: how similar are in-cluster items?

This involves something like minimizing the within-cluster sum of squares

WCSS =
k∑
i

∑
j∈Sk

||x− µj ||2

Completeness: how different are items in one cluster from items in another?

This involves something like maximizing the between-cluster sum of squares

ICSS =
n∑
i

n∑
j

δ (Si, Sj) ||xi − xj ||2

Ramses van Zon BCH2203 Python - 10. Machine Learning 23 March 2022 30 / 36

http://www.scinethpc.ca

K-means with scikit-learn

Import KMeans from sklearn.cluster.

Instantiate a cluster algorithm with 3 cluster.

Use fit() to fit data.

Note: we are not using the labels (i.e., target).

Use predict to predict the categories of new
data.

>>> from sklearn import datasets
>>> from sklearn.cluster import KMeans
>>> iris = datasets.load_iris()
>>>
>>> kmeans = KMeans(n_clusters=3, random_state=0)
>>> kmeans.fit(iris.data)
>>>
>>> print(kmeans.predict([[6.2,2.7,6.5,1.9]]))
[2]

What would be a good way to ascertain the
correctness?

That’s right, we should split train/test data and see
how well the test data get predicted by the model
obtained from the train data.

Ramses van Zon BCH2203 Python - 10. Machine Learning 23 March 2022 31 / 36

http://www.scinethpc.ca

Hierarchical Clustering

Where k-means clustering imposes a geometric clustering criterion based on distances of all points from a centre,
hierarchical clustering works item by item.

Agglomerative clustering (bottom-up):

All items start in their own cluster.
At each step, the two “best matching” clusters are linked together
Until there’s one cluster left.

Ramses van Zon BCH2203 Python - 10. Machine Learning 23 March 2022 32 / 36

http://www.scinethpc.ca

Hierarchical Clustering

Still need some sort of distance metric.

Several best matching linkage criterion are available, depending on what makes most sense for the problem:

k-means-like: what is distance between centres of clusters?

single linkage: what what is the minimum distance between one point in each of the two clusters?

complete linkage: what is the mean of all distances between the cluster elements?

Ramses van Zon BCH2203 Python - 10. Machine Learning 23 March 2022 33 / 36

http://www.scinethpc.ca

kMeans vs Hierarchical Clustering

kMeans and Hierarchical clustering approaches have
very different behaviours.

kMeans only cares about distances “as the crow
flies”.

Hierarchical cares about distances between
individual items.

kMeans requires the knowledge of the number of
clusters “up front”, and restarting.

Hierarchical approaches give you an entire tree -
but you still have to decide where to prune.

Ramses van Zon BCH2203 Python - 10. Machine Learning 23 March 2022 34 / 36

http://www.scinethpc.ca

Agglomorative Clustering with scikit-learn

Import AgglomorativeClustering from
sklearn.cluster.

Instantiate a cluster algorithm with 3 clusters.

Use fit() to fit data.

Use .labels_ to get the categories.

>>> from sklearn import datasets
>>> from sklearn.cluster import AgglomerativeClustering
>>> iris = datasets.load_iris()
>>>
>>> ac = AgglomerativeClustering(n_clusters=3)
>>> ac.fit(iris.data)
>>>
>>> print(ac.labels_)
[2]

>>> plt.scatter(iris.data[:,0],iris.data[:,1],c=ac.labels_)

Ramses van Zon BCH2203 Python - 10. Machine Learning 23 March 2022 35 / 36

http://www.scinethpc.ca

Confusion matrix

To ascertain the effectiveness of a classifier when labels are known, we can look at the confusion matrix.
>>> from sklearn.metrics import confusion_matrix
>>>
>>> ypred = iris_tree.predict(test_data)
>>> ytrue = test_target
>>>
>>> m = confusion_matrix(ypred,ytrue)
>>>
>>> print(m)
[[11 0 0]
[0 16 1]
[0 1 16]]

Mostly diagonal; only one mislabeling: very good!

Ramses van Zon BCH2203 Python - 10. Machine Learning 23 March 2022 36 / 36

http://www.scinethpc.ca

	Regression
	Classification
	Cluster Analysis

