
Introduction to Parallel Programming (PHY1610 lecture 17)

Ramses van Zon

March 15, 2022

Ramses van Zon Introduction to Parallel Programming (PHY1610 lecture 17) March 15, 2022 1 / 2



Ramses van Zon Introduction to Parallel Programming (PHY1610 lecture 17) March 15, 2022 2 / 2



1

Motivation

1 / 2



Why is High-Performance Computing necessary?
Big Data: Modern experiments and observations yield vastly more data to be processed
than in the past.

Big Science: As more computing resources become available (SciNet), the bar for cutting
edge simulations is raised.

New Science: which before could not even be done, now becomes reachable.

However:

Advances in processor clock speeds, bigger and faster memory and disks have been lagging
as compared to ten years ago. We can no longer “just wait a year” and get a better
computer.

So more computing resources here means: more cores running concurrently.

Even most laptops now have 2 or more cpus.

So parallel computing is necessary.

2 / 2



Why is High-Performance Computing necessary?
Big Data: Modern experiments and observations yield vastly more data to be processed
than in the past.

Big Science: As more computing resources become available (SciNet), the bar for cutting
edge simulations is raised.

New Science: which before could not even be done, now becomes reachable.

However:

Advances in processor clock speeds, bigger and faster memory and disks have been lagging
as compared to ten years ago. We can no longer “just wait a year” and get a better
computer.

So more computing resources here means: more cores running concurrently.

Even most laptops now have 2 or more cpus.

So parallel computing is necessary.
2 / 2



Why Parallel Programming?
Faster
There’s a limit to how fast one computer
can compute.

Bigger
There’s a limit to how much memory,
disk, etc., can be put on one computer.

More
We want to do the same thing that was
done on one computer, but thousands of
times.

So use more computers!

1 / 1



1

Moore’s law

1 / 2



Wait, what about Moore’s Law?

(source: www.overlock.net)
2 / 2



Wait, what about Moore’s Law?

Moore’s Law:

. . . describes a long-term trend in the history of computing hardware. The number of
transistors that can be placed inexpensively on an integrated circuit doubles approxi-
mately every two years.

(source: Moore’s law, wikipedia)

But. . .

Moore’s Law didn’t promise us increasing clock speed.

We’ve gotten more transistors but it’s getting hard to push clock-speed up.
Power density is the limiting factor.

So we’ve gotten more cores at a fixed clock speed.

1 / 1



Wait, what about Moore’s Law?

Moore’s Law:

. . . describes a long-term trend in the history of computing hardware. The number of
transistors that can be placed inexpensively on an integrated circuit doubles approxi-
mately every two years.

(source: Moore’s law, wikipedia)

But. . .

Moore’s Law didn’t promise us increasing clock speed.

We’ve gotten more transistors but it’s getting hard to push clock-speed up.
Power density is the limiting factor.

So we’ve gotten more cores at a fixed clock speed.

1 / 1



Wait, what about Moore’s Law?

The plot on the left shows not just the
number of transistors, which follows Moore’s
law, but also how clock speeds and power
demands have grown.

(source: www.extremetech.com)

1 / 1



1

Concurrency

1 / 2



Concurrency

All these cores need something to do.

We need to find parts of the program
that can done independently, and
therefore on different cores concurrently.

We would like there to be many such
parts.

Ideally, the order of execution should not
matter either.

However, data dependencies limit
concurrency.

(source: http://flickr.com/photos/splorp)

2 / 2



Parameter study: best case scenario

Suppose the aim is to get results from a
model as a parameter varies.

We can run the serial program on each
processor at the same time.

Thus we get ‘more’ done.

µ = 1

Answer

µ = 2

Answer

µ = 3

Answer

µ = 4

Answer

1 / 1



Throughput
How many tasks can you do per unit time?

throughput = H = N

T

N is the number of tasks, T is the total time.

Maximizing H means that you can do as much as possible.

Independent tasks: using P processors increases H by a factor of P .

Answer

T = NT1

H = 1/T1

Answer Answer Answer Answer

T = NT1/P

H = P/T1

1 / 1



1

Scaling

1 / 2



Scaling: Throughput

How a given problem’s throughput scales
as processor number increases is called
strong scaling

In the previous case, linear scaling:

H ∝ P

This is perfect scaling. These are called
“embarrassingly parallel” calculations.

2 / 2



Scaling: Speedup

Speedup: how much faster the problem
is solved as processor number increases.

This is measured by the serial time
divided by the parallel time

S = Tserial
T (P )

For embarrassingly parallel applications,
S ∝ P : linear speed up.

1 / 1



Non-ideal cases
Say we want to integrate some tabulated
experimental data.

Integration can be split up, so different
regions are summed by each processor.

Non-ideal:
I We first need to get data to each

processor.
I At the end we need to bring together

all the sums: reduction.

Partition data

R1 R2 R3 R4

Reduction

Answer

1 / 1



Non-ideal cases
Partition data

R1 R2 R3 R4

Reduction

Answer

Parallel overhead

Serial portion

Parallel region

Perfectly parallel
(for large N)

Suppose non-parallel part is constant: Ts

1 / 1



Non-ideal cases
Partition data

R1 R2 R3 R4

Reduction

Answer

Parallel overhead

Serial portion

Parallel region

Perfectly parallel
(for large N)

Suppose non-parallel part is constant: Ts

1 / 1



1

Amdahl’s law

1 / 2



Amdahl’s law

Speed-up (without parallel overhead):

S = Tserial
T (P ) = NT1 + Ts

NT1
P + Ts

or, calling f = Ts/(Ts + NT1) the serial
fraction,

S = 1
f + (1− f)/P

P →∞−→ 1
f

f = 5%

The serial part dominates asymptotically. The speed-up is limited,
no matter what size of P . f = 5 above.

2 / 2



Amdahl’s law, example

An example of Amdahl’s law:

Suppose your code consists of a portion which is serial, and a portion that can be
parallelized.

Suppose further that, when run on a single processor,
I the serial portion takes one hour to run.
I the parallel porition takes nineteen hours to run.

Even if you throw an infinite number of processors at the parallel part of the problem, the
code will never run faster than 1 hour, since that is the amount of time the serial part
needs to complete.

The goal is to structure your program to minimize the serial portions of the code.

1 / 1



Scaling efficiency

Speed-up compared to ideal factor P :

Efficiency = S

P

This will invariably fall off for larger P , except for embarrassingly parallel problems.

Efficiency ∼ 1
fP

P →∞−→ 0

You cannot get 100% efficiency in any non-trivial problem.\[0.3cm]

All you can aim for here is to make the efficiency as high as possible.

1 / 1



1

Hardware

1 / 2



Supercomputer architectures

Supercomputer architectures comes in a number of different types:

Clusters, or distributed-memory machines, are in essence a bunch of desktops linked
together by a network (“interconnect”). Easy and cheap.

Multi-core machines, or shared-memory machines, are a collection of processors that can
see and use the same memory. Limited number of cores, and much more expensive when
the machine is large.

Accelerator machines, are machines which contain an “off-host” accelerator, such as a
GPGPU or Xeon Phi, that is used for computation. Quite fast, but complicated to program.

Vector machines were the early supercomputers. Very expensive, especially at scale. These
days most chips have some low-level vectorization, but you rarely need to worry about it.

Most supercomputers are a hybrid combo of these different architectures.

2 / 2



1

HPC Clusters

1 / 2



Distributed Memory: Clusters
Clusters are the simplest type of parallel
computer to build:

Take existing powerful standalone
computers,

and network them.

Easy to build and easy to expand.

SciNet’s Niagara supercomputer and the
teach cluster are examples.

(source: http://flickr.com/photos/eurleif)

2 / 2



Compute Resources at SciNet
Teach Cluster

Number of nodes: 42
Interconnect: Infiniband
RAM/node: 64 GB
Cores/node: 16

Niagara

Number of nodes: 2000 (86000 cores)
Interconnect: Dragonfly+

RAM/node: 202GB
Cores/node: 40

1 / 1

https://docs.scinet.utoronto.ca/index.php/Teach
https://docs.scinet.utoronto.ca/index.php/Niagara_Quickstart


Distributed Memory: Clusters

Each Processor is independent!
Programs run on separate processors,
communicating with each other when
necessary. Each processor has its own
memory! Whenever it needs data from
another processor, that processor needs
to send it.

All communication must be
hand-coded:~harder to program.

MPI programming is used in this
scenario.

~ ~
~

~

n n
n

n

CPU1

CPU2

CPU3

CPU4

�
�
�
�
�
�
�
�
�
�
�
���

��
��*

6

�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
��


�
����

?

�
�

�
�	

1 / 1



Distributed Memory: Clusters

Each Processor is independent!
Programs run on separate processors,
communicating with each other when
necessary. Each processor has its own
memory! Whenever it needs data from
another processor, that processor needs
to send it.

All communication must be
hand-coded:~harder to program.

MPI programming is used in this
scenario.

~ ~
~

~

n n
n

n

CPU1

CPU2

CPU3

CPU4

�
�
�
�
�
�
�
�
�
�
�
���

��
��*

6

�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
��


�
����

?

�
�

�
�	

1 / 1



1

Shared memory

1 / 2



Shared Memory
Different processors acting on one large
bank of memory. All processors “see” the
same data.

All coordination/communication is done
through memory.

Each core is assigned a thread of
execution of a single program that acts
on the data.

Your desktop uses this architecture, if it’s
multi-core.

Can also use hyper-threading: assigning
more than one thread to a given core.

OpenMP is used in this scenario.

~ ~

~

~

n n

n

n

-� � -

?

6

6

?

Core 1 Core 2

Core 3

Core 4

Memory

2 / 2



Threads versus Processes

Threads Threads of execution within one
process, with access to the same
memory etc.

Processes Independent tasks with their
own memory and resources

1 / 1



Share memory communication cost

Interconnect Latency Bandwidth

Gigabit Ethernet 10µs (10,000 ns) 1 Gb/s (60 ns/double)
Infiniband 2µs (2,000 ns) 2-10 Gb/s (10 ns/double)
NUMA (shared memory) 0.1µs (100 ns) 10-20 Gb/s (4 ns/double)

Processor speed: O(GFlop) ∼ a few ns or less.

Communication is always the slowest part of your calculation!

1 / 1



1

Hybrid systems

1 / 2



Hybrid architectures

Multicore nodes linked together with an
(high-speed interconnect.

Many cores have modest vector
capabilities.

Teach cluster has sixteen cores, and 64
GB of memory, per node.

Niagara has forty cores, and 202 GB of
memory, per node.

OpenMP + MPI can be used in this
scenario.

Memory Memory

Memory Memory

Memory Memory

2 / 2



Hybrid architectures: accelerators
Multicore nodes linked together with an
(high-speed) interconnect.

Nodes also contain one or more
accelerators, GPGPUs (General Purpose
Graphics Processing Units) or Xeon Phis.

These are specialized, super-threaded
(500-2000+) processors.

Specialized programming languages,
CUDA and OpenCL, are used to program
these devices.

Memory Memory

Memory Memory

Memory Memory

MPI and OpenMP can also be used in
combination with

1 / 1



1

Programming approaches

1 / 2



Choosing your programming approach
The programming approach you use depends on the type of problem you have, and the type of
machine that you will be using:

Embarrassingly parallel applications: scripting, GNU Parallel1.

Shared memory machine: OpenMP, p-threads.

Distributed memory machine: MPI, PGAS (UPC, Coarray Fortran).

Graphics computing: CUDA, OpenACC, OpenCL.

Hybrid combinations.

We focus on OpenMP and MPI programming in this course.

1O. Tange (2011): GNU Parallel - The Command-Line Power Tool, ;login; The USENIX Magazine, February
2011:42-47.

2 / 2



Data or computation bound?

The programming approach you should use also depends upon the type of problem that is being
solved:

Computation bound, requires task parallelism
I Need to focus on parallel processes/threads.
I These processes may have very different computations to do.
I Bring the data to the computation.

Data bound, requires data parallelism
I There focus here is the operations on a large dataset.
I The dataset is often an array, partitioned and tasks act on separate partitions.
I Bring the computation to the data.

1 / 1



Granularity
The degree to which parallelizing your algorithm makes sense affects the approach used:

Fine-grained (loop) parallelism
I Smaller individual tasks.
I The data is transferred among processors frequently.
I Shared Memory Model, OpenMP.
I Scale Limitations

Coarse-grained (task) parallelism
I Divide and conquer.
I Data communicated infrequently, after large amounts of computation.
I Distributed memory, MPI.

Too fine-grained → overhead issues.

Too coarse-grained → load imbalance issues.

The balance depends upon the architecture, access patterns and the computation.

1 / 1



Summary

You need to learn parallel programming to truly use the hardware that you have at your
disposal.

The serial only portions of your code will truly reduce the effectiveness of the parallelism of
your algorithm. Minimize them.

There are many different hardware types available: distributed-memory cluster,
shared-memory, hybrid.

The programming approach you need to use depends on the nature of your problem.

1 / 1


	Motivation
	Moore's law
	Concurrency
	Scaling
	Amdahl's law
	Hardware
	HPC Clusters
	Shared memory
	Hybrid systems
	Programming approaches

