
BCH2203 Python - 9. Performance

Ramses van Zon

16 March 2022

Ramses van Zon BCH2203 Python - 9. Performance 16 March 2022 1 / 30

In this lecture

You’ve probably noticed in several occasions that your Python script may not be as fast as you’d like.
The real question is: is it as fast as reasonable possible?
Today, we’ll look at ways how to improve the performance.

Ramses van Zon BCH2203 Python - 9. Performance 16 March 2022 2 / 30

http://www.scinethpc.ca

Why isn’t Python a high-performance language?

Python is interpreted

Translation to machine language happens line-by-line as the script is read.
Repeated lines are no faster.
Cross-line optimizations are not possible.

Python is dynamic

Types are part of the data: extra overhead
Memory management is automatic. Behind the scene that means reference counting and garbage collection.
All this also interfers with optimal streaming of data to processor, which interfers with maximum performance.

Ramses van Zon BCH2203 Python - 9. Performance 16 March 2022 3 / 30

http://www.scinethpc.ca

Then why do we bother with Python?

Fast development

Python lends itself easily to writing clear, concise code.
Python is very flexible: large set of very useful packages.
Easy of use → shorter development time

Performance hit depends on application

Python’s performance hit is most prominent on ‘tightly coupled’ calculation on fundamental data types that
are known to the cpu (integers, doubles), which is exactly the case for the 2d diffusion.
It does much less worse on file I/O, text comparisons, etc.
Calls to compiled libraries and applications (e.g. BLAST) can remove worst performance pitfalls.

Ramses van Zon BCH2203 Python - 9. Performance 16 March 2022 4 / 30

http://www.scinethpc.ca

Example: Area Under the Curve

Let’s consider a code that numerically computes
the following integral:

b =
∫ 3

x=0

(
7

10
x3 − 2x2 + 4

)
dx

Exact answer b = 8.175

It’s the area under the curve on the right.
Method: sample y = 7

10 x3 − 2x2 + 4 at a
uniform grid of x values (using ntot number of
points), and add the y values.

Ramses van Zon BCH2203 Python - 9. Performance 16 March 2022 5 / 30

http://www.scinethpc.ca

Example: Area Under the Curve, Codes

C++
// auc.cpp
#include <iostream>
#include <cmath>
int main(int argc, char** argv)
{

size_t ntot = atoi(argv[1]);
double width = 3.0;
double dx = width/ntot;

double x = 0, y;
double a = 0.0;

for (size_t i=0; i<ntot; ++i) {
y = 0.7*x*x*x - 2*x*x + 4;
a += y*dx;
x += dx;

}
std::cout << "The area is "

<< a << std::endl;
}

Fortran
program auc

implicit none
integer :: i, ntot
character(64) :: arg
double precision :: dx, width, x, y, a

call get_command_argument(1,arg)
read (arg,'(i40)') ntot
width = 3.0
dx = width/ntot
x = 0.0
a = 0.0
do i = 1,ntot

y = 0.7*x**3 - 2*x**2 + 4
a = a + y*dx
x = x + dx

end do

print *, "The area is " , a
end program

Python
auc.py

import sys

ntot = int(sys.argv[1])
width = 3.0
dx = width/ntot

x = 0
a = 0.0

for i in range(ntot):
y = 0.7*x**3 - 2*x**2 + 4
a += y*dx
x += dx

print("The area is %f"%a)

Ramses van Zon BCH2203 Python - 9. Performance 16 March 2022 6 / 30

http://www.scinethpc.ca

Example: Area Under the Curve, Initial Timing

$ time python auc.py 30000000
The area is 8.17499995268473

real 0m21.000s
user 0m20.983s
sys 0m0.012s

If you compare this with the C++ and Fortran versions, Python is about 100× slower.
We want better performance. Where do we start?

Ramses van Zon BCH2203 Python - 9. Performance 16 March 2022 7 / 30

http://www.scinethpc.ca

1

Measuring Python Performance (a.k.a. Profiling)

Ramses van Zon BCH2203 Python - 9. Performance 16 March 2022 8 / 30

Aspects of Performance

Performance is about maximizing the utility of a resource.
Several aspects:

I cpu processing power,
I memory,
I network,
I file I/O, etc.

The first order of business is to find out what part of the code makes it slow: the bottlenecks.
There is no point optimizing code that only run a small fraction of the total time.
Do not guess, measure it!

Ramses van Zon BCH2203 Python - 9. Performance 16 March 2022 9 / 30

http://www.scinethpc.ca

Profiling

Profiling the whole process

An application that’s running is called a process.
OS’s have tools to know the cpu and memory usage of a process.
E.g. Linux has the time and top commands.

Time Profiling by function
To consider the computational performance of functions, but not of individual lines in your code, there is the
package called cProfile.

Time Profiling by line
To find cpu performance bottlenecks by line of code, there is package called line_profiler

Memory Profiling
To find memory bottlenecks by line of code, there is package called memory_profiler

Ramses van Zon BCH2203 Python - 9. Performance 16 March 2022 10 / 30

http://www.scinethpc.ca

cProfile

Use cProfile to know in which functions your script spends its time.
You usually do this on a smaller but representative case.
The code should be using separate functions for different tasks, for cProfile to be useful.

Example

$ python -m cProfile -s cumulative auc.py 3000000
The area is 8.174999550082383

4 function calls in 2.083 seconds

Ordered by: cumulative time

ncalls tottime percall cumtime percall filename:lineno(function)
1 0.000 0.000 2.083 2.083 {built-in method builtins.exec}
1 2.083 2.083 2.083 2.083 auc.py:1(<module>)
1 0.000 0.000 0.000 0.000 {built-in method builtins.print}
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}

Note: we’re using a smaller case (3M instead of 30M points) for profiling.
Still, not much use here, because auc.py has no functions.

Ramses van Zon BCH2203 Python - 9. Performance 16 March 2022 11 / 30

http://www.scinethpc.ca

line_profiler

Use line_profiler to know, line-by-line, where your script spends its time.
You usually do this on a smaller but representative case.
First thing to do is to have your code in a function.
You also need to modify your script slightly:

I Decorate your function with @profile
I Run your script on the command line with

$ kernprof -l -v SCRIPTNAME

Ramses van Zon BCH2203 Python - 9. Performance 16 March 2022 12 / 30

http://www.scinethpc.ca

line_profiler script instrumentation

Script before:
import sys
ntot = int(sys.argv[1])
width = 3.0
dx = width/ntot
x = 0
a = 0.0
for i in range(ntot):

y = 0.7*x**3 - 2*x**2 + 4
a += y*dx
x += dx

print(f"The area is {a}")

Script after:
import sys
@profile
def main():

ntot = int(sys.argv[1])
width = 3.0
dx = width/ntot
x = 0
a = 0.0
for i in range(ntot):

y = 0.7*x**3 - 2*x**2 + 4
a += y*dx
x += dx

print(f"The area is {a}")
main()

Run at the command line:
$ kernprof -l -v auc.py 3000000

Note: After profiling, remove the @profile line to be able to run normally.

Ramses van Zon BCH2203 Python - 9. Performance 16 March 2022 13 / 30

http://www.scinethpc.ca

Output of line_profiler

$ kernprof -l -v auc.py 30000000

The area is 8.174999550082383
Wrote profile results to auc.py.lprof
Timer unit: 1e-06 s

Total time: 11.7401 s
File: auc.py
Function: main at line 2

Line # Hits Time Per Hit % Time Line Contents
==

2 @profile
3 def main():
4 1 9.0 9.0 0.0 ntot = int(sys.argv[1])
5 1 1.0 1.0 0.0 width = 3.0
6 1 2.0 2.0 0.0 dx = width/ntot
7 1 1.0 1.0 0.0 x = 0
8 1 1.0 1.0 0.0 a = 0.0
9 3000001 2537750.0 0.8 21.6 for i in range(ntot):

10 3000000 4031917.0 1.3 34.3 y = 0.7*x**3 - 2*x**2 + 4
11 3000000 2665478.0 0.9 22.7 a += y*dx
12 3000000 2504574.0 0.8 21.3 x += dx
13 1 400.0 400.0 0.0 print(f"The area is {a}")

Ramses van Zon BCH2203 Python - 9. Performance 16 March 2022 14 / 30

http://www.scinethpc.ca

Memory usage

Why worry about this?
Once your script runs out of memory, one of a number of things may happen:

Computer may start using the harddrive as memory: very slow
Your application crashes
Your (compute) node crashes

How could you run out of memory?
You’re not quite sure how much memory you program takes.
Python objects may take more memory that expected.
Some functions may temporarily use extra memory.
Python relies on a garbage collector to clean up unused variables.

Ramses van Zon BCH2203 Python - 9. Performance 16 March 2022 15 / 30

http://www.scinethpc.ca

memory_profiler

This module/utility monitors the Python memory usage and its changes throughout the run.
Good for catching memory leaks and unexpectedly large memory usage.
Needs same instrumentation as line profiler.

Ramses van Zon BCH2203 Python - 9. Performance 16 March 2022 16 / 30

http://www.scinethpc.ca

memory_profiler, details

Your decorated script is usable by memory profiler, but with the command
$ python -m memory_profiler auc.py 30000

The area is 8.174955005754168
Filename: auc.py

Line # Mem usage Increment Line Contents
==

2 44.621 MiB 44.621 MiB @profile
3 def main():
4 44.621 MiB 0.000 MiB ntot = int(sys.argv[1])
5 44.621 MiB 0.000 MiB width = 3.0
6 44.621 MiB 0.000 MiB dx = width/ntot
7 44.621 MiB 0.000 MiB x = 0
8 44.621 MiB 0.000 MiB a = 0.0
9 44.703 MiB 0.000 MiB for i in range(ntot):

10 44.703 MiB 0.000 MiB y = 0.7*x**3 - 2*x**2 + 4
11 44.703 MiB 0.039 MiB a += y*dx
12 44.703 MiB 0.035 MiB x += dx
13 44.719 MiB 0.016 MiB print(f"The area is {a}")

In this case, there is not much going on with memory usage.
Note: memory usage profiling tends to be very slow. Use it only on short test cases.

Ramses van Zon BCH2203 Python - 9. Performance 16 March 2022 17 / 30

http://www.scinethpc.ca

2

Ways to improve performance

Ramses van Zon BCH2203 Python - 9. Performance 16 March 2022 18 / 30

Numpy + vectorization

We know that numpy can speed things up, as longs as we use its element-wise ‘vector’ operations.

E.g., instead of
a = np.linspace(0.0,1.0,101)
b = np.linspace(1.0,2.0,101)
c = np.ndarray(100)
for i in range(100):

c[i] = a[i] + b[i]

You should write:
a = np.linspace(0.0,1.0,100)
b = np.linspace(1.0,2.0,100)
c = a + b

And to deal with shifts, instead of
a = np.linspace(0.0,1.0,101)
b = np.linspace(1.0,2.0,101)
c = np.ndarray(100)
for i in range(100):

c[i] = a[i] + b[i+1]

You should write:
a = np.linspace(0.0,1.0,101)
b = np.linspace(1.0,2.0,101)
c = a[0:100] + b[1:101]

Ramses van Zon BCH2203 Python - 9. Performance 16 March 2022 19 / 30

http://www.scinethpc.ca

Vectorizing the auc.py code

First, we need to use numpy arrays, but there were no arrays?
Let’s store all possible values into an array instead of creating them on the fly.
(sounds inefficient, doesn’t it, but we’ll try it anyway)

Script before:
import sys

def main():
ntot = int(sys.argv[1])
width = 3.0
dx = width/ntot
x = 0
a = 0.0
for i in range(ntot):

y = 0.7*x**3 - 2*x**2 + 4
a += y*dx
x += dx

print(f"The area is {a}")
main()

Script after adding numpy:
import sys, numpy

def main():
ntot = int(sys.argv[1])
width = 3.0
dx = width/ntot
a = 0.0
x = numpy.linspace(0,width,ntot,

endpoint=False)
for onex in x:

y = 0.7*onex**3 - 2*onex**2 + 4
a += y*dx

print(f"The area is {a}")
main()

Script after adding vectorization:
import sys, numpy

def main():
ntot = int(sys.argv[1])
width = 3.0
dx = width/ntot
a = 0.0
x = numpy.linspace(0,width,ntot,

endpoint=False)
y = 0.7*x**3 - 2*x**2 + 4
a = y.sum()*dx
print(f"The area is {a}")

main()

Ramses van Zon BCH2203 Python - 9. Performance 16 March 2022 20 / 30

http://www.scinethpc.ca

Does changing to vectorized numpy really help?

Pure Python implementation:
$ time python auc.py 30000000
The area is 8.17499995268473

real 0m21.000s
user 0m20.983s
sys 0m0.012s

Numpy vectorized implementation:
$ time python auc.py 30000000
The area is 8.17499995499999

real 0m3.201s
user 0m2.922s
sys 0m0.266s

7× speed-up
Much better!
Note: We can call this vectorization because the code works on whole vectors. But this is different from
‘vectorization’ which uses the ‘small vector units’ or ‘simd units’ on the cpu. We’re just minimizing the number of
lines Python needs to interpret.

Ramses van Zon BCH2203 Python - 9. Performance 16 March 2022 21 / 30

http://www.scinethpc.ca

Parallel Python Techniques

Once the performance of a script is reasonably fast (but not before that!), you can start thinking of using multiple
cores in your script, ie., parallelization.
There are many approaches to parallel programming with Python, all of which require external packages.
(Parallelism in pure python is extremely limited)
The ones below are some of my favorites:

Package Functionality
numexpr threaded parallelization of certain numpy expressions
multiprocessing create processes that behave more like threads
dask expression-based parallelism
tensorflow expression-based parallelism specialized for arrays
mpi4py message passing between processes

Ramses van Zon BCH2203 Python - 9. Performance 16 March 2022 22 / 30

http://www.scinethpc.ca

The numexpr package

The numexpr package is useful if you’re doing matrix algebra:
It is essentially a just-in-time compiler for NumPy.
It takes matrix expressions, breaks things up into threads, and does the calculation in parallel.
In some situations, numexpr can significantly speed up your calculations.

Note: While Python does have threads, there is no convenient OpenMP launching of threads. Event worse:
threads running Python do not use multiple cpu cores because of the ‘global interpreter lock’.

Ramses van Zon BCH2203 Python - 9. Performance 16 March 2022 23 / 30

http://www.scinethpc.ca

Numexpr in a nutshell

Give it an array arithmetic expression, and it will compile and run it, and return or store the output.
Supported operators:
+, -, *, /, **, %, <<, >>, <, <=, ==, !=, >=, >, &, |, ~

Supported functions:
where, sin, cos, tan, arcsin, arccos arctan, arctan2, sinh, cosh, tanh, arcsinh, arccosh arctanh,
log, log10, log1p, exp, expm1, sqrt, abs, conj, real, imag, complex, contains.
Supported reductions:
sum, product

(don’t use these - numpy’s sum and product are faster)

Ramses van Zon BCH2203 Python - 9. Performance 16 March 2022 24 / 30

http://www.scinethpc.ca

Using the numexpr package

Without numexpr:
>>> from time import time
>>> def etime(t):
... print("Elapsed %f seconds" % (time()-t))
...
>>> import numpy as np
>>> a = np.random.rand(3000000)
>>> b = np.random.rand(3000000)
>>> c = np.zeros(3000000)
>>> t = time(); \
... c = a**2 + b**2 + 2*a*b; \
... etime(t)
Elapsed 0.110790 seconds

With numexpr:
>>> import numexpr as ne
>>> ne.set_num_threads(1)
>>> t = time(); \
... c = ne.evaluate('a**2 + b**2 + 2*a*b'); \
... etime(t)
Elapsed 0.058771 seconds
>>> ne.set_num_threads(4)
>>> t = time(); \
... c = ne.evaluate('a**2 + b**2 + 2*a*b'); \
... etime(t)
Elapsed 0.019996 seconds
>>> ne.set_num_threads(8)
>>> t = time(); \
... c = ne.evaluate('a**2 + b**2 + 2*a*b'); \
... etime(t)
Elapsed 0.012083 seconds

Ramses van Zon BCH2203 Python - 9. Performance 16 March 2022 25 / 30

http://www.scinethpc.ca

Numexpr parallelize Area-under-the-curve

Script before
import sys, numpy

def main():
ntot = int(sys.argv[1])
width = 3.0
dx = width/ntot
a = 0.0
x = numpy.linspace(0,width,ntot,

endpoint=False)
y = 0.7*x**3 - 2*x**2 + 4
a = y.sum()*dx
print(f"The area is {a}")

main()

$ time python auc.py 30000000
The area is 8.17499995499999

real 0m3.201s
user 0m2.922s
sys 0m0.266s

Script with numexpr
import sys, numpy, numexpr

def main():
ntot = int(sys.argv[1])
width = 3.0
dx = width/ntot
a = 0.0
x = numpy.linspace(0,width,ntot,

endpoint=False)
y = numexpr.evaluate("0.7*x**3 - 2*x**2 + 4")
a = y.sum()*dx
print(f"The area is {a}")

main()

$ time python auc.py 30000000
The area is 8.17499995499999

real 0m0.488s
user 0m0.462s
sys 0m0.160s

Ramses van Zon BCH2203 Python - 9. Performance 16 March 2022 26 / 30

http://www.scinethpc.ca

3

Other Techniques

Ramses van Zon BCH2203 Python - 9. Performance 16 March 2022 27 / 30

Numba

Numba allows compilation of selected portions of Python code to native code.
Decorator based: compile a function.
It can use multi-dimensional arrays and slices, like NumPy.
Very convenient.
Numba can use GPUs, but you’re programming them like CUDA kernels, not like OpenACC.
While it can also vectorize for multi-core and gpus with, it can only do so for specific, independent, non-sliced
data.

Ramses van Zon BCH2203 Python - 9. Performance 16 March 2022 28 / 30

http://www.scinethpc.ca

Cython

Cython is a compiler for Python code.
Almost all Python is valid Cython.
Typically used for packages, to be used in regular Python scripts.
The compilation preserves the pythonic nature of the language, i.e, garbage collection, range checking,
reference counting, etc, are still done: no performance enhancement.

If you want to get around that, you need to use Cython specific extentions
that use c types. That would be a whole lecture in and of itself.

Ramses van Zon BCH2203 Python - 9. Performance 16 March 2022 29 / 30

http://www.scinethpc.ca

What about GPUs?

There are several options to use GPUs in Python.
PyCUDA: you’re writing cuda kernels that are callable from CUDA
Numba: you’re writing more pythonic cuda kernels that are callable from CUDA
Cupy: replace your numpy array with arrays that live on the GPU. If your code uses vectorized numpy
expressions, using cupy can be an easy gain.
Tensorflow and other AI packages can often use GPUs in the backend.

Ramses van Zon BCH2203 Python - 9. Performance 16 March 2022 30 / 30

http://www.scinethpc.ca

	Measuring Python Performance (a.k.a. Profiling)
	Ways to improve performance
	Other Techniques

