Randomness (PHY1610H - lecture 15)

Ramses van Zon

March 8, 2022

SciNet

Today's class

Today we will discuss:

- Randomness, why you want it.
- How to make it or fake it.
- Applications: Monte Carlo

Why Randomness?

Why Randomness?

- To simulate some physical phenomenon that has noise.
E.g. Brownian motion, Nyquist noise.

On the level of their description, this is real randomness.

- To perform averages or integrals in systems with many degrees of freedom.
E.g. Stat. Phys. computations, path integral calculations.

Here, the main objective is to get the converged answer quickly.

- To estimate a parameter's distribution from using data (MCMC).
- To test a statistical method.

Creating Randomness

Sources of randomness

True Random Number Generators

- Lava lamps.
- Radioactive decay.
- Various quantum processes.
- Atmospheric noise.
- Random computer hardware noise signals (thermals noise).

Generally slow, expensive, impossible to reproduce for debugging. Hard to characterize underlying distribution.

Pseudo Random Number Generators

- Come up with a algorithm that produces random numbers
- But wouldn't such an algorithm would be deterministic?
- Only has to act random, i.e., give fair and uncorrelated sequence.

Pseudo Random Number Generators (PRNG)

Recipe:

- Define some 'state', initialized by some 'seed' value(s).
- Produce a number from this state.
- Advance the state determistically.
- As long as the numbers produces behave as if they are
- independent
- identically distributed
- according to a predefined distribution (eg uniform)
we will be satisfied.
Depends a lot on the way the states are advanced. Must test.

Distributions are transformations

- Suppose we had a way to draw random values of a continuous variable \boldsymbol{x} that is uniformly distributed between 0 and 1 .
- Let's say that for any value x that is drawn, we were to compute a value $\boldsymbol{y}=f(x)$, where f is a deterministic function.
- The values of \boldsymbol{y} are also randomly distributed, but with a non-uniform distribution (unless $f(x)=x$).

So we can turn a uniformly distributed random variable into a non-uniformly distributed variable by applying a function.

If we want a specific non-uniform distribution, we just need to figure out the function. For many common cases, this is already done.

So our main focus is first to find uniformly distributed variables.

All pseudo random numbers are discrete

Despite the illusion of continous variables that floating point numbers give, there are only a finite number of bits, and thus a discrete set of values.

In fact, routines that give pseudo random floating point numbers are usually based on drawing a random integer number and dividing it by the largest possible generated integer.

From a random integer of n bits, we just need each bit to be uniformly distributed, with a chance of 50% of a 0 and 50% of a 1 .

Warning: most PRNGs give lower bits that are more correlated than the higher bits.

Example: Coin Toss

The following class can produce a 'random' 1's and 0's representing heads and tails:

```
// badcoin.h
class BadCoin {
    public:
    // method to set the starting seed
    void start(unsigned int seed) {
        state = seed;
    }
    // method to toss the coin (1:head, 0:tail)
    int toss() {
        state++; // update state
        return state%2; // using lowest bit...
    }
    private:
    unsigned int state; // internal state
};
```

- Is it fair? Independent samples? Period?

```
```

\#include <iostream>

```
```

\#include <iostream>
\#include "badcoin.h"
\#include "badcoin.h"
int main()
int main()
{
{
BadCoin coin;
BadCoin coin;
coin.start(13); //seed
coin.start(13); //seed
// toss the coin 20 times
// toss the coin 20 times
for (int i = 0; i < 20; i++)
for (int i = 0; i < 20; i++)
std::cout << coin.toss() << '\n';
std::cout << coin.toss() << '\n';
return 0;
return 0;
}

```
```

}

```
```

What does this give?

Testing for randomness

Suppose we have drawn N samples using our PRNG.
Let's look at two tests:
(1) Fairness: histogram counting the occurance of values

$$
h_{x}=\sum_{i=1}^{N} \delta_{x x_{i}}
$$

Here x is one of the possible random numbers (here ± 1), and x_{i} are samples produced by our PRNG $\left(\delta_{i i}=1, \delta_{i, j \neq i}=0\right)$.
${ }^{2}$ Independence: look at correlations between samples:

$$
c_{j}=\left\langle x_{i} x_{i+j}\right\rangle=\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)\left(x_{i+j}-\bar{x}\right)
$$

If independent: $\mathcal{O}(1 / \sqrt{N})$ for $j>0$

Test results $(\mathrm{N}=20)$

Good!

Bad!

```
Old version

\section*{Old version}
```

// badcoin.h

```
// badcoin.h
class BadCoin {
class BadCoin {
    public:
    public:
    // method to set the starting seed
    // method to set the starting seed
    void start(int seed) {
    void start(int seed) {
        state = seed;
        state = seed;
    }
    }
    // method to toss the coin (1:head, 0:tail)
    // method to toss the coin (1:head, 0:tail)
    int toss() {
    int toss() {
        state++; // update state
        state++; // update state
        return state%2; // using lowest bit...
        return state%2; // using lowest bit...
    }
    }
    private:
    private:
    unsigned int state; // internal state
    unsigned int state; // internal state
};
```

```
};
```

```

Difference lies in a more complex update of the state.

\section*{"Improved" test results \((\mathbb{N}=20)\)}


\section*{Let's do more samples: \(N=200\)}


\section*{Moral: Don't do it yourself}

What properties do we expect from a random number generator?
- We would like them from a given distribution (uniform, Gaussian).
- We would like them to be unpredictable.
- We would like them to be reproducible.
- We need them to be generated quickly.
- We need to have a long period.

We saw that it is not that easy to guess good PRNG algorithms and parameters
There was a time when one was forced to implement PRNGs oneself, as standard ones were quite bad, but since \(C++11, C++\) has random number generators.

\section*{Using existing random numbers}

\section*{Previous way}
```

```
// improvedcoin.h
```

```
// improvedcoin.h
```

```
// improvedcoin.h
class ImprovedCoin {
class ImprovedCoin {
class ImprovedCoin {
    public:
    public:
    public:
    // method to set the starting seed
    // method to set the starting seed
    // method to set the starting seed
    void start(int seed) {
    void start(int seed) {
    void start(int seed) {
        state = seed;
        state = seed;
        state = seed;
    }
    }
    }
    // method to toss the coin (1:head, 0:tail)
    // method to toss the coin (1:head, 0:tail)
    // method to toss the coin (1:head, 0:tail)
    int toss() {
    int toss() {
    int toss() {
        state = 100+100*sin(state+1); // update sta
        state = 100+100*sin(state+1); // update sta
        state = 100+100*sin(state+1); // update sta
        return state%2; // using lowest bit...
        return state%2; // using lowest bit...
        return state%2; // using lowest bit...
    }
    }
    }
    private:
    private:
    private:
    unsigned int state;
    unsigned int state;
    unsigned int state;
};
```

```
};
```

```
};
```

```

\section*{C++ way}
```

// goodcoin.h
\#include <random>
class GoodCoin {
public:
GoodCoin(): uniform(0,1) {}
// method to set the starting seed
void start(int seed) {
engine.seed(seed);
}
// method to toss the coin (1:head, 0:tail)
int toss() {
return uniform(engine);//state in engine
}
private:
std::uniform_int_distribution<int> uniform;
std::mt19937 engine; // PNRG state
};
t

```

Test C++ way, N=200



\section*{About the random standard libary}

The <random> library allows to produce random numbers using combinations of generators and distributions.

Generators Objects that generate uniformly distributed numbers.
Distributions Objects that transform sequences of numbers generated by a generator into sequences of numbers that follow a specific random variable distribution, such as uniform, Normal or Binomial.

Distribution objects generate random numbers by means of their operator() member, which takes a generator object as argument:
```

std::default_random_engine generator;
std::uniform_int_distribution<int> distribution(1,6);
int dice_roll = distribution(generator); // generates number in the range 1..6

```

\section*{Available generators}

While there are ways to create your own, the library has a number of standard available generators:
\begin{tabular}{|c|c|}
\hline default_random_engine & Default random engine \\
\hline minstd_rand & Minimal Standard minstd_rand generator \\
\hline minstd_rand0 & Minimal Standard minstd_rand0 generator \\
\hline mt19937 & Mersenne Twister 19937 generator \\
\hline mt19937_64 & Mersenne Twister 19937 generator (64 bit) \\
\hline ranlux24_base & Ranlux 24 base generator \\
\hline ranlux48_base & Ranlux 48 base generator \\
\hline ranlux 24 & Ranlux 24 generator \\
\hline ranlux48 & Ranlux 48 generator \\
\hline knuth_b & Knuth-B \\
\hline
\end{tabular}

\section*{Other tests}
- Moments
- Spacings between random points should follow a Poisson integral if uniformly distributed.
- Examine sequences of 5 numbers. There are 120 ways to sort 5 numbers. The 120 ways should occur with equal probability.
- Parking circle test: randomly place unit circles in a \(100 \times 100\) square. If the circle overlaps an existing one, try again. After 12,000 tries, the number of successfully "parked' ' circles should follow a certain normal distribution.
- Play 200,000 games of a dice game (e.g. craps), counting the wins and number of throws per game. Each count follow a certain distribution.
- And many others. See, for example, the NIST test suite: http://csrc.nist.gov/groups/ST/toolkit/rng. and the TestU01 suite: http://simul.iro.umontreal.ca/testu01/tu01.html

\section*{Good and Bad PRNGs}

\section*{Some good PRNGs}
- r1279 (good lagged-Fibonacci generator).
- WELL generator (Well Equidistributed Long-period Linear, developed at U. Montréal).
- Mersenne twister (mt19937) Use this one in C++ unless you have a good reason!

These have long periods, independent samples, a fair distribution, and pass (most) statistical tests.

\section*{Some not-so-good PRNGs:}
- r250 (bad lagged-Fibonacci generator).
- Anything from Numerical Recipes - short periods, slow, ran0 and ran1
- spectacularly fail statistical tests.
- Standard Unix generators, rand(), drand48() - short periods, correlations.

\section*{Monte Carlo}

\section*{Monte Carlo Techniques}

A collection of techniques whose unifying feature is the use of randomness. These applications of randomness generally fall into one of three categories:
- Adding randomness to otherwise-deterministic dynamics, and studying how the dynamics are changed.
- Generating samples from a given probability distribution, \(\boldsymbol{P}(x)\), usually a distribution that is complicated and can't be dealt with nicely in closed form (e.g. Markov Chain Monte Carlo).
- Estimating expectation values under this distribution, e.g.
\[
\langle A(\mathrm{x})\rangle=\int P(\mathrm{x}) A(\mathrm{x}) d \mathrm{x}
\]
where \(\mathbf{x}\) is typically high dimensional.

\section*{MC example: traffic flow}

Nagel-Schreckenberg traffic is a 1D toy model used to generate traffic-like behaviour. At each time step in the model, the following rules are applied to each car in the simulation:
(1) If the velocity is below vmax, then increase v by 1 (try to speed up).
2. If the car in front of the given car is a distance \(d\) away, and \(v \geq d\), then reduce \(v\) to \(d-1\) (don't want to hit the car).
(3) Add randomness: if \(\mathrm{v}>0\) then with probability p the car reduces its speed by 1 .
4. The car moves ahead by v steps (on a circular track).

The four rules boil down to
\[
\begin{aligned}
& v \leftarrow \min \left(v+1, v_{\max }\right) \\
& v \leftarrow \min (v, d-1) \\
& v \leftarrow v-1 \text { if } v \neq 0 \text { with probability } p \\
& x \leftarrow x+v
\end{aligned}
\]

\section*{Monte Carlo example: traffic flow}
numcars \(=200\)
gridsize \(=1000\)
\(\mathrm{p}=0.13\)
\(v \max =5\)

\[
v \leftarrow v-1 \text { if } v \neq 0 \text { with probability } p
\]

How do you do that?
- Draw a random number \(r\) using a PRNG with uniform distribution on [0, 1).
- For any chosen value \(p \in[0,1)\), the chance that \(r\) is less than that value, is \(p\) itself.
- So if \(r\) is less than \(p\), we will accept the move and decrease \(v\) if possible.
- If \(r\) is greater than or equal to \(p\), we leave \(v\) as it is, i.e., we reject the move.

\section*{Monte Carlo Example: Molecular Motion}

Consider a simple molecular dynamics model, which consists of a collection of molecules. For each timestep:
(1) Randomly perturb the position of a given molecule.

2 Calculate the new total energy of the system, e.g., by a sum over pairwise potentials.
- If the energy of the system goes down, keep the new position.
- If the energy of the system goes up, keep the position if \(r<\exp (-\Delta E / T)\), where \(r\) is a random number between 0 and 1 , and \(T\) is the system temperature.

3 Repeat for all molecules.
(4) Repeat for all timesteps.

Note: This is meant for sampling, it is not the real dynamics of molecules!

\section*{Monte Carlo Example: Particle Motion}
- Bunch of particles start in a spherical shell.
- They fall down.
- They can escape at the bottom.
\[
\mathrm{t}=0
\]
\[
\mathrm{t}=1000
\]
```

