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Partial Differential Equations
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Today’s class

Today we will discuss the following topics:

Basic approaches to solving PDEs numerically.

How to approach the temporal part of the equations.

How to approach the spatial part of the equations.
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Classes of equations
Partial differential equations (PDEs) are differential equations with derivatives w.r.t more than 1
variable.

E.g., imagine a (scalar) field T two dimensions that obeys the following PDE:

A
∂2T

∂x2 +B
∂2T

∂x∂y
+ C

∂2T

∂y2 = G

(
x, y, T,

∂T

∂x
,
∂T

∂y

)

For A,B,C constant, three classes of PDEs show up repeatedly in physical systems.

B2 − 4AC < 0 - elliptic
B2 − 4AC = 0 - parabolic
B2 − 4AC > 0 - hyperbolic

If there are packages that can solve PDEs in your field, then explore using them. However,
writing your own is sometimes not a bad option.
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Examples

Elliptic: Laplace, Poisson equations

∂2T

∂x2 +
∂2T

∂y2 = ρ

Hyperbolic: Wave equation

∂2φ

∂t2
− c2∂

2φ

∂x2 = 0

Parabolic: Diffusion, Navier-Stokes

κ
∂2T

∂x2 =
∂T

∂t

Neither: continuity equation:

∂ρ

∂t
+
∂uρ

∂x
= 0
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How do we solve these problems?

Let’s take a look at a parabolic equation, in particular the heat (diffusion) equation.

∂T

∂t
= κ

∂2T

∂x2 ,

where T is the temperature field and κ is the thermal diffusivity.

How do we solve this equation? By discretizing in both space and time, and marching an initial
condition forward in time.

This is similar to the initial value problem in the ODEs, but in this case we have another, spatial,
derivative to deal with.
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Discretizing the time dimension
If we rewrite the right-hand side as a linear operator F :

∂T

∂t
= κ

∂2T

∂x2 →
∂T

∂t
= FT

Let Ts = s∆t. We have two basic approaches to dealing with the time part of the equation.

Explicit methods, such as forward Euler:

Ts+1 − Ts
∆t

= FTs → Ts+1 = (1 + ∆tF )Ts

Implicit methods, such as backward Euler:

Ts+1 − Ts
∆t

= FTs+1 → (1−∆tF )Ts+1 = Ts
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Explicit methods
Methods are called explicit when only Ts is on the right side of the equation. Explicit methods
have some nice features:

They are easy to implement.
They are usually quick to calculate (no matrix inversions).
Easier to parallelize, since the calculation is inherently local.
There exist more-accurate explicit methods than forward Euler (Runge-Kutta, for example).

Ts+1 − Ts
∆t

= FTs → Ts+1 = (1 + ∆tF )Ts

But there are some serious downsides as well:

They are not very accurate at low order (O(∆t) for forward Euler).
They can be numerically unstable (though there are exceptions).
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Implicit methods
Methods are called implicit when Ts+1 is on both sides of the equation. E.g. backward Euler:

Ts+1 − Ts
∆t

= FTs+1 +O(∆t)

and Crank-Nicolson:

Ts+1 − Ts
∆t

= (FTs+1 + FTs)/2 +O(∆t2)

Implicit time stepping methods have some nice features:

They are stable over a wide range of timestep sizes, sometimes unconditionally.
Excellent for solving steady-state problems.

Downsides include being more difficult to program and parallelize.
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Discretizing the spatial dimension(s)

How can we deal with the spatial aspects of the problem? How should set up our spatial
discretization?

There are many different approaches one can take when dealing with fields.

Finite difference methods.
Finite element methods.
Finite volume methods.
Spectral methods.

And combinations thereof.
How you set up your discretization will determine the structure of your F operator.
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Finite difference methods

Finite difference methods are the simplest way to deal with your equations.

The simulation domain is discretized.
Derivatives are approximated by linear combinations of function values at the grid points.

Let xj = j∆x and Tj = T (xj).
Then, one can e.g. use ‘central differences’ to approximate the second derivatives of T :

∂2Tj

∂x2 =
Tj+1 − 2Tj + Tj−1

∆x2

where j is the index of the x grid, and ∆x is the spacing in x.

But where does this come from?
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Calculating derivatives
We need to calculate the second spatial derivatives. To do that, we discretize the x domain, and
examine the Taylor expansion of some function f , centered around three different points:

tt t t t
j − 2 j − 1 j j + 1 j + 2

f(xj−1) = f(xj)− (∆x)
∂f(xj)
∂x

+
(∆x)2

2!
∂2f(xj)
∂x2 +O(∆x3)

f(xj) = f(xj)

f(xj+1) = f(xj) + (∆x)
∂f(xj)
∂x

+
(∆x)2

2!
∂2f(xj)
∂x2 +O(∆x3)

where ∆x = xj − xj−1.
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Calculating derivatives, continued
We can write this as a matrix operation:f(xj−1)

f(xj)
f(xj+1)

 =

1 −∆x ∆x2

2
1 0 0
1 ∆x ∆x2

2


 f(xj)
f∗(xj)
f∗∗(xj)


To get the answer we invert the matrix: f(xj)

f∗(xj)
f∗∗(xj)

 =

 0 1 0
−1

2∆x 0 1
2∆x1

∆x2
−2

∆x2
1

∆x2


f(xj−1)
f(xj)
f(xj+1)



f∗(xj) =
∂f(xj)
∂x

=
f(xj+1)− f(xj−1)

2∆x

f∗∗(xj) =
∂2f(xj)
∂x2 =

f(xj+1)− 2f(xj) + f(xj−1)
∆x2
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Combining both discretizations

Let us discretize the variable T in both time and space, with Ts,j = T (ts, xj):

∂T

∂t
= κ

∂2T

∂x2

↓
∂Ts,j

∂t
≡
Ts+1,j − Ts,j

∆t
= κ

[
Ts,j+1 − 2Ts,j + Ts,j−1

∆x2

]
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It’s all linear algebra. . .
∂Ts,j

∂t
= κ

[
Ts,j+1 − 2Ts,j + Ts,j−1

∆x2

]
If we write Ts,j as a vector of values, we can rewrite our equation as a matrix operation.

Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q

Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q

∂

∂t



...
Ts,17

Ts,18

Ts,19

Ts,20

Ts,21
...


= κ



...

. . . 1
∆x2

−2
∆x2

1
∆x2 0 0 . . .

. . . 0 1
∆x2

−2
∆x2

1
∆x2 0 . . .

. . . 0 0 1
∆x2

−2
∆x2

1
∆x2 . . .

...





...
Ts,17

Ts,18

Ts,19

Ts,20

Ts,21
...


Which we can write as

∂ ~Ts

∂t
= F ~Ts.
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What about the edges?

The edges are a problem. Why? Well, consider the first point, j = 0:

∂Ts,0

∂t
= κ

[
Ts,1 − 2Ts,0 + Ts,−1

∆x2

]
There is no j = −1 point!

The solution is to not use the above equation to describe the edge points. Use a different
equation instead for the boundary conditions. One distinghuishes three general classes:

Dirichlet: the value of field is specified at the boundary.

Neumann: the gradient of the field at the boundary (along the normal) is specified.

Robin: a linear combination of the field and its gradient is specified.
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Example problem

Suppose we have a rod, of length 1, whose temperature T (t, x) is subject to the boundary
conditions:

sin(10t) x = 0,
0.0 x = 1.

The thermal diffusivity is κ = 0.2.

If initially T (0, x) = 0, how does the temperature field evolves in time?

How should we solve this problem? We could use explicit or implicit methods. Today we will
just use explicit methods.
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Using the explicit method
As mentioned previously, explicit methods can be unstable, but let’s see how it performs here.

Starting from

~Ts+1 − ~Ts

∆t
= F ~Ts,

we get

~Ts+1 = ~Ts + ∆tF ~Ts,

and

~Ts+1 = (1 + ∆tF ) ~Ts,

where 1 is the identity matrix.
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Implementing boundary conditions
The boundary conditions can be implemented by adjusting the matrix used in:

~Ts+1 = (1 + ∆tF ) ~Ts = G~Ts

The matrix adjustments to G for the left-most point are as follows:
Ts+1,0

Ts+1,1

Ts+1,2
...

 =



1 0 0 0 0 . . .

α 1− 2α α 0 0 . . .

0 α 1− 2α α 0 . . .

...


︸ ︷︷ ︸

G


sin(10ts)

Ts,1

Ts,2
...



where we have used the definition: α = ∆tκ/(∆x2).
The Ts+1,0 should afterwards be set to sin(10ts+1).
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Implementing the other boundary condition

~Ts+1 = (1 + ∆tF ) ~Ts = G~Ts

Assume that there are n = 100 points in x. The boundary condition equation at x = 1
(Ts+1,99 = 0.0) is implemented similarly to that at x = 0:



...
Ts+1,96

Ts+1,97

Ts+1,98

Ts+1,99


=



...

. . . α 1− 2α α 0 0

. . . 0 α 1− 2α α 0

. . . 0 0 α 1− 2α α

. . . 0 0 0 0 1


︸ ︷︷ ︸

G



...

Ts,97

Ts,97

Ts,98

0
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Coding our example
// diffexample.cpp
#include <rarray>

void output(double t, double dx,
const rvector<double>&a);

int main()
{

int n = 100;
double k = 0.2;
double runtime = 2.0;
double dx = 1.0/(n-1);
double dt = 0.0005;
int nsteps = runtime / dt;
double alpha = dt * k / (dx*dx);
rmatrix<double> G(n,n);
rvector<double> T(n);
rvector<double> Told(n);
G.fill(0.0);
T.fill(0.0);

for (int i = 0; i < n; i++) {
G[i][i] = 1.0;
if (i > 0 && i < (n-1)) {

G[i][i-1] = G[i][i+1] = alpha;
G[i][i] = 1.0 - 2.0 * alpha;

}
}
for (int s = 0; s <= nsteps; s++) {

if (s%(nsteps/100)==0)
output(s*dt, dx, T);

std::swap(T, Told);
T.fill(0.0);
for (int i = 0; i < n; i++)

for (int j = 0; j < n; j++)
T[i] += G[i][j]*Told[j];

T[0] = sin(10*(s+1)*dt);
T[n-1] = 0.0;

}
}
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Coding our example with a BLAS library
// diffexample.cpp
#include <rarray>
#include <cblas.h>
void output(double t, double dx,

const rvector<double>&a);
int main()
{

int n = 100;
double k = 0.2;
double runtime = 2.0;
double dx = 1.0/(n-1);
double dt = 0.0005;
int nsteps = runtime / dt;
double alpha = dt * k / (dx*dx);
rmatrix<double> G(n,n);
rvector<double> T(n);
rvector<double> Told(n);
G.fill(0.0);
T.fill(0.0);

for (int i = 0; i < n; i++) {
G[i][i] = 1.0;
if (i > 0 && i < (n-1)) {

G[i][i-1] = G[i][i+1] = alpha;
G[i][i] = 1.0 - 2.0 * alpha;

}
}
for (int s = 0; s <= nsteps; s++) {

if (s%(nsteps/100)==0)
output(s*dt, dx, T);

std::swap(T, Told);
cblas_dgemv(CblasRowMajor,CblasNoTrans,

G.extent(0),G.extent(1),1.0,
&G[0][0],G.extent(0),
&Told[0],1,0.0,&T[0],1);

T[0] = sin(10*(s+1)*dt);
T[n-1] = 0.0;

}
}
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There’s a problem here!
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What happened?
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What went wrong?
The algorithm is unstable, but why? Consider the algorithm in the interior of the domain

...
Ts+1,17
Ts+1,18
Ts+1,19
Ts+1,20
Ts+1,21

...


=



...
. . . α 1− 2α α 0 0 . . .
. . . 0 α 1− 2α α 0 . . .
. . . 0 0 α 1− 2α α . . .

...





...
Ts,17
Ts,18
Ts,19
Ts,20
Ts,21
...


For this to be stable, all eigenvalues of the matrix |λ| ≤ 1, which requires α ≤ 1/2, i.e.,

∆t ≤
∆x2

2κ

(How? Ansatz for eigenvectors: Tj = e2πijk ⇒ λk = 1− 4α cos2 πk,
and demand λk ≥ −1 for all k.)

Ramses van Zon Partial Differential Equations (PHY1610 lecture 13) March 1, 2022 25 / 27



Can we save it?
Yes! We just need to pick a better value of ∆t.

∆t = 0.0005 ∆t = 0.00005
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Notes about this implementation

A few things to recognize about this implementation:

The code allocates and fills the entire matrix G. Most of the matrix contains zeros.

This is a good way to implement things initially, for testing. Not good for production runs.

Why? Because in this case the matrix is banded, and so a routine for a banded matrix
should have been used to solve this problem.

Who cares? Banded routines are faster and use much much less memory. Use them!

Downside: banded matrices are a little more complicated to store.

Next lecture, we’ll discuss linear algebra libraries that implement these features:
Basic Linear Algebra Subroutines
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