
Ordinary Differential Equations (PHY1610 lecture 10)

Ramses van Zon

February 10, 2022

Ramses van Zon Ordinary Differential Equations (PHY1610 lecture 10) February 10, 2022 1 / 28

Ordinary Differential Equations
Are equations with derivatives with respect to 1 variable, e.g.

dx

dt
= f(x, t)

There can be more than one such equation, e.g.

dx(1)

dt
= f (1)(x(1), x(2), t);

dx(2)

dt
= f (2)(x(1), x(2), t)

The derivative can be of higher order to, e.g.
d2x

dt2
= f(x, t)

But this can be written, by setting x(1) = x , x(2) = dx/dt, to

dx(1)

dt
= x(2);

dx(2)

dt
= f(x(1), t)

Ramses van Zon Ordinary Differential Equations (PHY1610 lecture 10) February 10, 2022 2 / 28

ODE Examples
Lotka–Volterra (predator/pray)

dx(1)

dt
= x(1)(α− βx(2))

dx(2)

dt
= −x(2)(γ − δx(1))

Harmonic oscillator

dx(1)

dt
= x(2)

dx(2)

dt
= −x(1)

Rate equations (chemistry))

dx(1)

dt
= −2k1[x(1)]2x(2) + 2k2[x(3)]2

dx(2)

dt
= −k1[x(1)]2x(2) + k2[x(3)]2

dx(3)

dt
= 2k1[x(1)]2x(2) − 2k2[x(3)]2

Lorenz system (weather)

dx(1)

dt
= σ(x(2) − x(1))

dx(2)

dt
= x(1)(ρ− x(3))− x(2)

dx(3)

dt
= x(1)x(2) − βx(3)

Ramses van Zon Ordinary Differential Equations (PHY1610 lecture 10) February 10, 2022 3 / 28

Numerical approaches

Start from the general form:
dx(i)

dt
= f(x(1), x(2), ..., t)

Algorithms for numerically solving ODEs are called integrators.

All integrators will evaluate f at discrete points t0, t1,

Initial conditions: specify x(i)(t0).

The time step is typically denoted with h.

Consecutive points may have a fixed step size h = tk+1 − tk or may be adaptive.

Ramses van Zon Ordinary Differential Equations (PHY1610 lecture 10) February 10, 2022 4 / 28

Desirable qualities for an integrator

Accuracy

Efficiency

Stability

Respect physical laws, e.g.

Time reversal symmetry
Conservation of energy
Conservation of linear momentum
Conservation of angular momentum
Conservation of phase space volume

The most efficient algorithm is then the one that
allows the largest possible time step for a given
level of accuracy, while maintaining stability and
preserving conservation laws.

Ramses van Zon Ordinary Differential Equations (PHY1610 lecture 10) February 10, 2022 5 / 28

ODE solvers: Forward Euler
To solve:

dx

dt
= f(t, x)

we could take the simple approximation:

xn+1 ≈ xn + hf(xn, tn) "forward Euler"

Why?

x(tn + h) = x(tn) + h
dx

dt
(tn) +O(h2)

So:
x(tn + h) = x(tn) + hf(xn, tn) +O(h2)

So when taking small time steps, this should be accurate.

Ramses van Zon Ordinary Differential Equations (PHY1610 lecture 10) February 10, 2022 6 / 28

Accuracy of the forward Euler method

x(tn + h) = x(tn) + hf(xn, tn) +O(h2)

O(h2) is the local error, i.e., the error in each time step.

For given trajectory from t = t1 to t2, we need n = (t2 − t1)/h steps.

The global error, i.e., the error accumulated over the trajectory, is therefore:
n×O(h2) = O(h)

Not very accurate.

Ramses van Zon Ordinary Differential Equations (PHY1610 lecture 10) February 10, 2022 7 / 28

Stability of the forward Euler method
To solve harmonic oscillator:

dx(1)

dt
= x(2)

dx(2)

dt
= −x(1)

with forward Euler gives:(
x

(1)
n+1
x

(2)
n+1

)
=
(

1 h
−h 1

)(
x(1)

n

x(2)
n

)

Stability governed by eigenvalues.

λ± = 1± ih of that matrix.
|λ±| =

√
1 + h2 > 1 Unstable for any h!

Ramses van Zon Ordinary Differential Equations (PHY1610 lecture 10) February 10, 2022 8 / 28

Monitoring Stability
For the harmonic oscillator, we know the exact answer, so it’s easy to see that the forward Euler
integrator is unstable.

For systems without an exact solution, one may still know that some quantities should be bounded.

Many physical systems have conserved energy, so we can monitor the energy as a function of time.

Harmonic oscillator:

H =
1
2

[x(1)]2 +
1
2

[x(1)]2

So smaller h does help, but in the long run
(t ∼ O(1/h)), unstable.

Ramses van Zon Ordinary Differential Equations (PHY1610 lecture 10) February 10, 2022 9 / 28

ODE solvers: implicit mid-point Euler
Equation to solve:

dx

dt
= f(x, t)

Symmetric simple approximation:

xn+1 ≈ xn + hf((xn + xn+1)/2, tn) ”mid-point Euler”

This is an implicit formula, i.e., has to be solved for xn+1.

Example: Harmonic oscillator[
1 −h

2
h
2 1

] [
x

[1]
n+1
x

[2]
n+1

]
=
[

1 h
2

−h
2 1

] [
x[1]

n

x[2]
n

]
⇒
[
x

[1]
n+1
x

[2]
n+1

]
= M

[
x[1]

n

x[2]
n

]
Eigenvalues M are λ± = (1±ih/2)2

1+h2/4 so |λ±| = 1

Stable for all h!
Implicit methods often more stable and allow larger step size h.

Ramses van Zon Ordinary Differential Equations (PHY1610 lecture 10) February 10, 2022 10 / 28

ODE solvers: implicit mid-point Euler
Equation to solve:

dx

dt
= f(x, t)

Symmetric simple approximation:

xn+1 ≈ xn + hf((xn + xn+1)/2, tn) ”mid-point Euler”

This is an implicit formula, i.e., has to be solved for xn+1.

Example: Harmonic oscillator

Ramses van Zon Ordinary Differential Equations (PHY1610 lecture 10) February 10, 2022 11 / 28

ODE solvers: Predictor-Corrector
Computation of new point

Correction using that new point

Gear P.C.: keep previous values of x to do higher order Taylor series (predictor), then use f in last
point to correct.

Can suffer from catastrophic cancellation at very low h.

Runge-Kutta: Refines by using mid-points. 4th order version:

k1 = hf(t, x)
k2 = hf(t+ h/2, x+ k1/2)
k3 = hf(t+ h/2, x+ k2/2)
k4 = hf(t+ h, x+ k3)

x′ = y +
k1

6
+
k2

3
+
k3

3
+
k4

6

Ramses van Zon Ordinary Differential Equations (PHY1610 lecture 10) February 10, 2022 12 / 28

Further ODE solvers techniques

Adaptive methods

Rather than taking a fixed h, we can vary h such that the solution has a certain accuracy.

Methods that adjust the time step as the computation proceeds are known as adaptive methods.

Don’t code this yourself!

Adaptive schemes are implemented in libraries such as the gsl and boost::numeric::odeint.

Ramses van Zon Ordinary Differential Equations (PHY1610 lecture 10) February 10, 2022 13 / 28

GSL ODE example: Van der Pol equation (GSL docs)
#include <stdio.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_matrix.h>
#include <gsl/gsl_odeiv.h>
int func(double t, const double y[], double f[],

void *params) {
double mu = *(double *)params;
f[0] = y[1];
f[1] = -y[0] - mu*y[1]*(y[0]*y[0] - 1);
return GSL_SUCCESS;

}
int jac(double t, const double y[], double *dfdy,

double dfdt[], void *params) {
double mu = *(double *)params;
gsl_matrix_view dfdy_mat

= gsl_matrix_view_array (dfdy, 2, 2);
gsl_matrix * m = &dfdy_mat.matrix;
gsl_matrix_set (m, 0, 0, 0.0);
gsl_matrix_set (m, 0, 1, 1.0);
gsl_matrix_set (m, 1, 0, -2.0*mu*y[0]*y[1] - 1.0);
gsl_matrix_set (m, 1, 1, -mu*(y[0]*y[0] - 1.0));
dfdt[0] = dfdt[1] = 0.0;
return GSL_SUCCESS;

}

int main() {
const gsl_odeiv_step_type * T

= gsl_odeiv_step_rk8pd;
gsl_odeiv_step * s

= gsl_odeiv_step_alloc (T, 2);
gsl_odeiv_control * c

= gsl_odeiv_control_y_new (1e-6, 0.0);
gsl_odeiv_evolve * e

= gsl_odeiv_evolve_alloc (2);
double mu = 10;
gsl_odeiv_system sys = {func, jac, 2, &mu};
double t = 0.0, t1 = 100.0;
double h = 1e-6;
double y[2] = { 1.0, 0.0 };
while (t < t1) {

int status = gsl_odeiv_evolve_apply (e,c,s,
&sys, &t, t1, &h, y);

if (status != GSL_SUCCESS) break;
printf("%.5e %.5e %.5e\n", t, y[0], y[1]);

}
gsl_odeiv_evolve_free(e);
gsl_odeiv_control_free(c);
gsl_odeiv_step_free(s);

}
Ramses van Zon Ordinary Differential Equations (PHY1610 lecture 10) February 10, 2022 14 / 28

1

Special case #1: Molecular Dynamics

Ramses van Zon Ordinary Differential Equations (PHY1610 lecture 10) February 10, 2022 15 / 28

Molecular Dynamics Simulations

Used in chemical physics, materials science and
the modelling of bio-molecules.

N interacting particles

mir̈i = Fi(r1, r2, ,̇t)}

+ initial conditions

What makes this different from other ODEs?

Hamiltonian dynamics

Very expensive evaluation of F if N is large

Large simulation times needed
N -body simulation fall within this class as well; the numerics does not care whether
the particles are atoms or stars.

Ramses van Zon Ordinary Differential Equations (PHY1610 lecture 10) February 10, 2022 16 / 28

Hamiltonian dynamics
Molecular Dynamics aims to compute equilibrium, thermodynamic and transport properties of
classical many body systems.

Often, the energy is of the form H = |p|2
2m

+ Φ(r) (a.k.a. the Hamiltonian), and is conserved under
the dynamics.

In that case, the systems follows Newton’s equations of motion:

ṙ =
1
m
p ṗ = F = −

∂Φ
∂r
,

Potential energy Φ is typically a sum of pair potentials:

Φ(r) =
∑
(i,j)

ϕ(rij) =
N∑

i=1

i−1∑
j=1

ϕ(rij),

which entails the following expression for the forces F :

Fi =
∑
j 6=i

ϕ′(rij)
rj − ri

rij

Ramses van Zon Ordinary Differential Equations (PHY1610 lecture 10) February 10, 2022 17 / 28

Boundary conditions
When simulating finite systems, a wall
potential would give finite size effects and
destroy translation invariance.

More benign: Periodic Boundary Conditions

All particles in box have coordinates between
−L/2 and L/2.

A particle exiting simulation box is put back
at the other end.

The box with thick red boundaries is our
simulation box.

Other boxes are copies, or “periodic images”.

Ramses van Zon Ordinary Differential Equations (PHY1610 lecture 10) February 10, 2022 18 / 28

Force calculations

A common pair potential between neutral, spherical particles (atoms) is the Lennard-Jones potential

ϕ(r) = 4ε
[(
σ

r

)12

−
(
σ

r

)6
]
,

σ is a measure of the range of the potential.

ε is its strength.

The potential is positive for small r: repulsion.

The potential is negative for large r: attraction.

The potential goes to zero for large r: short-range.
The potential has a minimum of −ε at 21/6σ.

Ramses van Zon Ordinary Differential Equations (PHY1610 lecture 10) February 10, 2022 19 / 28

Force calculations

Avoid infinite sums: modify the potential
such that it becomes zero beyond a certain
cut-off distance rc:

ϕ′(r) =
{
ϕ(r)− ϕ(rc) if r < rc

0 if r ≥ rc

where the subtraction of ϕ(rc) prevents
discontinuities.

Computing all forces in an N-body system
requires the computation of N(N − 1)/2
forces Fij

Force computation often the most demanding
part of MD.

Ramses van Zon Ordinary Differential Equations (PHY1610 lecture 10) February 10, 2022 20 / 28

Streamlining the force evaluation
Cell divisions

Divide the simulation box into cells larger than the cutoff rc.

Make a list of all particles in each cell.

In the sum over pairs in the force computation, only sum pairs of particles in the same cell or in
adjacent cells.

Neighbour lists

Make a list of pairs of particles that are closer than rc + δr.

Sum over the list of pairs to compute the forces.

The neighbour lists are to be used in subsequent force calculations as long as the list is still valid.

Invalidation criterion: a particle has moved more than δr/2.

For systems with short-range interactions: O(N2)→ O(N).

Ramses van Zon Ordinary Differential Equations (PHY1610 lecture 10) February 10, 2022 21 / 28

Symplectic integrators
MD applications typically contain their own specialized integrator(s).

Reaching long times is paramount, so the stability of the integrator is the most important criteria.

So-called symplectic integrators turn out to be particularly stable.

These consists of substeps, each generated by its own Hamiltonian.

Verlet Scheme (first version)

rn+1 = rn +
pn

m
h+

Fn

2m
h2

pn+1 = pn +
Fn+1 + Fn

2
h

The momentum rule appears to make this an
implicit rule since Fn+1 is required, but not if F
only depends on r!

Verlet Scheme (second version)

The extra storage step can be avoided by
introducing the half step momenta as
intermediates:

pn+1/2 = pn +
1
2
Fnh

rn+1 = rn +
pn+1/2

m
h

pn+1 = pn+1/2 +
1
2
Fn+1h

Ramses van Zon Ordinary Differential Equations (PHY1610 lecture 10) February 10, 2022 22 / 28

Where are the MD libraries?
There typically aren’t any. MD packages are usually applications with a lot of parameters, that used other
libraries. Examples:

Gromacs
NAMD
LAMMPS

which all differ in intended usages, available force fields, serial speed (platform dependent), parallel
scalability, etc.

Frameworks

Some MD packages come more as frameworks, which could be used as a library, within e.g. a C++
program. OpenMM out of Stanford is a prime example which is still actively maintained

(and in fact used in the GPU implementation of Gromacs).

https://simtk.org/home/openmm

Ramses van Zon Ordinary Differential Equations (PHY1610 lecture 10) February 10, 2022 23 / 28

2

Special case #2: N-Body Gravitation

Ramses van Zon Ordinary Differential Equations (PHY1610 lecture 10) February 10, 2022 24 / 28

Long-range interaction

Long-range interactions are those that cannot be cut off without seriously altering the physics.

Gravity is an example of a long range interaction.

Electrostatic is another, so much of this section applies to MD with charged molecules or atoms as
well.

Let’s assume we have a good integrator already, so the bottleneck is the force computation.

Without a cut-off, computing the sum over pairs, or “Particle-Particle”, O(N2) methods seem
unavoidable.

Luckily, there exists special techniques such as

Barnes-Hut
Particle Mesh
Particle-Particle/Particle Mesh (P3M) or Ewald Sums.

Ramses van Zon Ordinary Differential Equations (PHY1610 lecture 10) February 10, 2022 25 / 28

Barnes-Hut

Cells with too many particles are subdivided
(recursive)

Leads to a quad (2d) or octal (3d) tree

Pretend each box is one massive particle at
the centre to compute the force. (or, replace
by a multipole expansion.)

2D Barnes-Hut tree partitioning of 100 bodies for gravitational interactions.

commons.wikimedia.org/wiki/File:2D_Quad-Tree_partitioning_of_100_bodies.png

Ramses van Zon Ordinary Differential Equations (PHY1610 lecture 10) February 10, 2022 26 / 28

Particle-Mesh
Choose a fixed-size rectangular mesh

Distribute masses (blue large circles) to mesh
vertices (little black circles)

Determine gravitational potential using FFT:

∇2Φ = 4πGρ⇒ Φ̂ = −
4πGρ̂
k2

The forces on the lattice are given by the
∇Φ in real space, i.e, the fourier inverse of

F̂ = ikΦ̂ = −ik
4πGρ̂
k2

The inverse FFT gives the real force to move
the particles with.

O(N logN).
Ramses van Zon Ordinary Differential Equations (PHY1610 lecture 10) February 10, 2022 27 / 28

Ewald Sums and P3M

Particle-Mesh is fast, but not very accurate.

This is because the short range part of the forces is poorly represented.

One can do better.

Idea of P3M or Ewald summation is to do an exact summation of forces with bodies nearby, and
perform an approximate calculation for bodies further away.

Ewald does not assign to grid, but pays for this: O(N3/2).

P3M still assigns masses to a regular grid, allowing for O(N logN) scaling.

It relies on being able to translate this separation of local and further-away in fourier space.

Many choices possible, some better than others: quite outside the scope of this lecture, best stop.

Ramses van Zon Ordinary Differential Equations (PHY1610 lecture 10) February 10, 2022 28 / 28

	Special case #1: Molecular Dynamics
	Special case #2: N-Body Gravitation

