Profiling (PHY1610 lecture 9)

Ramses van Zon

February 8, 2022

A

Ramses van Zon Profiling (PHY1610 lecture 9) February 8, 2022 1/19

Profiling

Ramses van Zon Profiling (PHY1610 lecture 9) February 8, 2022 2/19

Profiling

e is a form of runtime application analysis that
measures a performance metric, e.g. the
memory or the duration of a program or part
thereof, the usage of particular instructions, or

— | M -
the frequency and duration of function calls. (I_‘:e:“:s:‘"‘k\

e Like debuggers for finding bugs, profilers are Ae— [
evidence-based methods to find performance [bottlenecies P improvements|

problems.

® Most commonly, profiling information serves
to aid program optimization.

e We cannot improve what we don't measure!

A

Ramses van Zon Profiling (PHY1610 lecture 9) February 8, 2022 3/19

Profiling

e Where in the program is time being spent?
e Find and focus in the “expensive’ ' parts.

e Don't wate time optimizing parts that don't
matter.

e Find bottlenecks.

TickTock timer;
double timesteptime
double snapshottime
timer.tick();
initialize_wave (w) ;
timer.tock("initialization took");

1}
o O
o O

// Output initial wave signal to files
timer.tick();

output_snapshot (0.0, w, fout);
nc_output_snapshot (0.0, w, ncout);
snapshottime += timer.silent_tock();

Ramses van Zon Profiling (PHY1610 lecture 9)

// Take timesteps
for (int s = 0; s < derivs.nsteps; s++) {

// Evolve one time step
timer.tick();

advance_wave (w, params, derivs);
timesteptime += timer.silent_tock();

// Output wave signal to files

if ((s+1)Yderivs.nper == 0) {
timer.tick();
output_snapshot (s*derivs.dt,w,fout);
nc_output_snapshot (s*derivs.dt,w,ncout) ;
snapshottime += timer.silent_tock();

}

std: :cout
<<"timesteps took "<<timesteptime<<"s\n"
<<"file I/0 took "<<snapshottime<<"s\n";

February 8, 2022 4/19

Profiling

Two main approaches for Profiling
e Tracing vs. Sampling

® Instrumentation vs. Instrumentation-Free

The code on the right using “instrumentation”:

// Take timesteps
for (int s = 0; s < derivs.nsteps; s++) {

// Evolve one time step
timer.tick();

advance_wave(w, params, derivs);
timesteptime += timer.silent_tock();

extra code needed to be added.

Ramses van Zon

// Output wave signal to files
if ((s+1)%derivs.nper == 0) {
timer.tick();
output_snapshot (s*derivs.dt,w,fout);
nc_output_snapshot (s*derivs.dt,w,ncout) ;
snapshottime += timer.silent_tock();
}
¥
std: :cout
<<"timesteps took "<<timesteptime<<"s\n"
<<"file I/0 took "<<snapshottime<<"s\n'";

Profiling (PHY1610 lecture 9) February 8, 2022 5/19

Instrumentation

® You can instrument regions of the code
e Simple, but incredibly useful
® Runs every time your code is run

e Can trivially see if changes make things better or worse

// sumsins.cpp
#include <cmath>
#include <iostream>
#include "ticktock.h"
int main()

{

TickTock stopwatch; // holds timing info
stopwatch.tick(); // starts timing
// compute
double b = 0.0;
for (int i=0; i<=10000000; i++)
b += sin(i);
// report
std::cout << "The sum of sin(i) for i=0..10M"
<< " is " << b << "\n";
stopwatch.tock("To compute this took");

$ g++ -c -std=c++17 -02 sumsins.cpp

$ g+t+ -c -std=c++17 -02 ticktock.cc

$ g++ sumsins.o ticktock.o -o sumsins

$./sumsins

The sum of sin(i) for i=0..10M is 1.95589
To compute this took 0.1318 sec

This actually just uses the std: :chrono standard
C+-+ library under the hood, but offers a simpler
way to time portions of code.

To get this little code:

git clone https://github.com /vanzonr /ticktock

Ramses van Zon Profiling (PHY1610 lecture 9) February 8, 2022 6/19

https://github.com/vanzonr/ticktock

Instrumentation-free profiling with OS utilities

Let’s start by looking at some utilities provided by the Linux OS that we can use for profiling.
e time
Measure duration of the whole run of an application
e top, 'htop’
Monitor CPU, memory and |/O utilization while the application is running.

® ps, vmstat, free
(One-time) information on a running processes

A

Ramses van Zon Profiling (PHY1610 lecture 9)

February 8, 2022 7/19

Time : timing the whole program

e time is a built-in command in the bash shell. $ time ./waveld longwaveparams.txt

e Very simple to use. It can be run from the [program output]

Linux command line on any command.
real Om16.715s # Elapsed "walltime"

® |n a serial program: user Om16.105s # Actual user time (of all cores)
real = user + sys sys Om0.252s # System/0S time, e.g. I/0

e In parallel, at most:
user = nprocs X real

e Can be run on tests to identify performance
regressions

A

Ramses van Zon Profiling (PHY1610 lecture 9) February 8, 2022 8/19

Top: Watching a program run

® Run a command in one terminal.

® Run top or top —u $USER in another terminal on the same node (type ‘q’ to exit).
top - 20:26:34 up 6 days, 2:52, 8 users, load average: 0.47, 0.81, 1.06
Tasks: 380 total, 2 running, 378 sleeping, 0 stopped, 0 zombie

%Cpu(s): 6.5 us, 0.6 sy, 0.0 ni, 92.7 id, 0.1 wa, 0.0 hi, 0.0 si, 0.0 st
KiB Mem : 65945184 total, 52059848 free, 1759912 used, 12125424 buff/cache

KiB Swap: 0 total, 0 free, 0 used. 57586756 avail Mem
PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

12241 rzon 20 0 104376 8696 6228 R 97.7 0.0 0:05.96 waveld

12244 rzon 20 0 173104 2656 1696 R 0.3 0.0 0:00.02 top
6199 rzon 20 0 186868 2760 1100 S 0.0 0.0 0:01.09 sshd
6200 rzon 20 0 127364 3364 1816 S 0.0 0.0 0:00.10 bash

® Refreshes every 3 seconds.
e htop is an alternative to top with a nicer default display.
e ps, vmstat and free can give the same information, but just at a single time and non-interactively.

Pro-tip: type “zxcVm1t0" after starting top for a more insightful display.

Ramses van Zon Profiling (PHY1610 lecture 9) February 8, 2022 9/19

Sampling for Profiling

® As the program executes, every so often (~ 100ms) a timer goes, off, and the current location of
execution is recorded

® Shows where time is being spent
Benefits:
e Allow us to get finer-grained (more detailed) information about where time is being spent
e Very low overhead
o No instrumentation, i.e., no code modification
Disadvantages:

® Requires sufficiently long runtime to get enough samples.

® Does not tell us why the code was there.

Ramses van Zon Profiling (PHY1610 lecture 9) February 8, 2022 10/19

A simple sampler : gprof

gprof is a profiler that works by adding the options “-pg -g" to g++ (both in compilations and
linking), the code will sample itself.

Rebuild, then, when running the application, a file called “gmon.out” is created.
gmon.out needs to be analysed by the gprof command.

The gprof command takes at least two arguments: the executable and the gmon.out file name.
This will show how much of its time the program spend in each function.

It also can take an option —-line argument, to show line-by-line info.

$ make clean && make
g++ -c -pg -g -std=c++17 -02 -o waveld.o waveld.cpp
g++ -c -pg -g -std=c++17 -02 -o parameters.o parameters.cpp

g++ -02 -pg -g -o waveld waveld.o parameters.o ... ncoutput.o -lnetcdf_c++4 -lnetcdf
$./waveld longwaveparameters.txt

Results written to 'longresults.txt'.

and also written to 'longresults.txt.nc'.

$ gprof ./waveld gmon.out
!!

$ gprof --line ./waveld gmon.out

Ramses van Zon Profiling (PHY1610 lecture 9) February 8, 2022 11/19

Output of gprof —line

$ gprof --line ./waveld gmon.out | less

Flat profile:

Each sample counts as 0.01 seconds.

)

time

32.
23.
8O
.52
.18
.18
.18
.45
.87
.73
.58
.58
.44
02
.15
.15
.15
.00

=
(o}

OO O0OO0OO0OO0OO0OO0OOOFrNNMNOGM

20
50

[y

WWwwwwowowowowowowowowowowNn -

cumulative
seconds

.11
N2
.51
.04
.12
19
.27
.32
.35
.37
03
.41
.43
.44
.44
.45
)
45

self

self

tota

1

seconds calls Ts/call Ts/call name

1.
.81
.59
.54
.08
.08
.08
.05
.03
.03
.02
.02
.02

[l elNelNelNeNeNelNelNelNeNelNelNeolNeNe Nl

11

01

.01
.01
.01
0.

Ramses van Zon

00

20

0.00

0.00

advance_wave (Waves&, Params&, Derived&)
advance_wave (Waves&, Params&, Derived&)
advance_wave (Waves&, Params&, Derived&)
advance_wave (Waves&, Params&, Derived&)
advance_wave (Waves&, Params&, Derived&)
advance_wave (Waves&, Params&, Derived&)
advance_wave (Waves&, Params&, Derived&)
advance_wave (Waves&, Params&, Derived&)
advance_wave (Waves&, Params&, Derived&)
advance_wave (Waves&, Params&, Derived&)
advance_wave (Waves&, Params&, Derived&)

(wavefields.
(wavefields.
(wavefields.
(wavefields.
(wavefields.
(wavefields.
(wavefields.
(wavefields.
(wavefields.
(wavefields.
(wavefields.

Cpp:
Cpp:
Cpp:
Cpp:
cpp:

CRE

Ccpp:

ERE

Cpp:

ERE

Cpp:

ra::shared_shape<double, 1>::size() const (rarray:765 @
std: :ostream: :operator<<(double) (ostream:221 @ 403c12)
std: :ostream: :operator<<(double) (ostream:221 @ 403beb)
output_snapshot (double, Waves&, std::basic_ofstream<char, st
std: :ostream: :operator<<(double) (ostream:221 @ 403c06)
std::basic_ostream<char, std::char_traits<char> >& std::op

ra::shared_sha$e<double, 1>::decref() (rarray:868 @ 4031f0
February 8, 2022

Profiling (PHY1610 lecture 9

42
44
43
42
49
:50
51
141
49
:48
47
403c¢

aAA A A

A A A A A

a A

12/19

Memory Profiling

Most profilers use time as a metric, but what about memory?

* Massif: Memory Heap Profiler
» valgrind --tool=massif ./mycode
» ms_print massif.out
® Cachegrind: Cache Profiler
» valgrind --tool=cachegrind ./mycode
» Kcachegrind (gui frontend for cachegrind)

https://valgrind.org

A

Ramses van Zon Profiling (PHY1610 lecture 9) February 8, 2022 13/19

https://valgrind.org

Scalasca

Open SpeedShop

TAU Performance System

HPC Tool Kit

ARM MAP (Forge)

Intel (ITAC/Inspector/Advisor/Amplifier (VTune))
Xcode (OS X)

Nvidia Profiler (nvprof)

A

Ramses van Zon Profiling (PHY1610 lecture 9) February 8, 2022 14 /19

Intel Parallel Studio XE

Intel VTune Amplifier XE (performance)

Intel Inspector XE (memory)
Intel Advisor XE (vector/thread)
Intel Trace Analyzer and Collector (MPI)

A

Ramses van Zon Profiling (PHY1610 lecture 9) February 8, 2022 15/19

ARM Forge

ARM Forge is a commercial suite of developer tools: a debugger DDT, a profiler MAP and a performance
report utility (perf-report).

Get them on the Teach cluster or on Niagara with:

module unload gcc/9 # for technical reasons gcc must be loaded after ddt
module load ddt
module load gcc/9

Compile with debugging on, ie —g (but not -pg)
perf-report ./waveld longwaveparameters.txt
* Generates .txt and .html files

Compile with debugging on, ie -g (but not -pg)
map or map ./waveld longwaveparameters.txt
Can run without a gui with the ——profile parameter.

Ramses van Zon Profiling (PHY1610 lecture 9) February 8, 2022 16 /19

Ramses van Zon

Summary: waveld is in this
running application code. Hi
e

68.9%

. pent in P
oos | e o s o
v ually bad
for optimization advi

Time s
™

3119

This application run

MPI

A breakdown of the (

Threads
A breakdown of how multiple threads were use:

Computation

February 8, 2022

17/19

waveld_1p_1n_2022-02-07_22-34.map - Arm MAP - Arm Forge 20.1.3 (on teach01.scinet.local) -

File Edit View Metrics Window Help

Profiled: waveld on 1 process, 1 node Sampled from: Mon. Feb. 7 22:34:29 2022 for 16.1s

Main thread activity

CPU floating-point
19.4 %

Memory usage

x

Hide Metrics...

31.1m8

22:34:29-22:34:45 (16.095s): Main thread compute 93.4 %, File /0 6.3 %, Sleeping

“ waveld.cpp X " output.cpp X

// Output wave signal to file
if ((s+l)sderivs.nper == 0} {

%

Zoom &1 =

Time spent on line 60

output snapshot(s*derivs.dt, w, fout);
nc_output_snapshot (s*derivs.dt, w, ncout);

1

Input/Output Project Files
Main Thread Stacks
Total core time

Main Thread Stacks | Functions

“ Function(s} on line

& waveld [program]

snapshot(double, WaveFields

» advance_wave(WaveFields&, InputPara...

NcFile()

» output start{inputParameters consté, ...

» output finalize(std: basic_ofstream<ch
» 3 others

Source

int main(int argc, char* argvll)
output snapshot(s*der.

advance wave(w, params, derivs);
nc_output finalize(ncout);

. output_start(params, derivs, fout);

output finalize(fout);

Breakdown of the 73.8% time
spent on this line:

Executing instructions
Calling functions

Position
waveld.cpp:16

waveld.cpp:56
waveld.cpp:69
waveld.cpp:34
waveld.cpp:66

BE|

Profiling Summary

o Two main approches: tracing vs sampling

e Put your own timers in the code in/around important sections, find out where time is being spent.
> if something changes, you'll know in what section

® gprof is easy to use and excellent at finding where the time is spent.

e Know the ‘expensive’ parts of your code and spend your programming time accordingly.

e valgrind is good for all things memory; performance, cache, and usage.

e ARM Forge (with MAP, DDT, perf-report) is a great tool, if you have it available use it!

® The “write less code” advice applies here too: use already optimized libraries

A

Ramses van Zon Profiling (PHY1610 lecture 9) February 8, 2022 19/19

	Profiling

