
File I/O (PHY1610 lecture 8)

Ramses van Zon

February 3, 2022

Ramses van Zon File I/O (PHY1610 lecture 8) February 3, 2022 1 / 24

1

File I/O

Ramses van Zon File I/O (PHY1610 lecture 8) February 3, 2022 2 / 24

File I/O

File systems

It’s where we keep most data.

Typically spinning disks

Logical structure: directories, subdirectories and files.

On disk, these are just blocks of bytes.

Each I/O operation (IOPS) gets hit by latency.

Ramses van Zon File I/O (PHY1610 lecture 8) February 3, 2022 3 / 24

File I/O
What are I/O operations, or IOPS?

Finding a file (ls)
Check if that file exists, read metadata (file size, date stamp etc.)

Opening a file
Check if that file exists, see if opening the file is allowed, possibly create it, find the block that has
the (first part of) the file system.

Reading a file
Position to the right spot, read a block, take out right part

Writing to a file
Check where there is space, position to that spot, write the block.
Repeated if the data read/written spans multiple blocks.

Moving the file pointer (“seek’ ’)
File system must check were on disk the data is.

Closing the file

Ramses van Zon File I/O (PHY1610 lecture 8) February 3, 2022 4 / 24

Why it matters: disk access rates over time

Figure by R. Freitas and L Chiu, IBM Almaden Labs, FAST’10

Ramses van Zon File I/O (PHY1610 lecture 8) February 3, 2022 5 / 24

I/O-aware performance tips
“Do”s

Write binary format files Faster I/O and less space than ASCII files.

Use parallel I/O if writing from many nodes.

Maximize size of files. Large block I/O optimal!

Minimize number of files. Makes filesystem more responsive!

“Don’t”s

Don’t write lots of ASCII files. Lazy, slow, and wastes space!

Don’t write many hundreds of files in a 1 directory. (file locks)

Don’t close files between small reads or writes (no: open, write, close, open for append, write, . . .)

Don’t write many small files (< 10MB). System is optimized for large-block I/O.

Ramses van Zon File I/O (PHY1610 lecture 8) February 3, 2022 6 / 24

I/O-aware performance tips
“Do”s

Write binary format files Faster I/O and less space than ASCII files.

Use parallel I/O if writing from many nodes.

Maximize size of files. Large block I/O optimal!

Minimize number of files. Makes filesystem more responsive!

“Don’t”s

Don’t write lots of ASCII files. Lazy, slow, and wastes space!

Don’t write many hundreds of files in a 1 directory. (file locks)

Don’t close files between small reads or writes (no: open, write, close, open for append, write, . . .)

Don’t write many small files (< 10MB). System is optimized for large-block I/O.

Ramses van Zon File I/O (PHY1610 lecture 8) February 3, 2022 6 / 24

2

File Formats

Ramses van Zon File I/O (PHY1610 lecture 8) February 3, 2022 7 / 24

File formats

Formats

ASCII

Binary

MetaData (XML)

Databases

Standard libraries (HDF5, NetCDF)

Ramses van Zon File I/O (PHY1610 lecture 8) February 3, 2022 8 / 24

ASCII vs. Binary

American Standard Code for Information
Interchange (1960s)

Pros

Human Readable

Portable (architecture independent)

Cons

Inefficient Storage

Expensive for Read/Write (conversions)

Native Binary

Pros

Efficient Storage

Efficient Read/Write (native)

Cons

Have to know the format to read

Portability (Endianness)

Ramses van Zon File I/O (PHY1610 lecture 8) February 3, 2022 9 / 24

ASCII vs. Binary
Writing 128M doubles

how? nfs (Teach) ram (Teach) gpfs (Niagara) ram (Niagara) ssd (laptop)
ASCII 79s 75s 62s 58s 58s
Binary 3s 0.4 s 0.5s† 0.4s 1s

Code to write out in ASCII
#include <fstream>
#include <rarray>

int main()
{

rvector<double> v = linspace(0.,1.,128000000);
std::ofstream f("data.txt");
f.precision(16);
for (int i=0; i<v.size(); i++)

f << v[i] << ' ';
f.close();

}

Code to write out in binary
#include <fstream>
#include <rarray>

int main()
{

rvector<double> v = linspace(0.,1.,128000000);
std::ofstream f("data.bin", std::ios::binary);
f.write((char*)&v[0], sizeof(v[0])*v.size());
f.close();

}

Ramses van Zon File I/O (PHY1610 lecture 8) February 3, 2022 10 / 24

3

Data Managament

Ramses van Zon File I/O (PHY1610 lecture 8) February 3, 2022 11 / 24

Metadata

But what about that metadata? What is it?

Metadata is the data about the data. Meaning information that lets you make sense of the data.

It can (and should) include just about any and all information about how the data was created:
I what parameters were used in the run?
I where it was run, when it was run.
I the version of the code used to perform the run, compiler used to create the code, compiler flags.
I and anything else that might or not be useful.

If you’re not sure if that bit information should be kept as metadata, then keep it. You never know
what information might be needed in the future.

Ramses van Zon File I/O (PHY1610 lecture 8) February 3, 2022 12 / 24

Metadata
Data about Data

File system: size, location, date, owner, etc.

Application data: File format, version, iteration, provenance, etc.

Example: Storing metadata in a separate XML file
<?xml version="1.0" encoding="UTF-8" ?>
<slice_data>

<format>UTF1000</format>
<version>6.8</version>

<date>January 15th, 2010</date>
<loc>47 23.516 -122 02.625</loc>

</slice_data>

Combining data and metadata
Self-Describing, Standard Formats

Ramses van Zon File I/O (PHY1610 lecture 8) February 3, 2022 13 / 24

4

NetCDF

Ramses van Zon File I/O (PHY1610 lecture 8) February 3, 2022 14 / 24

NetCDF

A format as well as an Applications Program interface
(API).
Means you do not have to do low-level binary formatting.
NetCDF gives you a higher level approach to writing and
reading multi-dimensional arrays.
Suitable for many common scientific use-cases (if not,
check out HDF5).

https://www.unidata.ucar.edu/software/netcdf/netcdf-4/newdocs

Ramses van Zon File I/O (PHY1610 lecture 8) February 3, 2022 15 / 24

https://www.unidata.ucar.edu/software/netcdf/netcdf-4/newdocs

NetCDF(3) Data Model

Ramses van Zon File I/O (PHY1610 lecture 8) February 3, 2022 16 / 24

NetCDF(3) Data Model

Ramses van Zon File I/O (PHY1610 lecture 8) February 3, 2022 16 / 24

NetCDF(3) Data Model

Ramses van Zon File I/O (PHY1610 lecture 8) February 3, 2022 16 / 24

NetCDF(3) Data Model

Ramses van Zon File I/O (PHY1610 lecture 8) February 3, 2022 16 / 24

NetCDF(3) Data Model

Ramses van Zon File I/O (PHY1610 lecture 8) February 3, 2022 16 / 24

NetCDF(3) Data Model

Ramses van Zon File I/O (PHY1610 lecture 8) February 3, 2022 16 / 24

NetCDF(3) Data Model

Ramses van Zon File I/O (PHY1610 lecture 8) February 3, 2022 16 / 24

NetCDF(3) Data Model

Ramses van Zon File I/O (PHY1610 lecture 8) February 3, 2022 16 / 24

NetCDF(3) Data Model

Ramses van Zon File I/O (PHY1610 lecture 8) February 3, 2022 16 / 24

NetCDF(3) Data Model

Ramses van Zon File I/O (PHY1610 lecture 8) February 3, 2022 16 / 24

NetCDF(3) Data Model

Ramses van Zon File I/O (PHY1610 lecture 8) February 3, 2022 16 / 24

NetCDF(3) Data Model

Ramses van Zon File I/O (PHY1610 lecture 8) February 3, 2022 16 / 24

NetCDF Conventions

A quick note about netCDF conventions:

There are lists of conventions that you can follow for variable names, unit names (“cm”,
“centimetre”, “centimeter”), etc.

If you are planning for interoperability with other codes, this is the way to go.

Codes expecting data following, say, CF (Climate and Forcast) conventions for geophysics should use
that convention.

https://www.unidata.ucar.edu/software/netcdf/conventions.html

Make life easier for yourself and your collaborators: use the standard conventions.

Ramses van Zon File I/O (PHY1610 lecture 8) February 3, 2022 17 / 24

https://www.unidata.ucar.edu/software/netcdf/conventions.html

Writing and Reading a NetCDF file

To write a NetCDF file, we go through the
following steps:

Create the file
Define dimensions
Define variables
End definitions
Write variables
Close file

To read in (part of) a NetCDF file, we go through
the following steps:

Open the file
Get dimension ids
Get dimension lengths
Get variable ids
Read variables
Close file

Ramses van Zon File I/O (PHY1610 lecture 8) February 3, 2022 18 / 24

Writing and Reading a NetCDF file

To write a NetCDF file, we go through the
following steps:

Create the file
Define dimensions
Define variables
End definitions
Write variables
Close file

To read in (part of) a NetCDF file, we go through
the following steps:

Open the file
Get dimension ids
Get dimension lengths
Get variable ids
Read variables
Close file

Ramses van Zon File I/O (PHY1610 lecture 8) February 3, 2022 18 / 24

Sample code writing and reading a NetCDF file
// netcdf_writing.cpp
#include <rarray>
#include <netcdf>
using namespace netCDF;
int main()
{

// Create data array in memory
int nx = 6, ny = 12;
rmatrix<int> dataOut(nx,ny);
for (int i = 0; i < nx; i++)

for (int j = 0; j < ny; j++)
dataOut[i][j] = i * ny + j;

// Create the netCDF file
NcFile* dataFile = new NcFile("first.nc",

NcFile::replace);
// Create the two dimensions
NcDim xDim = dataFile->addDim("x", nx);
NcDim yDim = dataFile->addDim("y", ny);

// Create the data variable

NcVar data =
dataFile->addVar("matrix", ncInt, {xDim,yDim});

// Put the data in the file
data.putVar(&dataOut[0][0]);

// Add an attribute
dataFile->putAtt("Creation date:","2 Feb 2020");

// Close the file
delete dataFile;

}

Compilation:
$ module load gcc/9 rarray hdf5 netcdf
$ g++ nc_write.cpp -c -o nc_write.o
$ g++ nc_write.o -o nc_write -lnetcdf_c++4 -lnetcdf
$./nc_write

Ramses van Zon File I/O (PHY1610 lecture 8) February 3, 2022 19 / 24

Sample code writing and reading a NetCDF file
// netcdf_writing.cpp
#include <rarray>
#include <netcdf>
#include <iostream>
using namespace netCDF;
int main()
{

// Open netcdf file
NcFile* dataFile = new NcFile("first.nc",

NcFile::read);
// Read the two dimensions
NcDim xDim = dataFile->getDim("x");
NcDim yDim = dataFile->getDim("y");
int nx = xDim.getSize();
int ny = yDim.getSize();
std::cout << "Our matrix is " << nx

<< " by " << ny << "\n";
// Create data array in memory
rmatrix<int> dataIn(nx,ny);
// Retrieve handle to variable in the file
NcVar data = dataFile->getVar("matrix");

// Read in the data
data.getVar(&dataIn[0][0]);
// Close the file
delete dataFile;
// Print the data
for (int i =0 ; i < nx; i++) {

for (int j = 0; j < ny ; j++)
std::cout << dataIn[i][j] << " ";

std::cout << "\n";
}

}

Compilation:
$ module load gcc/9 rarray hdf5 netcdf
$ g++ nc_read.cpp -c -o nc_read.o
$ g++ nc_read.o -o nc_read -lnetcdf_c++4 -lnetcdf
$./nc_read
Our matrix is 6 by 12
0 1 2 3 4 5 6 7 8 9 10 11
12 13 14 15 16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31 32 33 34 35
36 37 38 39 40 41 42 43 44 45 46 47
48 49 50 51 52 53 54 55 56 57 58 59
60 61 62 63 64 65 66 67 68 69 70 71

Ramses van Zon File I/O (PHY1610 lecture 8) February 3, 2022 20 / 24

More netCDF goodness
And there are more features:

Not only can you read in only the variables
that you’re interested in, it is also possible to
access subsections of an array, rather than
reading in the entire thing.

Allows parallel I/O.

Allows “infinite” arrays (UNLIMITED
dimensions), which means the arrays can
grow. Good for timestepping, for example.

Allows you to save custom datatypes.

Don’t forget about the ncdump utility!
$ ncdump first.nc
netcdf first {
dimensions:

x = 6 ;
y = 12 ;

variables:
int matrix(x, y) ;

// global attributes:
:Creation\ date\: = "2 Feb 2020" ;

data:

matrix =
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,
24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59,
60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71 ;

}

Ramses van Zon File I/O (PHY1610 lecture 8) February 3, 2022 21 / 24

More netCDF goodness
And there are more features:

Not only can you read in only the variables
that you’re interested in, it is also possible to
access subsections of an array, rather than
reading in the entire thing.

Allows parallel I/O.

Allows “infinite” arrays (UNLIMITED
dimensions), which means the arrays can
grow. Good for timestepping, for example.

Allows you to save custom datatypes.

Don’t forget about the ncdump utility!
$ ncdump first.nc
netcdf first {
dimensions:

x = 6 ;
y = 12 ;

variables:
int matrix(x, y) ;

// global attributes:
:Creation\ date\: = "2 Feb 2020" ;

data:

matrix =
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,
24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59,
60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71 ;

}

Ramses van Zon File I/O (PHY1610 lecture 8) February 3, 2022 21 / 24

More netCDF goodness
And there are more features:

Not only can you read in only the variables
that you’re interested in, it is also possible to
access subsections of an array, rather than
reading in the entire thing.

Allows parallel I/O.

Allows “infinite” arrays (UNLIMITED
dimensions), which means the arrays can
grow. Good for timestepping, for example.

Allows you to save custom datatypes.

Tip: ncdump -h gives the header without data.

Don’t forget about the ncdump utility!
$ ncdump first.nc
netcdf first {
dimensions:

x = 6 ;
y = 12 ;

variables:
int matrix(x, y) ;

// global attributes:
:Creation\ date\: = "2 Feb 2020" ;

data:

matrix =
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,
24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59,
60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71 ;

}

Ramses van Zon File I/O (PHY1610 lecture 8) February 3, 2022 21 / 24

On the use of meta-data

You must must must save your data-about-the-data, and NetCDF allows you to bake the meta-data right
into the data file. What should it include?

your name, as the author of the data.

the date and time the data was created.

the name of the code, and the version number of the code, which was used to create it.

where it was created, what operating system.

the values of key variables that were used to create the data.

anything and everything that might help you, in six months, to understand the
what/where/why/how of the data.

any other information that will allow you to TRUST the data. If you’re not sure, include it!

Ramses van Zon File I/O (PHY1610 lecture 8) February 3, 2022 22 / 24

ASCII vs. Binary vs. NetCDF

ASCII

Pros

Human readable
Could embed metadata
Portable (architecture
independent)

Cons

Inefficient storage
Expensive for read/write
(conversions)

Native Binary

Pros

Efficient storage
Efficient read/write
(native)

Cons

Have to know the format
to read
Portability (Endianness)

NetCDF

Pros

Efficient storage
Efficient read/Write
Portability
Embedded metadata

Cons

Only for multi-dimensional
arrays
More elaborate to code

Ramses van Zon File I/O (PHY1610 lecture 8) February 3, 2022 23 / 24

ASCII vs. Binary vs. NetCDF

ASCII

Pros

Human readable
Could embed metadata
Portable (architecture
independent)

Cons

Inefficient storage
Expensive for read/write
(conversions)

Native Binary

Pros

Efficient storage
Efficient read/write
(native)

Cons

Have to know the format
to read
Portability (Endianness)

NetCDF

Pros

Efficient storage
Efficient read/Write
Portability
Embedded metadata

Cons

Only for multi-dimensional
arrays
More elaborate to code

Ramses van Zon File I/O (PHY1610 lecture 8) February 3, 2022 23 / 24

ASCII vs. Binary vs. NetCDF

ASCII

Pros

Human readable
Could embed metadata
Portable (architecture
independent)

Cons

Inefficient storage
Expensive for read/write
(conversions)

Native Binary

Pros

Efficient storage
Efficient read/write
(native)

Cons

Have to know the format
to read
Portability (Endianness)

NetCDF

Pros

Efficient storage
Efficient read/Write
Portability
Embedded metadata

Cons

Only for multi-dimensional
arrays
More elaborate to code

Ramses van Zon File I/O (PHY1610 lecture 8) February 3, 2022 23 / 24

Summary

Use file I/O as little as possible. Keep it to big files, with as few IOPs as possible.

Use a binary format to store your numerical data, not ASCII.

It’s a good practise to make your data “self-describing”, meaning store your metadata with your data
in the same file.

NetCDF is a commonly used format to store data that has many useful features.

Ramses van Zon File I/O (PHY1610 lecture 8) February 3, 2022 24 / 24

	File I/O
	File Formats
	Data Managament
	NetCDF

