
Modular Programming (PHY1610 Lecture 4)

Ramses van Zon

Winter 2022

Ramses van Zon Modular Programming (PHY1610 Lecture 4) Winter 2022 1 / 36

Section 1

Modularity

Ramses van Zon Modular Programming (PHY1610 Lecture 4) Winter 2022 2 / 36

Why does modularity matter?

Modularity? Who cares?

Scientific software can be large, complex and subtle.

If each section uses the internal details of other sections, you must understand the entire code at
once to understand what the code in a particular section is doing.

(This is why global variables are bad bad bad!)

Interactions grow as (number of lines of code)2.

Ramses van Zon Modular Programming (PHY1610 Lecture 4) Winter 2022 3 / 36

Example: Monolythic code for hydrogen’s ground state
// hydrogen.cpp
#include <iostream>
#include <fstream>
const int n = 4913;
double m[n][n], a[n], b = 0.0;
void pw() {

double q[n] = {0};
for (int i = 0; i < n; i++)

for (int j = 0; j < n; j++)
q[i] += m[i][j]*a[j];

for (int i = 0; i < n; i++)
a[i] = q[i];

}
double en() {

double e = 0.0, z = 0.0;
for (int i = 0; i < n; i++) {

z += a[i]*a[i];
for (int j = 0; j < n; j++)

e += a[i]*m[i][j]*a[j];
}
return b + e/z;

}

int main() {
for (int i = 0; i < n; i++) {

a[i] = 1.0;
for (int j = 0; j < n; j++) {

m[i][j] = H(i,j,n);
}

}
for (int i = 0; i < n; i++)

if (m[i][i] > b)
b = m[i][i];

for (int i = 0; i < n; i++)
m[i][i] -= b;

for (int p = 0; p < 20; p++)
pw();

std::cout<<"Ground state energy="<<en()<<"\n";
std::ofstream f("data.txt");
for (int i = 0; i < n; i++)

f << a[i] << std::endl;
std::ofstream g("data.bin", std::ios::binary);
g.write((char*)(a), sizeof(a));
return 0;

}

Ramses van Zon Modular Programming (PHY1610 Lecture 4) Winter 2022 4 / 36

What is wrong with that code?
The hydrogen.cpp code uses functions. Is that not modular?

A few bad things:

Global variables that all of the code can modify.

All code in one file.

No comments.

Not clear what part does what, or what part needs which variables.

Cryptic variable and function names.

Hard-coded filenames and parameters.

Automatic arrays.

Who cares, you might say, as long as it runs? But:

Code is not written for a computer but for humans.

Code almost never a one-off.
Ramses van Zon Modular Programming (PHY1610 Lecture 4) Winter 2022 5 / 36

What to do: Use modularity

You must enforce boundaries between sections of code so that you have self-contained modules of
functionality.

This is not just for your own sanity. There are added benefits:

Each section can then be tested individually, which is significantly easier.

Makes rebuilding software more efficient.

Makes version control more powerful.

Makes changing the code easier.

Ramses van Zon Modular Programming (PHY1610 Lecture 4) Winter 2022 6 / 36

But it’s more work up-front

Think about the blocks of functionality that you are going to need.

How are the routines within these blocks going to be used?

Think about what you might want to use these routines for; only then design the interface.

The interfaces to your routines may change a bit in the early stages of your code development, but if
it changes a lot you should stop and rethink things – you’re not using the functionality the way you
expected to.

More work up-front but results in higher productivity in the long run.

Developing good infrastructure is always time well spent.

Ramses van Zon Modular Programming (PHY1610 Lecture 4) Winter 2022 7 / 36

A simple example of modularization
The code writes out the array in binary and text formats. Let’s start with putting those parts in functions.
//hydrogen.cpp
#include <string>

void writeBinary(const std::string& s, int n, const double x[]) {
std::ofstream g(s, std::ios::binary);
g.write((char*)(x), n*sizeof(x[0]));
g.close();

}
void writeText(const std::string& s, int n, const double x[]) {

std::ofstream f(s);
for (int i=0; i<n; i++)

f << a[i] << std::endl;
f.close();

}
//...
int main() {

//...
writeText("data.txt", n, a);
writeBinary("data.bin", n, a);
//...

}
Ramses van Zon Modular Programming (PHY1610 Lecture 4) Winter 2022 8 / 36

A simple example of modularization
The code writes out the array in binary and text formats. Let’s extract function declarations.
//hydrogen.cpp
#include <string>

void writeBinary(const std::string& s, int n, const double x[]) {
std::ofstream g(s, std::ios::binary);
g.write((char*)(x), n*sizeof(x[0]));
g.close();

}
void writeText(const std::string& s, int n, const double x[]) {

std::ofstream f(s);
for (int i=0; i<n; i++)

f << a[i] << std::endl;
f.close();

}
//...
int main() {

//...
writeText("data.txt", n, a);
writeBinary("data.bin", n, a);
//...

}
Ramses van Zon Modular Programming (PHY1610 Lecture 4) Winter 2022 9 / 36

A simple example of modularization
The code writes out the array in binary and text formats. Let’s extract declarations.
//hydrogen.cpp
#include <string>
void writeBinary(const std::string& s, int n, const double x[]);
void writeText(const std::string& s, int n, const double x[]);
void writeBinary(const std::string& s, int n, const double x[]) {

std::ofstream g(s, std::ios::binary);
g.write((char*)(x), n*sizeof(x[0]));
g.close();

}
void writeText(const std::string& s, int n, const double x[]) {

std::ofstream f(s);
for (int i=0; i<n; i++)

f << a[i] << std::endl;
f.close();

}
//...
int main() {

//...
writeText("data.txt", n, a);
writeBinary("data.bin", n, a);
//...

}
Ramses van Zon Modular Programming (PHY1610 Lecture 4) Winter 2022 10 / 36

A simple example of modularization
The code writes out the array in binary and text formats. Let’s extract declarations.
//hydrogen.cpp
#include <string>
void writeBinary(const std::string& s, int n, const double x[]);
void writeText(const std::string& s, int n, const double x[]);
void writeBinary(const std::string& s, int n, const double x[]) {

// bunch of commands

}
void writeText(const std::string& s, int n, const double x[]) {

// bunch of commands

}
//...
int main() {

//...
writeText("data.txt", n, a);
writeBinary("data.bin", n, a);
//...

}
Ramses van Zon Modular Programming (PHY1610 Lecture 4) Winter 2022 11 / 36

A simple example of modularization
The code writes out the array in binary and text formats. Function definitions can be moved.
//hydrogen.cpp
#include <string>
void writeBinary(const std::string& s, int n, const double x[]);
void writeText(const std::string& s, int n, const double x[]);
void writeBinary(const std::string& s, int n, const double x[]) {

// bunch of commands

}
void writeText(const std::string& s, int n, const double x[]) {

// bunch of commands

}
//...
int main() {

//...
writeText("data.txt", n, a);
writeBinary("data.bin", n, a);
//...

}
Ramses van Zon Modular Programming (PHY1610 Lecture 4) Winter 2022 12 / 36

A simple example of modularization
The code writes out the array in binary and text formats. Function definitions can be moved.
//hydrogen.cpp
#include <string>
void writeBinary(const std::string& s, int n, const double x[]);
void writeText(const std::string& s, int n, const double x[]);

//...

int main() {
//...
writeText("data.txt", n, a);
writeBinary("data.bin", n, a);
//...

}

void writeBinary(const std::string& s, int n, const double x[]) {
// bunch of commands

}

void writeText(const std::string& s, int n, const double x[]) {
// bunch of commands

}
Ramses van Zon Modular Programming (PHY1610 Lecture 4) Winter 2022 13 / 36

A simple example of modularization
The code writes out the array in binary and text formats. We’re ready to make a module now!
//hydrogen.cpp
#include <string>
void writeBinary(const std::string& s, int n, const double x[]);
void writeText(const std::string& s, int n, const double x[]);

//...

int main() {
//...
writeText("data.txt", n, a);
writeBinary("data.bin", n, a);
//...

}

void writeBinary(const std::string& s, int n, const double x[]) {
// bunch of commands

}

void writeText(const std::string& s, int n, const double x[]) {
// bunch of commands

}
Ramses van Zon Modular Programming (PHY1610 Lecture 4) Winter 2022 14 / 36

Creating the module

To create our own module, put the declarations for the functions in their own ’header’ file.
//outputarray.h
#include <string>
void writeBinary(const std::string& s, int n, const double x[]);
void writeText(const std::string& s, int n, const double x[]);

The source code with the definitions of the functions shoule be put into its own separate file.
//outputarray.cpp
#include "outputarray.h"
#include <fstream>
void writeBinary(const std::string& s, int n, const double x[]) {

// bunch of commands
}

void writeText(const std::string& s, int n, const double x[]) {
// bunch of commands

}

Ramses van Zon Modular Programming (PHY1610 Lecture 4) Winter 2022 15 / 36

Using the module

The original code that uses these would look like:
//hydrogen.cpp
#include "outputarray.h"

//...

int main() {
//...
writeText("data.txt", data, n);
writeBinary("data.bin", data, n);
//...

}

Ramses van Zon Modular Programming (PHY1610 Lecture 4) Winter 2022 16 / 36

Compiling + Linking = Building

So how to compile this code?

Before the full program can be compiled, all the source files (hydrogen.cpp, outputarray.cpp) must
be compiled.

outputarray.cpp doesn’t contain a main function, so it can’t be an executable (no program to run).

Instead outputarray.cpp is compiled into a “.o” file, an object file, using the “-c” flag

It is customary and advisable to compile all the code pieces into object files.

After all the object files are generated, they are linked together to create the working executable.
$ g++ -std=c++17 outputarray.cpp -c -o outputarray.o // compile
$ g++ -std=c++17 hydrogen.cpp -c -o hydrogen.o // compile
$ g++ -std=c++17 outputarray.o hydrogen.o -o hydrogen // link

If you leave out one of the needed .o files you will get a fatal linking error: “undefined reference to
. . . ”.

Ramses van Zon Modular Programming (PHY1610 Lecture 4) Winter 2022 17 / 36

Interface v. Implementation

By creating a header file, we separated the interface from the implementation.

The implementation - the actual code for writeBinary and writeText - goes in the .cpp (or .cc or .cxx)
or ’source’ file. This is compiled on its own, separately from any program that uses its functions.

The interface - what the calling code needs to know - goes in the .h or ’header’ files. This is also
called the API (Application Programming Interface).

//outputarray.h
#include <string>
void writeBinary(const std::string& s, int n, const double x[]);
void writeText(const std::string& s, int n, const double x[]);

This distinction is crucial for writing modular code.

Ramses van Zon Modular Programming (PHY1610 Lecture 4) Winter 2022 18 / 36

Interface v. implementation

So, to review:

When hydrogen.cpp is being compiled, the header file outputarray.h is included to tell the compiler
that there exists out there somewhere functions of the form
void writeBinary(const std::string& s, int n, const double x[]);
void writeText(const std::string& s, int n, const double x[]);

This allows the compiler to check the number and type of arguments and the return type for those
functions (the interface).

The compiler does not need to know the details of the implementation, since it’s not compiling the
implementation (the source code of the routine).

The programmer of hydrogen.cpp also does not need to know the implementation, and is free to
assume that writeBinary and writeText have been programmed correctly.

Ramses van Zon Modular Programming (PHY1610 Lecture 4) Winter 2022 19 / 36

Guards against multiple inclusion

Protect your header files!

Header files can include other header files.

It can be hard to figure out which header files are already included in the program.

Including a header file twice will lead to doubly-defined entities, which results in a compiler error.

The solution is to add a ’preprocessor guard’ to every header file:
//outputarray.h
#ifndef OUTPUTARRAY_H
#define OUTPUTARRAY_H
#include <string>
void writeBinary(const std::string& s, int n, const double x[]);
void writeText(const std::string& s, int n, const double x[]);
#endif

We’ll expect to see these in your homework.

Ramses van Zon Modular Programming (PHY1610 Lecture 4) Winter 2022 20 / 36

About the preprocessor

What do you mean by “preprocessor”?

Before the compiler actually compiles the code, a “preprocessor” is run on the code.

For our purposes, the preprocessor is essentially just a text-substitution tool.

Every line that starts with “#” is interpreted by the preprocessor.

The most common directives a beginner encounters are #include, #ifndef, #define, and #endif.

Future Feature

The new C++20 standard defines a new way to build modules than to rely on the preprocessor.

Implementations by compilers are not fully there yet, or are experimental. They also still vary a lot from
compiler to compiler, to the extent that it changes how you build software.

So for now, let’s stick with the #include technique.

Ramses van Zon Modular Programming (PHY1610 Lecture 4) Winter 2022 21 / 36

What goes into the interface (i.e. the header file)?

So what should one expect in a header file?

At the very least, the function declarations.

There may also be constants that the calling function and the routine need to agree on (error codes,
for example) or definitions of data structures, classes, etc.

Comments, which give a description of the module and its functions.

Further guidelines:

There should really only be one header file per module. In theory there can be multiple source files.

Not necessarily every function declaration is in the header file, just the public ones. Routines internal
to the module are not in the public header file.

Ramses van Zon Modular Programming (PHY1610 Lecture 4) Winter 2022 22 / 36

What goes into the implementation (source file)?

What should one expect in a source file?

Everything which is defined in the .h file which requires code that is not in the .h file. Particularly,
function definitions.

Internal routines which are used by the routines declared in the .h file.

To ensure consistency, include the corresponding .h file at the top of the file.

Everything that needs to be compiled and linked to code that uses the .h file.

Ramses van Zon Modular Programming (PHY1610 Lecture 4) Winter 2022 23 / 36

Modularization allows faster compilation
Consider a build tree with several source files, e.g.

1 Each source file compilation into an .o file
can be done simultaneously.

Parallel processing of code!
2 If only one .cc file has changed, only that file

needs to be recompiled.

Fast rebuilds

But:

Now you need to keep track of what depends
upon what.
You need to retype in the entire compilation
command every time you need to recompile.
It’s easy to forget all of your compiler flags
from one day to the next, as well as the
location of external libraries.

This is where the make program comes in.Ramses van Zon Modular Programming (PHY1610 Lecture 4) Winter 2022 24 / 36

Section 2

Make

Ramses van Zon Modular Programming (PHY1610 Lecture 4) Winter 2022 25 / 36

Make

make is a build program that is used to build programs from multiple .cpp, .h, .o, and other files.

It is actually a very general framework that is used to compile code, of any type.

make takes a Makefile’ as its input, which specifies what to do, and how.

The Makefile contains variables, rules and dependencies.

The Makefile specifies executables, compiler flags, library locations, . . .

Build programs are a crucial component of professional software development.

https://www.gnu.org/software/make/manual/html_node/index.html

Ramses van Zon Modular Programming (PHY1610 Lecture 4) Winter 2022 26 / 36

https://www.gnu.org/software/make/manual/html_node/index.html

Basic usage

Make is invoked with a list of target file names to build as command-line arguments:
$ make [TARGET ...]

Without arguments, make builds the first target that appears in its makefile, which is traditionally a
symbolic phony target named all.

Make decides whether a target needs to be regenerated by comparing file modification times.

This solves the problem of avoiding the building of files which are already up to date, as long as the
timestamps are consistent and correct.

Ramses van Zon Modular Programming (PHY1610 Lecture 4) Winter 2022 27 / 36

Makefiles

Make searches the current directory for the makefile to use,
(e.g. makefile, Makefile, GNUmakefile
and then runs the specified (or default) target(s) from (only) that file.

It is possible to specify a different makefile by using the -f flag, e.g. sh $ make -f
myMakefile [TARGET ...]

The makefile is a plain-text file, with a particular structure

It may include rules and use commands from the shell.

Ramses van Zon Modular Programming (PHY1610 Lecture 4) Winter 2022 28 / 36

Rules
A makefile consists of rules.

Each rule begins with a textual dependency line which defines a target followed by a colon (:) and
optionally an enumeration of components (files or other targets) on which the target depends.

The dependency line is arranged so that the
target (left of the colon) depends on
“components” or “prerequisites” (to its right)

Each command-line must start with a TAB
character to be recognized as a command.

Unfortunately, as you can’t easily see in your
editor whether you have a TAB character or a
set of spaces. If you have spaces instead of a
TAB, make will print the unhelpful error:
Makefile:3: *** missing separator.
Stop.

TARGET: dependencies...
[command 1]}
:
[command n]

TARGET1 [TARGET2 ...]: dep1 dep2 ...
[command 1]
:
[command n]

Ramses van Zon Modular Programming (PHY1610 Lecture 4) Winter 2022 29 / 36

Rules - commands

Each command is executed by a separate shell or command-line interpreter instance.

The backslash \ can be used to have commands executed by the same shell, it represents
line-continuation

Commands can be separated by ;

Comments are included using #

A rule may have no command lines defined.

The dependency line can consist solely of components that refer to targets.

This means either there is nothing to do, or there is a predefined rule.

Ramses van Zon Modular Programming (PHY1610 Lecture 4) Winter 2022 30 / 36

Macros & Variables
Macros are usually referred to as variables
when they hold simple string definitions, like
CXX = g++.

Macros in makefiles may be overridden by the
command-line arguments passed to the Make
utility (e.g. “make CXX=icpc”).

Macros allow users to specify the programs
invoked and other custom behavior during the
build process.

For example, the macro CXX is used in
makefiles to refer to the location of the C++
compiler

To use variables, you need to use a dollar sign
($) followed by the name of the variable in
parenthesis or curly braces.

MACRO = definition

PACKAGE = package
VERSION = `date +"\%Y.\%m\%d"`
ARCHIVE = $(PACKAGE)-$(VERSION)

dist:
Notice that only now macros are
expanded for shell to interpret:
tar -cf ../package-`date +"\%Y\%m\%d"`.tar
tar -cf ../$(ARCHIVE).tar .

Note: Environment variables are also available as
macros.

Ramses van Zon Modular Programming (PHY1610 Lecture 4) Winter 2022 31 / 36

Compilation and Linking
Example Makefile for the `hydrogen` program (after modularization)
CXX=g++
CXXFLAGS=-std=c++17 -O2
all: hydrogen

hydrogen: hydrogen.o outputarray.o initmatrix.o eigenvalue.o
$(CXX) -o hydrogen hydrogen.o outputarray.o initmatrix.o eigenvalue.o

hydrogen.o: hydrogen.c outputarray.h initmatrix.h eigenvalue.h
$(CXX) -c $(CXXFLAGS) -o hydrogen.o hydrogen.c

outputarray.o: outputarray.cpp outputarray.h
$(CXX) -c $(CXXFLAGS) -o outputarray.o outputarray.c

initmatrix.o: initmatrix.cpp initmatix.h
$(CXX) -c $(CXXFLAGS) -o initmatrix.o initmatrix.c

eigenvalue.o: eigenvalue.cpp eigenvalue.h
$(CXX) -c $(CXXFLAGS) -o eigenvalue.o eigenvalue.c

clean:
$(RM) eigenvalue.o initmatrix.o outputarray.o hydrogen.o

.PHONY: all clean
Ramses van Zon Modular Programming (PHY1610 Lecture 4) Winter 2022 32 / 36

Compilation and Linking

What happens when you type make?

make will only recompile those dependencies that have source files that are newer then the library,
thus only the code you are working on is modified.

If a target is not a file, you should declare it ‘PHONY’. Otherwise, should a file by that name exist,
make thinks it’s done already.

It’s good practice to put a clean rule in your Makefile that allows the whole compilation to restart.

Several rules could be processed at the same time; you can tell make to try and use multiple
processes when the dependencies allow it, but specifying a -j option, e.g.
$ make -j 4

Ramses van Zon Modular Programming (PHY1610 Lecture 4) Winter 2022 33 / 36

Special Variables

$@: the target filename

$*: the target filename without the file extension

$<: the first prerequisite filename

$ˆ: the filenames of all the prerequisites, separated by spaces, discard duplicates.

$+: similar to $ˆ, but includes duplicates

$?: the names of all prerequisites that are newer than the target, separated by spaces

Ramses van Zon Modular Programming (PHY1610 Lecture 4) Winter 2022 34 / 36

Compilation and Linking
Example Makefile for the `hydrogen` program (after modularization)
CXX=g++
CXXFLAGS=-std=c++17 -O2
all: hydrogen

hydrogen: hydrogen.o outputarray.o initmatrix.o eigenvalue.o
$(CXX) -o $@ $ˆ

hydrogen.o: hydrogen.c outputarray.h initmatrix.h eigenvalue.h
$(CXX) -c $(CXXFLAGS) -o $@ $<

outputarray.o: outputarray.cpp outputarray.h
$(CXX) -c $(CXXFLAGS) -o $@ $<

initmatrix.o: initmatrix.cpp initmatix.h
$(CXX) -c $(CXXFLAGS) -o $@ $<

eigenvalue.o: eigenvalue.cpp eigenvalue.h
$(CXX) -c $(CXXFLAGS) -o $@ $<

clean:
$(RM) eigenvalue.o initmatrix.o outputarray.o hydrogen.o

.PHONY: all clean
Ramses van Zon Modular Programming (PHY1610 Lecture 4) Winter 2022 35 / 36

Assignment 1

You will receive an existing, monolythic code that simulates a one-dimensional wave equation, and your
task will be to convert it into a modular form, and supply it with a proper Makefile to compile the code.

Please see the course site for details later this Thursday.

Note that at the office hours on Friday (January 21, 2022), we will briefly go over this code as well.

The assignment will be due January 26th, 2022 at midnight. Upload all your code, the output, and a brief
report (text format) on what you did.

Ramses van Zon Modular Programming (PHY1610 Lecture 4) Winter 2022 36 / 36

	Modularity
	Make

